Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Drugs that have been covalently altered with lipids are known as lipid-drug conjugates. Drug characteristics are altered and their lipophilicity is increased when lipids are conjugated to drug molecules. The conjugates exhibit a number of benefits, including increased oral bioavailability, improved lymphatic targeting, improved tumor targeting, and reduced cytotoxicity. Different conjugation techniques and chemical bridges can be utilized to create lipid-drug conjugates depending on the chemical makeup of medicines and lipids. For lipid-drug conjugates to function at their best, linkers and/or conjugation techniques are essential. They control how medications are released from lipid-drug conjugates. The numerous lipids utilized to make lipid-drug conjugates and the various conjugation techniques are outlined in this article. Although these conjugates can be delivered without a delivery vehicle, many of them are put into suitable delivery techniques. Drug loading into lipophilic parts of vehicles can be considerably improved by the lipid component in the conjugates, leading to combinations with significant drug content and superior stability.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031304145240805092718
2024-08-19
2025-05-04
Loading full text...

Full text loading...

References

  1. BanerjeeS. KunduA. Lipid-drug conjugates: A potential nanocarrier system for oral drug delivery applications.Daru2018261657510.1007/s40199‑018‑0209‑130159763
    [Google Scholar]
  2. GentileE. CilurzoF. Di MarzioL. CarafaM. Anna VenturaC. WolframJ. PaolinoD. CeliaC. Liposomal chemotherapeutics.Future Oncol.20139121849185910.2217/fon.13.14624295415
    [Google Scholar]
  3. Ezzati Nazhad DolatabadiJ. OmidiY. Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems.Trends Analyt. Chem.20167710010810.1016/j.trac.2015.12.016
    [Google Scholar]
  4. XuZ. MoyleP.M. Bioconjugation approaches to producing subunit vaccines composed of protein or peptide antigens and covalently attached toll-like receptor ligands.Bioconjug. Chem.201829357258610.1021/acs.bioconjchem.7b0047828891637
    [Google Scholar]
  5. KongX LiuY HuangX HuangS GaoF RongP Cancer therapy based on smart drug delivery with advanced nanoparticles.Anticancer Agents Med Chem201919672073010.2174/1871520619666190212124944
    [Google Scholar]
  6. RajP LalB GadewarM SinghA PrashanthGK Cisplatin and nano-particle formulations of cisplatin for cancer therapy: A Review.J. Pharm. Res. Int20223414A344910.9734/jpri/2022/v34i14A35636
    [Google Scholar]
  7. WangY. FanW. DaiX. KatragaddaU. MckinleyD. TengQ. TanC. Enhanced tumor delivery of gemcitabine via PEG-DSPE/TPGS mixed micelles.Mol. Pharm.20141141140115010.1021/mp400590424579673
    [Google Scholar]
  8. WangY. LiL. JiangW. YangZ. ZhangZ. Synthesis and preliminary antitumor activity evaluation of a DHA and doxorubicin conjugate.Bioorg. Med. Chem. Lett.200616112974297710.1016/j.bmcl.2006.02.06616563756
    [Google Scholar]
  9. BradleyMO SwindellCS AnthonyFH WitmanPA DevanesanP WebbNL Tumor targeting by conjugation of DHA to paclitaxel.JCR20012001741-323323610.1016/S0168‑3659(01)00321‑2
    [Google Scholar]
  10. ZaroJ.L. Lipid-based drug carriers for prodrugs to enhance drug delivery.AAPS J.2015171839210.1208/s12248‑014‑9670‑z25269430
    [Google Scholar]
  11. KuznetsovaN.R. StepanovaE.V. PeretolchinaN.M. KhochenkovD.A. BoldyrevI.A. BovinN.V. VodovozovaE.L. Targeting liposomes loaded with melphalan prodrug to tumour vasculature via the Sialyl Lewis X selectin ligand.J. Drug Target.201422324225010.3109/1061186X.2013.86280524313904
    [Google Scholar]
  12. HanS. QuachT. HuL. WahabA. CharmanW.N. StellaV.J. TrevaskisN.L. SimpsonJ.S. PorterC.J.H. Targeted delivery of a model immunomodulator to the lymphatic system: Comparison of alkyl ester versus triglyceride mimetic lipid prodrug strategies.J. Control. Release201417711010.1016/j.jconrel.2013.12.03124398334
    [Google Scholar]
  13. HanS. HuL. QuachT. SimpsonJ.S. TrevaskisN.L. PorterC.J.H. Profiling the role of deacylation-reacylation in the lymphatic transport of a triglyceride-mimetic prodrug.Pharm. Res.20153251830184410.1007/s11095‑014‑1579‑925446770
    [Google Scholar]
  14. HanS. HuL. Gracia QuachT. SimpsonJ.S. EdwardsG.A. TrevaskisN.L. PorterC.J.H. Lymphatic transport and lymphocyte targeting of a triglyceride mimetic prodrug is enhanced in a large animal model: Studies in greyhound dogs.Mol. Pharm.201613103351336110.1021/acs.molpharmaceut.6b0019527608166
    [Google Scholar]
  15. AnsellS.M. JohnstoneS.A. TardiP.G. LoL. XieS. ShuY. HarasymT.O. HarasymN.L. WilliamsL. BermudesD. LiboironB.D. SaadW. Prud’hommeR.K. MayerL.D. Modulating the therapeutic activity of nanoparticle delivered paclitaxel by manipulating the hydrophobicity of prodrug conjugates.J. Med. Chem.200851113288329610.1021/jm800002y18465845
    [Google Scholar]
  16. RadwanA.A. AlanaziF.K. Targeting cancer using cholesterol conjugates.Saudi Pharm. J.201422131610.1016/j.jsps.2013.01.00324493968
    [Google Scholar]
  17. RadwanA. AlanaziF. Design and synthesis of new cholesterol- conjugated 5-Fluorouracil: A novel potential delivery system for cancer treatment.Molecules2014199131771318710.3390/molecules19091317725162958
    [Google Scholar]
  18. DingY. WangW. FengM. WangY. ZhouJ. DingX. ZhouX. LiuC. WangR. ZhangQ. A biomimetic nanovector- mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy.Biomaterials201233348893890510.1016/j.biomaterials.2012.08.05722979990
    [Google Scholar]
  19. WolfrumC. ShiS. JayaprakashK.N. JayaramanM. WangG. PandeyR.K. RajeevK.G. NakayamaT. CharriseK. NdungoE.M. ZimmermannT. KotelianskyV. ManoharanM. StoffelM. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs.Nat. Biotechnol.200725101149115710.1038/nbt133917873866
    [Google Scholar]
  20. YlasenkoY.V. AlekseevaA.S. VodovozovaE.L. [Synthesis of a fluorescent analog of methotrexate lipophilic prodrug].Bioorg. Khim.201440112512825898731
    [Google Scholar]
  21. DalpiazA. ContadoC. MariL. PerroneD. PavanB. PaganettoG. HanuskovàM. VighiE. LeoE. Development and characterization of PLGA nanoparticles as delivery systems of a prodrug of zidovudine obtained by its conjugation with ursodeoxycholic acid.Drug Deliv.201421322123210.3109/10717544.2013.84474424134683
    [Google Scholar]
  22. YadavK. BhargavaP. BansalS. SinghM. GuptaS. SandhuG. KumarS. SreekanthV. BajajA. Nature of the charged head group dictates the anticancer potential of lithocholic acid-tamoxifen conjugates for breast cancer therapy.MedChemComm20156577878710.1039/C4MD00289J
    [Google Scholar]
  23. AlexanderR.L. GreeneB.T. TortiS.V. KuceraG.L. A novel phospholipid gemcitabine conjugate is able to bypass three drug-resistance mechanisms.Cancer Chemother. Pharmacol.2005561152110.1007/s00280‑004‑0949‑015789226
    [Google Scholar]
  24. PedersenP.J. ChristensenM.S. RuysschaertT. LinderothL. AndresenT.L. MelanderF. MouritsenO.G. MadsenR. ClausenM.H. Synthesis and biophysical characterization of chlorambucil anticancer ether lipid prodrugs.J. Med. Chem.200952103408341510.1021/jm900091h19402667
    [Google Scholar]
  25. ArouriA. MouritsenO.G. Anticancer double lipid prodrugs: Liposomal preparation and characterization.J. Liposome Res.201121429630510.3109/08982104.2011.56336521438721
    [Google Scholar]
  26. IrbyD. DuC. LiF. Lipid–drug conjugate for enhancing drug delivery.Mol. Pharm.20171451325133810.1021/acs.molpharmaceut.6b0102728080053
    [Google Scholar]
  27. YangY. AloysiusH. InoyamaD. ChenY. HuL. Enzyme- mediated hydrolytic activation of prodrugs.Acta Pharm. Sin. B20111314315910.1016/j.apsb.2011.08.001
    [Google Scholar]
  28. DuhemN. DanhierF. PourcelleV. SchumersJ.M. BertrandO. LeDuffC.S. HoeppenerS. SchubertU.S. GohyJ.F. Marchand-BrynaertJ. PréatV. Self-assembling doxorubicin-tocopherol succinate prodrug as a new drug delivery system: Synthesis, characterization, and in vitro and in vivo anticancer activity.Bioconjug. Chem.2014251728110.1021/bc400326y24328289
    [Google Scholar]
  29. GuptaA. AsthanaS. KonwarR. ChourasiaM.K. An insight into potential of nanoparticles-assisted chemotherapy of cancer using gemcitabine and its fatty acid prodrug:A comparative study.J. Biomed. Nanotechnol.20139591592510.1166/jbn.2013.159123802424
    [Google Scholar]
  30. ChhikaraB.S. MandalD. ParangK. Synthesis, anticancer activities, and cellular uptake studies of lipophilic derivatives of doxorubicin succinate.J. Med. Chem.20125541500151010.1021/jm201653u22276998
    [Google Scholar]
  31. DaullP. PatersonC.A. KuppermannB.D. GarrigueJ.S. A preliminary evaluation of dexamethasone palmitate emulsion: A novel intravitreal sustained delivery of corticosteroid for treatment of macular edema.J. Ocul. Pharmacol. Ther.201329225826910.1089/jop.2012.004423331052
    [Google Scholar]
  32. FengL. BenhabbourS.R. MumperR.J. Oil-filled lipid nanoparticles containing 2′-(2-bromohexadecanoyl)-docetaxel for the treatment of breast cancer.Adv. Healthc. Mater.20132111451145710.1002/adhm.20130001723606545
    [Google Scholar]
  33. ArouriA. HansenA.H. RasmussenT.E. MouritsenO.G. Lipases, liposomes and lipid-prodrugs.Curr. Opin. Colloid Interface Sci.201318541943110.1016/j.cocis.2013.06.001
    [Google Scholar]
  34. PanD. SchmiederA.H. WangK. YangX. SenpanA. CuiG. KillgoreK. KimB. AllenJ.S. ZhangH. CaruthersS.D. ShenB. WicklineS.A. LanzaG.M. Anti-angiogenesis therapy in the Vx2 rabbit cancer model with a lipase-cleavable Sn 2 taxane phospholipid prodrug using α(v)β-targeted theranostic nanoparticles.Theranostics20144656557810.7150/thno.758124723979
    [Google Scholar]
  35. GongX. MoghaddamM.J. SagnellaS.M. ConnC.E. DanonS.J. WaddingtonL.J. DrummondC.J. Lamellar crystalline self-assembly behaviour and solid lipid nanoparticles of a palmityl prodrug analogue of Capecitabine—A chemotherapy agent.Colloids Surf. B Biointerfaces201185234935910.1016/j.colsurfb.2011.03.00721477999
    [Google Scholar]
  36. XiongM.P. YáñezJ.A. RemsbergC.M. OhgamiY. KwonG.S. DaviesN.M. ForrestM.L. Formulation of a geldanamycin prodrug in mPEG-b-PCL micelles greatly enhances tolerability and pharmacokinetics in rats.J. Control. Release20081291334010.1016/j.jconrel.2008.03.01518456363
    [Google Scholar]
  37. PengL. FengL. YuanH. BenhabbourS.R. MumperR.J. Development of a novel orthotopic non-small cell lung cancer model and therapeutic benefit of 2′-(2-bromohexadecanoyl)-docetaxel conjugate nanoparticles.Nanomedicine20141071497150610.1016/j.nano.2014.03.01624709328
    [Google Scholar]
  38. PerkinsW.R. AhmadI. LiX. HirshD.J. MastersG.R. FeckoC.J. LeeJ. AliS. NguyenJ. SchupskyJ. HerbertC. JanoffA.S. MayhewE. Novel therapeutic nano-particles (lipocores): Trapping poorly water soluble compounds.Int. J. Pharm.20002001273910.1016/S0378‑5173(00)00329‑X10845683
    [Google Scholar]
  39. BorrelliS. ChristodoulouM.S. FicarraI. SilvaniA. CappellettiG. CartelliD. DamiaG. RicciF. ZucchettiM. DosioF. PassarellaD. New class of squalene-based releasable nanoassemblies of paclitaxel, podophyllotoxin, camptothecin and epothilone A.Eur. J. Med. Chem.20148517919010.1016/j.ejmech.2014.07.03525084144
    [Google Scholar]
  40. AlferievI.S. IyerR. CroucherJ.L. AdamoR.F. ZhangK. ManginoJ.L. KollaV. FishbeinI. BrodeurG.M. LevyR.J. ChornyM. Nanoparticle-mediated delivery of a rapidly activatable prodrug of SN-38 for neuroblastoma therapy.Biomaterials201551222910.1016/j.biomaterials.2015.01.07525770994
    [Google Scholar]
  41. ValettiS. MaioneF. MuraS. StellaB. DesmaëleD. NoirayM. VergnaudJ. VauthierC. CattelL. GiraudoE. CouvreurP. Peptide-functionalized nanoparticles for selective targeting of pancreatic tumor.J. Control. Release2014192293910.1016/j.jconrel.2014.06.03924984010
    [Google Scholar]
  42. DosioF. ReddyL.H. FerreroA. StellaB. CattelL. CouvreurP. Novel nanoassemblies composed of squalenoyl-paclitaxel derivatives: Synthesis, characterization, and biological evaluation.Bioconjug. Chem.20102171349136110.1021/bc100154g20597546
    [Google Scholar]
  43. CaronJ. MaksimenkoA. WackS. LepeltierE. BourgauxC. MorvanE. LeblancK. CouvreurP. DesmaëleD. Improving the antitumor activity of squalenoyl-paclitaxel conjugate nanoassemblies by manipulating the linker between paclitaxel and squalene.Adv. Healthc. Mater.20132117218510.1002/adhm.20120009923213041
    [Google Scholar]
  44. Abu AjajK. GraeserR. KratzF. Zosuquidar and an albumin-binding prodrug of zosuquidar reverse multidrug resistance in breast cancer cells of doxorubicin and an albumin-binding prodrug of doxorubicin.Breast Cancer Res. Treat.2012134111712910.1007/s10549‑011‑1937‑922228402
    [Google Scholar]
  45. LiangC. YeW. ZhuC. NaR. ChengY. CuiH. LiuD. YangZ. ZhouS. Synthesis of doxorubicin α-linolenic acid conjugate and evaluation of its antitumor activity.Mol. Pharm.20141151378139010.1021/mp400413924720787
    [Google Scholar]
  46. Snow-Davis CAu. Du CAu. Bondarev MLAu. Saulsbury MDAu. Preparation and characterization of lipophilic doxorubicin pro-drug micelles.J. Vis. Exp.2016114e54338
    [Google Scholar]
  47. EffenbergerK. BreyerS. SchobertR. Modulation of doxorubicin activity in cancer cells by conjugation with fatty acyl and terpenyl hydrazones.Eur. J. Med. Chem.20104551947195410.1016/j.ejmech.2010.01.03720133021
    [Google Scholar]
  48. ZalipskyS. SaadM. KiwanR. BerE. YuN. MinkoT. Antitumor activity of new liposomal prodrug of mitomycin C in multidrug resistant solid tumor: Insights of the mechanism of action.J. Drug Target.2007157-851853010.1080/1061186070149994617671898
    [Google Scholar]
  49. ChenQ. ButlerD. QuerbesW. PandeyR.K. GeP. MaierM.A. ZhangL. RajeevK.G. NechevL. KotelianskiV. ManoharanM. SahD.W.Y. Lipophilic siRNAs mediate efficient gene silencing in oligodendrocytes with direct CNS delivery.J. Control. Release2010144222723210.1016/j.jconrel.2010.02.01120170694
    [Google Scholar]
  50. ChengK. YeZ. GuntakaR.V. MahatoR.I. Enhanced hepatic uptake and bioactivity of type α1(I) collagen gene promoter-specific triplex-forming oligonucleotides after conjugation with cholesterol.J. Pharmacol. Exp. Ther.2006317279780510.1124/jpet.105.10034716452392
    [Google Scholar]
  51. RaouaneM. DesmaeleD. Gilbert-SirieixM. GueutinC. ZouhiriF. BourgauxC. LepeltierE. GrefR. Ben SalahR. ClaymanG. Massaad-MassadeL. CouvreurP. Synthesis, characterization, and in vivo delivery of siRNA-squalene nanoparticles targeting fusion oncogene in papillary thyroid carcinoma.J. Med. Chem.201154124067407610.1021/jm200027221561161
    [Google Scholar]
  52. SagnellaS.M. GongX. MoghaddamM.J. ConnC.E. KimptonK. WaddingtonL.J. KrodkiewskaI. DrummondC.J. Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents.Nanoscale20113391992410.1039/C0NR00781A21173998
    [Google Scholar]
  53. GodeauG. StaedelC. BarthélémyP. Lipid-conjugated oligonucleotides via “click chemistry” efficiently inhibit hepatitis C virus translation.J. Med. Chem.200851154374437610.1021/jm800518u18605715
    [Google Scholar]
  54. WeberR.J. LiangS.I. SeldenN.S. DesaiT.A. GartnerZ.J. Efficient targeting of fatty-acid modified oligonucleotides to live cell membranes through stepwise assembly.Biomacromolecules201415124621462610.1021/bm501467h25325667
    [Google Scholar]
  55. NishinaK. UnnoT. UnoY. KuboderaT. KanouchiT. MizusawaH. YokotaT. Efficient in vivo delivery of siRNA to the liver by conjugation of α-tocopherol.Mol. Ther.200816473474010.1038/mt.2008.14
    [Google Scholar]
  56. LeeJ.H. YeoY. Controlled drug release from pharmaceutical nanocarriers.Chem. Eng. Sci.2015125758410.1016/j.ces.2014.08.04625684779
    [Google Scholar]
  57. ShidhayeS. VaidyaR. SutarS. PatwardhanA. KadamV. Solid lipid nanoparticles and nanostructured lipid carriers-innovative generations of solid lipid carriers.Curr. Drug Deliv.20085432433110.2174/15672010878591508718855604
    [Google Scholar]
  58. SinghM. A fundamental study of electrostatic effects in release of polypeptides from collagen hydrogels: University of Maryland.Baltimore County1994
    [Google Scholar]
  59. Abri AghdamM. BagheriR. MosaferJ. BaradaranB. HashemzaeiM. BaghbanzadehA. de la GuardiaM. MokhtarzadehA. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release.J. Control. Release201931512210.1016/j.jconrel.2019.09.01831647978
    [Google Scholar]
  60. TaT. PorterT.M. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy.J. Control. Release20131691-211212510.1016/j.jconrel.2013.03.03623583706
    [Google Scholar]
  61. MuJ. LinJ. HuangP. ChenX. Development of endogenous enzyme-responsive nanomaterials for theranostics.Chem. Soc. Rev.201847155554557310.1039/C7CS00663B29856446
    [Google Scholar]
  62. TrevaskisN.L. KaminskasL.M. PorterC.J.H. From sewer to saviour targeting the lymphatic system to promote drug exposure and activity.Nat. Rev. Drug Discov.2015141178180310.1038/nrd460826471369
    [Google Scholar]
  63. BalaV. RaoS. LiP. WangS. PrestidgeC.A. Lipophilic prodrugs of SN38: Synthesis and in vitro characterization toward oral chemotherapy.Mol. Pharm.201613128729410.1021/acs.molpharmaceut.5b0078526623947
    [Google Scholar]
  64. BorkarN. LiB. HolmR. HåkanssonA.E. MüllertzA. YangM. MuH. Lipophilic prodrugs of apomorphine I: Preparation, characterisation, and in vitro enzymatic hydrolysis in biorelevant media.Eur. J. Pharm. Biopharm.20158921622310.1016/j.ejpb.2014.12.01425513957
    [Google Scholar]
  65. LiuJ. LiuJ. ZhaoD. MaN. LuanY. Highly enhanced leukemia therapy and oral bioavailability from a novel amphiphilic prodrug of cytarabine.RSC Advances2016642359913599910.1039/C6RA02051H
    [Google Scholar]
  66. WangY. LiL. JiangW. LarrickJ.W. Synthesis and evaluation of a DHA and 10-hydroxycamptothecin conjugate.Bioorg. Med. Chem.200513195592559910.1016/j.bmc.2005.06.03916084097
    [Google Scholar]
  67. OlbrichC. GessnerA. KayserO. MüllerR.H. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate.J. Drug Target.200210538739610.1080/106118602100000183212442809
    [Google Scholar]
  68. NikanjamM. GibbsA.R. HuntC.A. BudingerT.F. ForteT.M. Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme.J. Control. Release2007124316317110.1016/j.jconrel.2007.09.00717964677
    [Google Scholar]
  69. LambertD.M. Rationale and applications of lipids as prodrug carriers.Eur. J. Pharm. Sci.200011Suppl. 2S15S2710.1016/S0928‑0987(00)00161‑511033424
    [Google Scholar]
  70. UrbinatiG. de WaziersI. SlamiçM. FoussignièreT. AliH.M. DesmaëleD. CouvreurP. Massaad-MassadeL. Knocking down TMPRSS2-ERG fusion oncogene by siRNA could be an alternative treatment to flutamide.Mol. Ther. Nucleic Acids201653e30110.1038/mtna.2016.1627023109
    [Google Scholar]
  71. PetrovaN.S. ChernikovI.V. MeschaninovaM.I. DovydenkoI.I.S. VenyaminovaA.G. ZenkovaM.A. VlassovV.V. ChernolovskayaE.L. Carrier-free cellular uptake and the gene-silencing activity of the lipophilic siRNAs is strongly affected by the length of the linker between siRNA and lipophilic group.Nucleic Acids Res.20124052330234410.1093/nar/gkr100222080508
    [Google Scholar]
  72. AliH.M. MaksimenkoA. UrbinatiG. ChapuisH. RaouaneM. DesmaëleD. YasuhiroH. HarashimaH. CouvreurP. Massaad-MassadeL. Effects of silencing the RET/PTC1 oncogene in papillary thyroid carcinoma by siRNA-squalene nanoparticles with and without fusogenic companion GALA-cholesterol.Thyroid201424232733810.1089/thy.2012.054423885719
    [Google Scholar]
  73. De PaulaD. BentleyM.V.L.B. MahatoR.I. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting.RNA200713443145610.1261/rna.45980717329355
    [Google Scholar]
  74. SoutschekJ. AkincA. BramlageB. CharisseK. ConstienR. DonoghueM. ElbashirS. GeickA. HadwigerP. HarborthJ. JohnM. KesavanV. LavineG. PandeyR.K. RacieT. RajeevK.G. RöhlI. ToudjarskaI. WangG. WuschkoS. BumcrotD. KotelianskyV. LimmerS. ManoharanM. VornlocherH.P. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs.Nature2004432701417317810.1038/nature0312115538359
    [Google Scholar]
  75. WangJ.X. SunX. ZhangZ.R. Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles.Eur. J. Pharm. Biopharm.200254328529010.1016/S0939‑6411(02)00083‑812445558
    [Google Scholar]
  76. YuB.T. SunX. ZhangZ.R. Enhanced liver targeting by synthesis ofN 1-stearyl-5-Fu and incorporation into solid lipid nanoparticles.Arch. Pharm. Res.200326121096110110.1007/BF0299476414723346
    [Google Scholar]
  77. MaP. Rahima BenhabbourS. FengL. MumperR.J. 2′-Behenoyl-paclitaxel conjugate containing lipid nanoparticles for the treatment of metastatic breast cancer.Cancer Lett.2013334225326210.1016/j.canlet.2012.08.00922902506
    [Google Scholar]
  78. SunB. LuoC. LiL. WangM. DuY. DiD. ZhangD. RenG. PanX. FuQ. SunJ. HeZ. Core-matched encapsulation of an oleate prodrug into nanostructured lipid carriers with high drug loading capability to facilitate the oral delivery of docetaxel.Colloids Surf. B Biointerfaces2016143475510.1016/j.colsurfb.2016.02.06527011346
    [Google Scholar]
  79. RemenarJ.F. Making the leap from daily oral dosing to long-acting injectables: Lessons from the antipsychotics.Mol. Pharm.20141161739174910.1021/mp500070m24679167
    [Google Scholar]
  80. ChueP. ChueJ. A review of paliperidone palmitate.Expert Rev. Neurother.201212121383139710.1586/ern.12.13723237346
    [Google Scholar]
  81. RaedlerLA Aripiprazole lauroxil (Aristada): Long-acting atypical antipsychotic injection approved for the treatment of patients with schizophrenia.Am Health Drug Benefits20169Spec Feature404327668044
    [Google Scholar]
  82. JinY. LianY. DuL. WangS. SuC. GaoC. Self-assembled drug delivery systems. Part 6: in vitro / in vivo studies of anticancer N-octadecanoyl gemcitabine nanoassemblies.Int. J. Pharm.20124301-227628110.1016/j.ijpharm.2012.03.04622486963
    [Google Scholar]
  83. CouvreurP. ReddyL.H. MangenotS. PoupaertJ.H. DesmaëleD. Lepêtre-MouelhiS. PiliB. BourgauxC. AmenitschH. OllivonM. Discovery of new hexagonal supramolecular nanostructures formed by squalenoylation of an anticancer nucleoside analogue.Small20084224725310.1002/smll.20070073118247384
    [Google Scholar]
  84. LundbergB.B. RisovicV. RamaswamyM. WasanK.M. A lipophilic paclitaxel derivative incorporated in a lipid emulsion for parenteral administration.J. Control. Release20038619310010.1016/S0168‑3659(02)00323‑112490375
    [Google Scholar]
  85. RodriguesD.G. MariaD.A. FernandesD.C. ValdugaC.J. CoutoR.D. IbañezO.C.M. MaranhãoR.C. Improvement of paclitaxel therapeutic index by derivatization and association to a cholesterol-rich microemulsion: in vitro and in vivo studies.Cancer Chemother. Pharmacol.200555656557610.1007/s00280‑004‑0930‑y15726368
    [Google Scholar]
  86. GoldsteinD. GofritO. NyskaA. BenitaS. Anti-HER2 cationic immunoemulsion as a potential targeted drug delivery system for the treatment of prostate cancer.Cancer Res.200767126927510.1158/0008‑5472.CAN‑06‑273117210707
    [Google Scholar]
  87. DiasM.L.N. CarvalhoJ.P. RodriguesD.G. GrazianiS.R. MaranhãoR.C. Pharmacokinetics and tumor uptake of a derivatized form of paclitaxel associated to a cholesterol-rich nanoemulsion (LDE) in patients with gynecologic cancers.Cancer Chemother. Pharmacol.200659110511110.1007/s00280‑006‑0252‑316699792
    [Google Scholar]
  88. PiresL.A. HeggR. ValdugaC.J. GrazianiS.R. RodriguesD.G. MaranhãoR.C. Use of cholesterol-rich nanoparticles that bind to lipoprotein receptors as a vehicle to paclitaxel in the treatment of breast cancer: pharmacokinetics, tumor uptake and a pilot clinical study.Cancer Chemother. Pharmacol.200963228128710.1007/s00280‑008‑0738‑218365196
    [Google Scholar]
  89. JiaoY. WangX. LuW. YangZ. ZhangQ. A novel approach to improve the pharmacokinetic properties of 8-chloro-adenosine by the dual combination of lipophilic derivatisation and liposome formulation.Eur. J. Pharm. Sci.2013481-224925810.1016/j.ejps.2012.10.02623159667
    [Google Scholar]
  90. CrosassoP. BrusaP. DosioF. ArpiccoS. PacchioniD. SchuberîF. CattelL. Antitumoral activity of liposomes and immunoliposomes containing 5-fluorouridine prodrugs.J. Pharm. Sci.199786783283910.1021/js96044679232525
    [Google Scholar]
  91. KuznetsovaN.R. SvirshchevskayaE.V. SkripnikI.V. ZarudnayaE.N. BenkeA.N. GaenkoG.P. Interaction of liposomes bearing a lipophilic doxorubicin prodrug with tumor cells. Biochemistry (Moscow).Supplement Series A: Membrane and Cell Biology.201371220
    [Google Scholar]
  92. SarpietroM.G. AccollaM.L. SantoroN. MansfeldF.M. PignatelloR. TothI. CastelliF. Calorimetry and langmuir–blodgett studies on the interaction of a lipophilic prodrug of LHRH with biomembrane models.J. Colloid Interface Sci.201442112213110.1016/j.jcis.2014.01.04024594040
    [Google Scholar]
  93. PiliB. ReddyL.H. BourgauxC. Lepêtre-MouelhiS. DesmaëleD. CouvreurP. Liposomal squalenoyl-gemcitabine: formulation, characterization and anticancer activity evaluation.Nanoscale2010281521152610.1039/c0nr00132e20820745
    [Google Scholar]
  94. AmitayY. ShmeedaH. PatilY. GorinJ. TzemachD. MakL. OhanaP. GabizonA. Pharmacologic studies of a prodrug of mitomycin C in pegylated liposomes (Promitil®): High stability in plasma and rapid thiolytic prodrug activation in tissues.Pharm. Res.201633368670010.1007/s11095‑015‑1819‑726572644
    [Google Scholar]
  95. ZhuS. WongananP. Lansakara-PD.S.P. O’MaryH.L. LiY. CuiZ. The effect of the acid-sensitivity of 4-(N)-stearoyl gemcitabine-loaded micelles on drug resistance caused by RRM1 overexpression.Biomaterials20133492327233910.1016/j.biomaterials.2012.11.05323261218
    [Google Scholar]
  96. ZhuS. Lansakara-PD.S.P. LiX. CuiZ. Lysosomal delivery of a lipophilic gemcitabine prodrug using novel acid-sensitive micelles improved its antitumor activity.Bioconjug. Chem.201223596698010.1021/bc200594522471294
    [Google Scholar]
  97. PeiraE. ChirioD. BattagliaL. BargeA. ChegaevK. GigliottiC.L. FerraraB. DianzaniC. GallarateM. Solid lipid nanoparticles carrying lipophilic derivatives of doxorubicin: Preparation, characterization, and in vitro cytotoxicity studies.J. Microencapsul.201633438139010.1080/02652048.2016.120234227358106
    [Google Scholar]
  98. BhaskarS. TianF. StoegerT. KreylingW. de la FuenteJ.M. GrazúV. BormP. EstradaG. NtziachristosV. RazanskyD. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging.Part. Fibre Toxicol.201071310.1186/1743‑8977‑7‑320199661
    [Google Scholar]
  99. ChowdhuryN. ChaudhryS. HallN. OlversonG. ZhangQ.J. MandalT. DashS. KunduA. Targeted delivery of doxorubicin liposomes for Her-2+ breast cancer treatment.AAPS PharmSciTech202021620210.1208/s12249‑020‑01743‑832696338
    [Google Scholar]
  100. LeeM.K. LimS.J. KimC.K. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles.Biomaterials200728122137214610.1016/j.biomaterials.2007.01.01417257668
    [Google Scholar]
  101. Wilhelm RomeroK. QuirósM.I. Vargas HuertasF. Vega-BaudritJ.R. Navarro-HoyosM. Araya-SibajaA.M. Design of hybrid polymeric-lipid nanoparticles using curcumin as a model: Preparation, characterization, and in vitro evaluation of demethoxycurcumin and bisdemethoxycurcumin-loaded nanoparticles.Polymers20211323420710.3390/polym1323420734883709
    [Google Scholar]
  102. ChoiJ.W. GardellS.E. HerrD.R. RiveraR. LeeC.W. NoguchiK. TeoS.T. YungY.C. LuM. KennedyG. ChunJ. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P 1 ) modulation.Proc. Natl. Acad. Sci. USA2011108275175610.1073/pnas.101415410821177428
    [Google Scholar]
  103. DissanayakeT. SunX. AbbeyL. BandaraN. Recent advances in lipid-protein conjugate-based delivery systems in nutraceutical, drug, and gene delivery.Food Hydrocoll. Health2022210005410.1016/j.fhfh.2022.100054
    [Google Scholar]
  104. ShahriyarS. TaymouriS. SaberiS. AsadiP. TabbakhianM. Preparation and characterization of itraconazole loaded nanomicelles based on dextran–behenic acid for cutaneous leishmaniasis treatment.Drug Dev. Ind. Pharm.202147341642810.1080/03639045.2021.189011233617377
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031304145240805092718
Loading
/content/journals/ddl/10.2174/0122103031304145240805092718
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): conjugation; drug delivery; linkers; Lipid drug conjugates; prodrug; targeting
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test