Skip to content
2000
image of Renoprotective Effects of Eugenol-Loaded Chitosan Nanoparticles on Septic Rats

Abstract

Background

Sepsis is a severe medical disorder that poses a significant risk to life, leading to elevated rates of sickness and mortality globally, reaching 11 million annually. It is distinguished by an imbalanced immune response to infection, which subsequently causes failure in several organs. Eugenol is obtained from clove oil and possesses various beneficial properties, such as antifungal, anti-inflammatory, antiviral, antioxidant, anticancer, and antibacterial effects.

Aim

The present study aimed to assess the effectiveness of eugenol-loaded chitosan nanoparticles (EC-NPs) in protecting against kidney damage caused by sepsis using the cecal ligation and puncture (CLP) model.

Methods

Thirty rats were divided into five groups: sham, sepsis, and septic rats treated with chitosan, eugenol, or EC-NPs.

Results

Administration of EC-NPs dramatically enhanced renal function, as evidenced by the reduced urea, creatinine, and uric acid concentrations. Moreover, EC-NPs caused an elevation in glutathione reductase (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in addition to decreasing the production of malondialdehyde (MDA) and nitric oxide (NO). EC-NPs administration reduced the DNA damage in septic rats and partially restored the aberrant structure of renal tissues in septic rats. Furthermore, the immunohistochemical examination showed a marked decrease in tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) expression.

Conclusion

In conclusion, EC-NPs attenuated renal injury in septic rats through their anti-oxidant and anti-inflammatory activities and protection of DNA.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031335223250122153155
2025-02-04
2025-06-17
Loading full text...

Full text loading...

References

  1. Struzek F.C. Rose N. Ditscheid B. Draeger L. Dröge P. Freytag A. Goldhahn L. Kannengießer L. Kimmig A. Krämer M.C. Ruhnke T. Reinhart K. Schlattmann P. Schmidt K. Storch J. Ulbrich R. Ullmann S. Wedekind L. Swart E. Understanding health care pathways of patients with sepsis: Protocol of a mixed-methods analysis of health care utilization, experiences, and needs of patients with and after sepsis. BMC Health Serv. Res. 2024 24 1 40 10.1186/s12913‑023‑10509‑4 38191398
    [Google Scholar]
  2. Pidal G.J.M. Fernández M.Á. Guzmán M. López M.Á. Escarpa A. Analytical micro and nano technologies meet sepsis diagnosis. Trends Analyt. Chem. 2024 173 July 117615 10.1016/j.trac.2024.117615
    [Google Scholar]
  3. Caballero M.C.L. Del Rio-Pertuz G. Gomez H. Sepsis-associated acute kidney injury. Crit. Care Clin. 2021 37 2 279 301 10.1016/j.ccc.2020.11.010 33752856
    [Google Scholar]
  4. Zarbock A. Koyner J.L. Gomez H. Pickkers P. Forni L. Nadim M.K. Bell S. Joannidis M. Kashani K. Pannu N. Meersch M. Reis T. Rimmelé T. Bagshaw S.M. Bellomo R. Cantaluppi V. Deep A. Rosa D.S. Perez F.X. Syed H.F. Gill K.S.L. Kelly Y. Mehta R.L. Murray P.T. Ostermann M. Prowle J. Ricci Z. See E.J. Schneider A. Soranno D.E. Tolwani A. Villa G. Ronco C. Sepsis-associated acute kidney injury—treatment standard. Nephrol. Dial. Transplant. 2023 39 1 26 35 10.1093/ndt/gfad142 37401137
    [Google Scholar]
  5. Ma K. Luo L. Yang M. Meng Y. The suppression of sepsis-induced kidney injury via the knockout of T lymphocytes. Heliyon 2024 10 1 e23311 10.1016/j.heliyon.2023.e23311 38283245
    [Google Scholar]
  6. Ge C.L. Chen W. Zhang L.N. Ai Y.H. Zou Y. Peng Q.Y. Hippocampus-prefrontal cortex inputs modulate spatial learning and memory in a mouse model of sepsis induced by cecal ligation puncture. CNS Neurosci. Ther. 2023 29 1 390 401 10.1111/cns.14013 36377471
    [Google Scholar]
  7. Drechsler S. Osuchowski M. Traumatology C. Walker W.E. Sepsis. Methods Mol. Biol. 2022 2321 March 10.1007/978‑1‑0716‑1488‑4
    [Google Scholar]
  8. Mohamed A.S. Sadek S.A. Hassanein S.S. Soliman A.M. Hepatoprotective effect of echinochrome pigment in septic rats. J. Surg. Res. 2019 234 317 324 10.1016/j.jss.2018.10.004 30527491
    [Google Scholar]
  9. Gauer R. Forbes D. Boyer N. Sepsis: Diagnosis and management. Am. Fam. Physician 2020 101 7 409 418 [Online]. [. Available: Www.aafp.org/afp]. 32227831
    [Google Scholar]
  10. Velasque M.J.S.G. Branchini G. Catarina A.V. Bettoni L. Fernandes R.S. Silva D.A.F. Dorneles G.P. Silva d.I.M. Santos M.A. Sumienski J. Peres A. Roehe A.V. Kohek M.B.F. Porawski M. Nunes F.B. Fish oil - omega-3 exerts protective effect in oxidative stress and liver dysfunctions resulting from experimental sepsis. J. Clin. Exp. Hepatol. 2023 13 1 64 74 10.1016/j.jceh.2022.07.001 36647406
    [Google Scholar]
  11. Nagaraju P.G. S A. Rao P.J. Priyadarshini P. Assessment of acute and subacute toxicity, pharmacokinetics, and biodistribution of eugenol nanoparticles after oral exposure in Wistar rats. Nanotoxicology 2024 18 1 87 105 10.1080/17435390.2024.2314483 38349196
    [Google Scholar]
  12. Huang W.C. Shu L.H. Kuo Y.J. Lai K.S.L. Hsia C.W. Yen T.L. Hsia C.H. Jayakumar T. Yang C.H. Sheu J.R. Eugenol suppresses platelet activation and mitigates pulmonary thromboembolism in humans and murine models. Int. J. Mol. Sci. 2024 25 4 2098 10.3390/ijms25042098 38396774
    [Google Scholar]
  13. Park C.K. Li H.Y. Yeon K.Y. Jung S.J. Choi S.Y. Lee S.J. Lee S. Park K. Kim J.S. Oh S.B. Eugenol inhibits sodium currents in dental afferent neurons. J. Dent. Res. 2006 85 10 900 904 10.1177/154405910608501005 16998128
    [Google Scholar]
  14. Zhou Q. Lan W. Xie J. Phenolic acid-chitosan derivatives: An effective strategy to cope with food preservation problems. Int. J. Biol. Macromol. 2024 254 Pt 3 127917 10.1016/j.ijbiomac.2023.127917 37939754
    [Google Scholar]
  15. Araby E.A. Janati W. Ullah R. Ercisli S. Errachidi F. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: Eco-friendly materials for advanced applications (a review). Front Chem. 2024 11 January 1327426 10.3389/fchem.2023.1327426 38239928
    [Google Scholar]
  16. Moghaddam F.D. Zare E.N. Hassanpour M. Bertani F.R. Serajian A. Ziaei S.F. Santos P.A.C. Neisiany R.E. Makvandi P. Iravani S. Xu Y. Chitosan-based nanosystems for cancer diagnosis and therapy: Stimuli-responsive, immune response, and clinical studies. Carbohydr. Polym. 2024 330 February 121839 10.1016/j.carbpol.2024.121839 38368115
    [Google Scholar]
  17. Shah M.P. Bharadvaja N. Kumar L. Biogenic Nanomaterials for Environmental Sustainability: Principles. Practices, and Opportunities Springeer 2024
    [Google Scholar]
  18. Malik S. Muhammad K. Waheed Y. Nanotechnology: A revolution in modern industry. Molecules 2023 28 2 661 10.3390/molecules28020661 36677717
    [Google Scholar]
  19. Kurnia H.P. Puruhita D.T. Haykal N.M. Eugenol nanoparticle encapsulated chitosan enhances cell cycle arrest in hela human cervical cancer cells. Syst. Rev. Pharm. 2021 12 1 692 699
    [Google Scholar]
  20. Anand T. Anbukkarasi M. Thomas P.A. Geraldine P. A comparison between plain eugenol and eugenol-loaded chitosan nanoparticles for prevention of in vitro selenite-induced cataractogenesis. J. Drug Deliv. Sci. Technol. 2021 65 June 102696 10.1016/j.jddst.2021.102696
    [Google Scholar]
  21. Chinedu E. Arome D. Ameh F. A new method for determining acute toxicity in animal models. Toxicol. Int. 2013 20 3 224 226 10.4103/0971‑6580.121674 24403732
    [Google Scholar]
  22. Liu M.W. Su M.X. Zhang W. Wang Y.H. Qin L.F. Liu X. Tian M.L. Qian C.Y. Effect of melilotus suaveolens extract on pulmonary microvascular permeability by downregulating vascular endothelial growth factor expression in rats with sepsis. Mol. Med. Rep. 2015 11 5 3308 3316 10.3892/mmr.2015.3146 25571852
    [Google Scholar]
  23. Zhi X. Han B. Sui X. Hu R. Liu W. Effects of low-molecular-weight-chitosan on the adenine-induced chronic renal failure rats in vitro and in vivo. J. Ocean Univ. China 2015 14 1 97 104 10.1007/s11802‑015‑2320‑y
    [Google Scholar]
  24. Mohamed A.S. Hosney M. Bassiony H. Hassanein S.S. Soliman A.M. Fahmy S.R. Gaafar K. Sodium pentobarbital dosages for exsanguination affect biochemical, molecular and histological measurements in rats. Sci. Rep. 2020 10 1 378 10.1038/s41598‑019‑57252‑7 31942001
    [Google Scholar]
  25. Longo B. Sommerfeld E.P. Santos d.A.C. Silva d.R.C.M.V.A.F. Somensi L.B. Mariano L.N.B. Boeing T. Faloni de Andrade S. Souza d.P. Silva d.L.M. Dual role of eugenol on chronic gastric ulcer in rats: Low-dose healing efficacy and the worsening gastric lesion in high doses. Chem. Biol. Interact. 2021 333 November 109335 10.1016/j.cbi.2020.109335 33245926
    [Google Scholar]
  26. Koura R.A.A. Mohamed H.R.H. Ahmed K.A. Baiomy A.A.A. Bahaaeldine M.A. Mohamed A.S. The therapeutic role of chitosan-saponin-bentonite nanocomposite on acute kidney injury induced by chromium in male wistar rats. Biointerface Res. Appl. Chem. 2023 13 6 1 23 10.33263/BRIAC136.595
    [Google Scholar]
  27. Tietz N. W. Textbook of Clinical Chemistry W.B.Saunders Company Philadelphia. 1986 2 2
    [Google Scholar]
  28. Tietz N. W. Clinical guide to laboratory tests. 2nd Edition W.B. Saunders Co. Philadelphia 1990 566
    [Google Scholar]
  29. Beutler E. Duron O. Kelly B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963 61 882 888 13967893
    [Google Scholar]
  30. Nishikimi M. Rao A.N. Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 1972 46 2 849 854 10.1016/S0006‑291X(72)80218‑3 4400444
    [Google Scholar]
  31. Habig W.H. Pabst M.J. Jakoby W.B. Glutathione S-Transferases. J. Biol. Chem. 1974 249 22 7130 7139 10.1016/S0021‑9258(19)42083‑8 4436300
    [Google Scholar]
  32. Paglia D.E. Valentine W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967 70 1 158 169 6066618
    [Google Scholar]
  33. Aebi H. Catalase in vitro. Methods Enzymol. 1984 105 121 126 10.1016/S0076‑6879(84)05016‑3 6727660
    [Google Scholar]
  34. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  35. Montgomery H.A.C. Dymock J.F. The rapid determination of nitrate in fresh and saline waters. Analyst (Lond.) 1962 87 1034 374 378 10.1039/an9628700374
    [Google Scholar]
  36. loannou Y.A. Chen F.W. Quantitation of DNA fragmentation in apoptosis. Nucleic Acids Res. 1996 24 5 992 993 10.1093/nar/24.5.992 8600475
    [Google Scholar]
  37. Shawous A.A. Soliman A. Fahmy S. Mohamed A. Therapeutic efficacy of anodonta cygnea and crayfish procambarus clarkii hemolymph extracts on sepsis-induced acute liver injury in neonate rats. Int. J. Pharmacol. 2023 19 2 185 196 10.3923/ijp.2023.185.196
    [Google Scholar]
  38. Refaie M.M.M. Hussieny E.M. The role of interleukin-1b and its antagonist (diacerein) in estradiol benzoate-induced endometrial hyperplasia and atypia in female rats. Fundam. Clin. Pharmacol. 2017 31 4 438 446 10.1111/fcp.12285 28299811
    [Google Scholar]
  39. Wang L. Wang X. Diagnostic value of multi-parameter ultrasound evaluation in sepsis complicated by acute kidney injury Ren. Fail. 2024 46 1 2313861 10.1080/0886022X.2024.2313861
    [Google Scholar]
  40. Xia m.Y. qian Y. Guan J. TAK-242 improves sepsis-associated acute kidney injury in rats by inhibiting the TLR4/NF-κB signaling pathway. Ren. Fail. 2024 46 1 2313176 10.1080/0886022X.2024.2313176
    [Google Scholar]
  41. Chen G.D. Zhang J.L. Chen Y.T. Zhang J.X. Wang T. Zeng Q.Y. Insulin alleviates mitochondrial oxidative stress involving upregulation of superoxide dismutase 2 and uncoupling protein 2 in septic acute kidney injury. Exp. Ther. Med. 2018 15 4 3967 3975 10.3892/etm.2018.5890 29563990
    [Google Scholar]
  42. Ibrahim Y.F. Fadl R.R. Ibrahim S.A.E. Gayyed M.F. Bayoumi A.M.A. Refaie M.M.M. Protective effect of febuxostat in sepsis-induced liver and kidney injuries after cecal ligation and puncture with the impact of xanthine oxidase, interleukin 1 β, and c-Jun N-terminal kinases. Hum. Exp. Toxicol. 2020 39 7 906 919 10.1177/0960327120905957 32054342
    [Google Scholar]
  43. Kadir A. Sher S. Siddiqui R.A. Mirza T. Nephroprotective role of eugenol against cisplatin-induced acute kidney injury in mice. Pak. J. Pharm. Sci. 2020 33 3 1281 1287 10.36721/PJPS.2020.33.3.SUP.1281‑1287.1
    [Google Scholar]
  44. Wu J. Xu Y. Geng Z. Zhou J. Xiong Q. Xu Z. Li H. Han Y. Chitosan oligosaccharide alleviates renal fibrosis through reducing oxidative stress damage and regulating TGF-β1/Smads pathway. Sci. Rep. 2022 12 1 19160 10.1038/s41598‑022‑20719‑1 36357407
    [Google Scholar]
  45. Wang Z.F. Wang M.Y. Yu D.H. Zhao Y. Xu H.M. Zhong S. Sun W.Y. He Y.F. Niu J.Q. Gao P.J. Li H.J. Therapeutic effect of chitosan on CCl4‑induced hepatic fibrosis in rats. Mol. Med. Rep. 2018 18 3 3211 3218 10.3892/mmr.2018.9343 30085342
    [Google Scholar]
  46. Ow C.P.C. Marino T.A. Betrie A.H. Evans R.G. May C.N. Lankadeva Y.R. Targeting oxidative stress in septic acute kidney injury: From theory to practice. J. Clin. Med. 2021 10 17 3798 10.3390/jcm10173798 34501245
    [Google Scholar]
  47. Joffre J. Hellman J. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxid. Redox Signal. 2021 35 15 1291 1307 10.1089/ars.2021.0027 33637016
    [Google Scholar]
  48. Yang Y. Xu J. Tu J. Sun Y. Zhang C. Qiu Z. Xiao H. Polygonum cuspidatum Sieb. et Zucc. Extracts improve sepsis-associated acute kidney injury by inhibiting NF-κB-mediated inflammation and pyroptosis. J. Ethnopharmacol. 2024 319 Pt 1 117101 10.1016/j.jep.2023.117101 37657770
    [Google Scholar]
  49. Ighodaro O.M. Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018 54 4 287 293 10.1016/j.ajme.2017.09.001
    [Google Scholar]
  50. Ginter E. Simko V. Panakova V. Antioxidants in health and disease. Bratisl. Med. J. 2014 115 10 603 606 10.4149/BLL_2014_116 25573724
    [Google Scholar]
  51. Mantzarlis K. Tsolaki V. Zakynthinos E. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies. Oxid. Med. Cell. Longev. 2017 2017 1 5985209 10.1155/2017/5985209 28904739
    [Google Scholar]
  52. Celep A.N. Gedikli S. Protective effect of silymarin on liver in experimental in the sepsis model of rats. Acta Histochem. Cytochem. 2023 56 1 9 19 10.1267/ahc.22‑00059 36890848
    [Google Scholar]
  53. Fathy M. latif A.R. Abdelgwad Y.M. Othman O.A. Razik A.A.R.H. Dandekar T. Othman E.M. Nephroprotective potential of eugenol in a rat experimental model of chronic kidney injury; targeting NOX, TGF-β, and Akt signaling. Life Sci. 2022 308 September 120957 10.1016/j.lfs.2022.120957 36113730
    [Google Scholar]
  54. Slameňová D. Horváthová E. Wsólová L. Šramková M. Navarová J. Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2009 677 1-2 46 52 10.1016/j.mrgentox.2009.05.016 19501671
    [Google Scholar]
  55. Tao W. Sun W. Liu L. Wang G. Xiao Z. Pei X. Wang M. Chitosan oligosaccharide attenuates nonalcoholic fatty liver disease induced by high fat diet through reducing lipid accumulation, inflammation and oxidative stress in C57BL/6 mice. Mar. Drugs 2019 17 11 645 10.3390/md17110645 31744059
    [Google Scholar]
  56. Eray G. Ebru S. Investigation of Antimicrobial Effect of Fluoxetine in Experimental Rat Sepsis Model Investigation of Antimicrobial Effect of Fluoxetine in Experimental Rat Sepsis Model. Authorea Preprints. 2022 1 21
    [Google Scholar]
  57. Pezone A. Olivieri F. Napoli M.V. Procopio A. Avvedimento E.V. Gabrielli A. Inflammation and DNA damage: Cause, effect or both. Nat. Rev. Rheumatol. 2023 19 4 200 211 10.1038/s41584‑022‑00905‑1 36750681
    [Google Scholar]
  58. Zhang L.L. Zhang L.F. Xu J.G. Hu Q.P. Comparison study on antioxidant, DNA damage protective and antibacterial activities of eugenol and isoeugenol against several foodborne pathogens. Food Nutr. Res. 2017 61 1 1353356 10.1080/16546628.2017.1353356 28804441
    [Google Scholar]
  59. Saleh H. Shorbagy E.H.M. Chitosan protects liver against ischemia-reperfusion injury via regulating Bcl-2/Bax, TNF-α and TGF-β expression. Int. J. Biol. Macromol. 2020 164 1565 1574 10.1016/j.ijbiomac.2020.07.212 32735924
    [Google Scholar]
  60. Qutb S.A. Soliman A.M. Fahmy S.R. Mohamed A.S. Efficacy of eugenol loaded chitosan nanoparticles on sepsis induced liver injury in rats. Rec. Adv. Inflamm. Allergy Drug Discov. 2024 1 17 10.2174/0127722708334976241004041438
    [Google Scholar]
  61. Sun J. Wei S. Zhang Y. Li J. Protective effects of astragalus polysaccharide on sepsis-induced acute kidney injury. Anal. Cell. Pathol. 2021 2021 1 13 10.1155/2021/7178253 33575163
    [Google Scholar]
  62. Clementi E. Brown G.C. Feelisch M. Moncada S. Persistent inhibition of cell respiration by nitric oxide: Crucial role of S -nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl. Acad. Sci. USA 1998 95 13 7631 7636 10.1073/pnas.95.13.7631 9636201
    [Google Scholar]
  63. Senousy S.R. Ahmed A.S.F. Abdelhafeez D.A. Khalifa M.M.A. Abourehab M.A.S. Daly E.M. Alpha-chymotrypsin protects against acute lung, kidney, and liver injuries and increases survival in clp-induced sepsis in rats through inhibition of tlr4/nf-κb pathway. Drug Des. Devel. Ther. 2022 16 3023 3039 10.2147/DDDT.S370460 36105322
    [Google Scholar]
  64. Poderoso J.J. Helfenberger K. Poderoso C. The effect of nitric oxide on mitochondrial respiration Nitric. Oxide. 2019 88 61 72 10.1016/j.niox.2019.04.005
    [Google Scholar]
  65. Barboza J.N. Filho S.M.B.d.C. Silva R.O. Medeiros J.V.R. Sousa d.D.P. An overview on the anti-inflammatory potential and antioxidant profile of eugenol. Oxid. Med. Cell. Longev. 2018 2018 1 3957262 10.1155/2018/3957262 30425782
    [Google Scholar]
  66. Bilginaylar K. Aykac A. Sayiner S. Özkayalar H. Şehirli A.Ö. Evaluation of the antiapoptotic and anti-inflammatory properties of chitosan in methotrexate-induced oral mucositis in rats. Mol. Biol. Rep. 2022 49 4 3237 3245 10.1007/s11033‑022‑07158‑x 35064410
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031335223250122153155
Loading
/content/journals/ddl/10.2174/0122103031335223250122153155
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Eugenol ; cecal ligation and puncture ; sepsis ; renal injury ; oxidative stress ; DNA damage
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test