Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Background

Uncomplicated skin and soft tissue infections account for approximately 200 million visits to ambulatory care settings annually. Linezolid (LNZ) is an oxazolidinone that has proven its effectiveness in combating skin and soft tissue infections caused by gram-positive pathogens. LNZ is administered oral suspension, tablets, or an intravenous route in most instances. However, its extended therapy leads to undesirable side effects like diarrhoea, thrombocytopenia, myelosuppression, lactic acidosis, . and even life-threatening complications. The dermal administration of LNZ offers an alternative route, ensuring localized and sustained release at the site of infection. This approach may reduce systemic exposure and allow for lower doses compared to oral ingestion, which can decrease the risk of adverse effects.

Objectives

This research aimed to develop a nanostructured lipid carrier (NLC)-based gel for delivering LNZ the dermal route to treat uncomplicated skin and soft tissue infections.

Methods

NLC were developed by high-shear homogenisation and sonication method using glyceryl trimyristate as a solid lipid and neem oil as a liquid lipid. The Taguchi design was employed to optimize NLCs using surfactant concentration (mg), drug-to-lipid ratio, and sonication time (sec) as independent variables. Their effect on particle size, zeta potential, and entrapment efficiency was studied. The optimized nanocarriers were developed into a gel product and evaluated for drug release, permeation, and antibacterial activity.

Results

The optimised process parameters to attain outcomes were 2% surfactant, 1:1 drug-to-lipid ratio and 300 seconds of sonication. The resulting NLC had an average size of 191.2 ± 2.76 nm, a zeta potential of -30.7 ± 4.50 mV, and 84.89 ± 2.76% drug entrapment. NLC-based gel displayed anomalous transport with a 90.16% drug release. The gel showed a strong antibacterial effect against with a 7.57 ± 0.12 cm mean zone of inhibition. skin permeation studies revealed 24.19 ± 0.19% drug permeation and 64.46 ± 0.58% cutaneous deposition. NLC-based gel demonstrated a significant decrease in colony-forming units in infected animal models.

Conclusion

The investigations demonstrated the presence of LNZ at the infection site, enhancing therapeutic effectiveness. and findings illustrated the substantial antibacterial efficacy of LNZ NLC-based gel. The adoption of NLC-based gel exhibits promising potential as a carrier for dermal delivery of LNZ.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031307625240904050257
2024-09-16
2025-05-08
Loading full text...

Full text loading...

References

  1. GalloR.L. Human skin is the largest epithelial surface for interaction with microbes.J. Invest. Dermatol.201713761213121410.1016/j.jid.2016.11.045 28395897
    [Google Scholar]
  2. LipskyB.A. SilvermanM.H. JosephW.S. A proposed new classification of skin and soft tissue infections modeled on the subset of diabetic foot infection.Open Forum Infect. Dis.201741ofw25510.1093/ofid/ofw255 28480249
    [Google Scholar]
  3. RamakrishnanK. SalinasR.C. Agudelo HiguitaN.I. Skin and soft tissue infections.Am. Fam. Physician2015926474483[PMID: 26371732
    [Google Scholar]
  4. HashemianS.M. FarhadiT. GanjparvarM. Linezolid: A review of its properties, function, and use in critical care.Drug Des. Devel. Ther.2018121759176710.2147/DDDT.S164515 29950810
    [Google Scholar]
  5. DiepB.A. EquilsO. HuangD.B. GladueR. Linezolid effects on bacterial toxin production and host immune response: Review of the evidence.Curr. Ther. Res. Clin. Exp.20127338610210.1016/j.curtheres.2012.04.002 24648596
    [Google Scholar]
  6. LiY. XuW. Efficacy and safety of linezolid compared with other treatments for skin and soft tissue infections: A meta-analysis.Biosci. Rep.2018381BSR2017112510.1042/BSR20171125 29229674
    [Google Scholar]
  7. AzzouzA. PreussC.V. Linezolid.StatPearls; StatPearls Publishing: Treasure Island, FL,2023Available from: https://www.ncbi.nlm.nih.gov/books/NBK539793/
    [Google Scholar]
  8. PangilinanR. TiceA. TillotsonG. Topical antibiotic treatment for uncomplicated skin and skin structure infections: Review of the literature.Expert Rev. Anti Infect. Ther.20097895796510.1586/eri.09.74 19803705
    [Google Scholar]
  9. SoleimanianY. GoliS.A.H. ShirvaniA. ElmizadehA. MarangoniA.G. Wax‐based delivery systems: Preparation, characterization, and food applications.Compr. Rev. Food Sci. Food Saf.20201962994303010.1111/1541‑4337.12614 33337056
    [Google Scholar]
  10. SoutoE.B. FangueiroJ.F. FernandesA.R. CanoA. Sanchez-LopezE. GarciaM.L. SeverinoP. PaganelliM.O. ChaudM.V. SilvaA.M. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery.Heliyon202282e0893810.1016/j.heliyon.2022.e08938 35198788
    [Google Scholar]
  11. MahantS. RaoR. SoutoE.B. NandaS. Analytical tools and evaluation strategies for nanostructured lipid carrier-based topical delivery systems.Expert Opin. Drug Deliv.202017796399210.1080/17425247.2020.1772750 32441158
    [Google Scholar]
  12. ShindeG. SonchhatraA. ShelkeS. PathanI. Design, optimization and in-vivo characterization of mupirocin loaded nanostructured lipid carrier based gel for effective treatment of impetigo.J. Drug Deliv. Sci. Technol.20226710287210.1016/j.jddst.2021.102872
    [Google Scholar]
  13. a HaiderF. KhanB. A. KhanM. K. Formulation and Evaluation of Topical Linezolid Nanoemulsion for Open Incision Wound in Diabetic Animal Model.AAPS PharmSciTech202223512910.1208/s12249‑022‑02288‑8
    [Google Scholar]
  14. b AlkholiefM. KalamM.A. AlshememryA.K. AliR. AlhudaithiS.S. AlsalehN.B. RaishM. AlshamsanA. Topical application of linezolid-loaded chitosan nanoparticles for the treatment of eye infections.Nanomaterials (Basel)202313468110.3390/nano13040681 36839049
    [Google Scholar]
  15. GhatatyD.S. AmerR.I. WasfiR. ShammaR.N. Novel linezolid loaded bio-composite films as dressings for effective wound healing: Experimental design, development, optimization, and antimicrobial activity.Drug Deliv.20222913168318510.1080/10717544.2022.2127974 36184799
    [Google Scholar]
  16. FernandesA.V. PydiC.R. VermaR. JoseJ. KumarL. Design, preparation and in vitro characterizations of fluconazole loaded nanostructured lipid carriers.Braz. J. Pharm. Sci.202056e1806910.1590/s2175‑97902019000318069
    [Google Scholar]
  17. CirriM. MaestriniL. MaestrelliF. MenniniN. MuraP. GhelardiniC. Di Cesare MannelliL. Design, characterization and in vivo evaluation of nanostructured lipid carriers (NLC) as a new drug delivery system for hydrochlorothiazide oral administration in pediatric therapy.Drug Deliv.20182511910192110.1080/10717544.2018.1529209 30451015
    [Google Scholar]
  18. SharmaB. ChauhanI. SinghA.P. Development of NLC- based sunscreen gel of lutein and its in-vitro and ex-vivo characterisation.Drug Deliv. Lett.2023131698110.2174/2210303113666221227145210
    [Google Scholar]
  19. NegiL.M. JaggiM. TalegaonkarS. Development of protocol for screening the formulation components and the assessment of common quality problems of nano-structured lipid carriers.Int. J. Pharm.20144611-240341010.1016/j.ijpharm.2013.12.006 24345574
    [Google Scholar]
  20. RathodV.R. ShahD.A. DaveR.H. Systematic implementation of quality-by-design (QbD) to develop NSAID-loaded nanostructured lipid carriers for ocular application: preformulation screening studies and statistical hybrid-design for optimization of variables.Drug Dev. Ind. Pharm.202046344345510.1080/03639045.2020.1724135 32037896
    [Google Scholar]
  21. NasrA. GardouhA. GhorabM. Novel solid self-nano emulsifying drug delivery system (S-SNEDDS) for oral delivery of Olmesartan Medoxomil: Design, formulation, pharmacokinetic and bioavailability evaluation.Pharmaceutics2016832010.3390/pharmaceutics8030020 27355963
    [Google Scholar]
  22. PatelJ. KevinG. PatelA. RavalM. ShethN. Design and development of a self-nanoemulsifying drug delivery system for telmisartan for oral drug delivery.Int. J. Pharm. Investig.20111211211810.4103/2230‑973X.82431 23071930
    [Google Scholar]
  23. LuanL. ChiZ. LiuC. Chinese white wax solid lipid nanoparticles as a novel nanocarrier of curcumin for inhibiting the formation of staphylococcus aureus biofilms.Nanomaterials (Basel)20199576310.3390/nano9050763 31109013
    [Google Scholar]
  24. AjiboyeA.L. NandiU. GalliM. TrivediV. Olanzapine loaded nanostructured lipid carriers via high shear homogenization and ultrasonication.Sci. Pharm.20218922510.3390/scipharm89020025
    [Google Scholar]
  25. MishraAmit The Taguchi method. Wiley Interdiscip. Rev. Comput. Stat.20113547248010.1002/wics.169
    [Google Scholar]
  26. ChauhanI. SinghA.P. YasirM. VermaM. MajhiS. SinghL. Development and characterization of nano-structure lipid carrier-based glabridin cream for cosmetic use.Curr. Cosm. Sci.202212e09052220450010.2174/2666779701666220509221341
    [Google Scholar]
  27. DoktorovovaS. SoutoE.B. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: A comprehensive review.Expert Opin. Drug Deliv.20096216517610.1517/17425240802712590 19239388
    [Google Scholar]
  28. Brito RajS. ChandrasekharK.B. ReddyK.B. Formulation, in-vitro and in-vivo pharmacokinetic evaluation of simvastatin nanostructured lipid carrier loaded transdermal drug delivery system.Future J. Pharm. Sci.201951910.1186/s43094‑019‑0008‑7
    [Google Scholar]
  29. JoshiM. PatravaleV. Nanostructured lipid carrier (NLC) based gel of celecoxib.Int. J. Pharm.20083461-212413210.1016/j.ijpharm.2007.05.060 17651933
    [Google Scholar]
  30. Czajkowska-KośnikA. SzymańskaE. WinnickaK. Nanostructured lipid carriers (NLC)-based gel formulations as etodolac delivery: From gel preparation to permeation study.Molecules202228123510.3390/molecules28010235 36615429
    [Google Scholar]
  31. KhanB.A. AhmadS. KhanM.K. HosnyK.M. BukharyD.M. IqbalH. MurshidS.S. HalwaniA.A. AlissaM. MenaaF. Fabrication and characterizations of pharmaceutical emulgel co-loaded with naproxen-eugenol for improved analgesic and anti-inflammatory effects.Gels202281060810.3390/gels8100608 36286109
    [Google Scholar]
  32. YasirM. SaraU.V.S. Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation.Acta Pharm. Sin. B20144645446310.1016/j.apsb.2014.10.005 26579417
    [Google Scholar]
  33. BalouiriM. SadikiM. IbnsoudaS.K. Methods for in vitro evaluating antimicrobial activity: A review.J. Pharm. Anal.201662717910.1016/j.jpha.2015.11.005 29403965
    [Google Scholar]
  34. RajpootK. PrajapatiS.K. MalaiyaA. JainR. JainA. Meropenem-loaded nanostructured lipid carriers for skin and soft tissue infection caused by staphylococcus aureus: Formulation, design, and evaluation.AAPS PharmSciTech202223724110.1208/s12249‑022‑02381‑y 36008695
    [Google Scholar]
  35. BadriaF. MazyedE. Formulation of nanospanlastics as a promising approach for improving the topical delivery of a natural leukotriene inhibitor (3-acetyl-11-keto-β-boswellic acid): Statistical optimization, in vitro characterization, and ex vivo permeation study.Drug Des. Devel. Ther.2020143697372110.2147/DDDT.S265167 32982176
    [Google Scholar]
  36. AbrhaS. BartholomaeusA. TesfayeW. ThomasJ. Impetigo animal models: A review of their feasibility and clinical utility for therapeutic appraisal of investigational drug candidates.Antibiotics (Basel)202091069410.3390/antibiotics9100694 33066386
    [Google Scholar]
  37. KugelbergE. NorströmT. PetersenT.K. DuvoldT. AnderssonD.I. HughesD. Establishment of a superficial skin infection model in mice by using Staphylococcus aureus and Streptococcus pyogenes.Antimicrob. Agents Chemother.20054983435344110.1128/AAC.49.8.3435‑3441.2005 16048958
    [Google Scholar]
  38. Escárcega-GonzálezC.E. Garza-CervantesJ.A. Vazquez-RodríguezA. Montelongo-PeraltaL.Z. Treviño-GonzalezM.T. Díaz Barriga CastroE. Saucedo-SalazarE.M. Chávez MoralesR.M. Regalado-SotoD.I. Treviño-GonzálezF.M. Carrazco RosalesJ.L. Villalobos CruzR. Morones-RamírezJ.R. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent.Int. J. Nanomedicine2018132349236310.2147/IJN.S160605 29713166
    [Google Scholar]
  39. TammaroL. SaturninoC. D’AnielloS. VigliottaG. VittoriaV. Polymorphic solidification of Linezolid confined in electrospun PCL fibers for controlled release in topical applications.Int. J. Pharm.20154901-2323810.1016/j.ijpharm.2015.04.070 25934427
    [Google Scholar]
  40. HoangT.P.N. GhoriM.U. ConwayB.R. Topical antiseptic formulations for skin and soft tissue infections.Pharmaceutics202113455810.3390/pharmaceutics13040558 33921124
    [Google Scholar]
  41. RazdanK. SinhaV.R. SinghK.K. New paradigms in the treatment of skin infections: Lipid nanocarriers to the rescue. In: Nanomedicine for Bioactives202031733910.1007/978‑981‑15‑1664‑1_11
    [Google Scholar]
  42. RyanA. PatelP. RatreyP. O’ConnorP.M. O’SullivanJ. RossR.P. HillC. HudsonS.P. The development of a solid lipid nanoparticle (SLN)-based lacticin 3147 hydrogel for the treatment of wound infections.Drug Deliv. Transl. Res.20231392407242310.1007/s13346‑023‑01332‑9 36964439
    [Google Scholar]
  43. de BarrosD.P.C. SantosR. ReedP. FonsecaL.P. OlivaA. Design of quercetin-loaded natural oil-based nanostructured lipid carriers for the treatment of bacterial skin infections.Molecules20222724881810.3390/molecules27248818 36557947
    [Google Scholar]
  44. Touching technologies. 2020. 2020Available from: https://www.ioioleo.de/en/news/touching-technologies/(Accessed on: September 28, 2023)
  45. ApostolouM. AssiS. FatokunA.A. KhanI. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers.J. Pharm. Sci.202111082859287210.1016/j.xphs.2021.04.012 33901564
    [Google Scholar]
  46. RawatD. Tripathi.; Chandra, B.; Parashar, P.; Singh, M.; Kaithwas, G.; Saraf, S.A. Development and characterization of nanostructured lipid carriers of Vetiveria zizanoides oil for therapeutic potential in prickly heat treatment.J. Pharm. Sci. Pharmacol.20152216217110.1166/jpsp.2015.1054
    [Google Scholar]
  47. KumarS. SinghN. DeviL.S. KumarS. KamleM. KumarP. MukherjeeA. Neem oil and its nanoemulsion in sustainable food preservation and packaging: Current status and future prospects. J. Agri.Food Res.2022710025410.1016/j.jafr.2021.100254
    [Google Scholar]
  48. GabaB. FazilM. KhanS. AliA. BabootaS. AliJ. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride.Bull. Fac. Pharm. Cairo Univ.201553214715910.1016/j.bfopcu.2015.10.001
    [Google Scholar]
  49. SakellariG.I. ZafeiriI. BatchelorH. SpyropoulosF. Formulation design, production and characterisation of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the encapsulation of a model hydrophobic active.Food Hydrocoll Health2021110.1016/j.fhfh.2021.100024
    [Google Scholar]
  50. HanF. LiS. YinR. LiuH. XuL. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers.Colloids Surf. A Physicochem. Eng. Asp.20083151-321021610.1016/j.colsurfa.2007.08.005
    [Google Scholar]
  51. AbedS.M. Al-RashidS.N. Study of the effects of nano-particle sizes on the transmittance of CdTe thin film.Chalcogenide Lett.2018155237246
    [Google Scholar]
  52. SinghA.P. SharmaS.K. GaurP.K. GuptaD.K. Fabrication of mupirocin-loaded nanostructured lipid carrier and its in vitro characterization.Assay Drug Dev. Technol.202119421622510.1089/adt.2020.1070 33781090
    [Google Scholar]
  53. ChirioD. PeiraE. DianzaniC. MuntoniE. GigliottiC. FerraraB. SapinoS. ChindamoG. GallarateM. Development of solid lipid nanoparticles by cold dilution of microemulsions: Curcumin loading, preliminary in vitro studies, and biodistribution.Nanomaterials (Basel)20199223010.3390/nano9020230 30744025
    [Google Scholar]
  54. FaulknerD.M. SuttonS.T. HesfordJ.D. FaulknerB.C. MajorD.A. HellewellT.B. LaughonM.M. RodeheaverG.T. EdlichR.F. A new stable pluronic® F68 gel carrier for antibiotics in contaminated wound treatment.Am. J. Emerg. Med.1997151202410.1016/S0735‑6757(97)90041‑3 9002563
    [Google Scholar]
  55. What is a main effects plot? Available from: https://support.minitab.com/en-us/minitab/help-and-how-to/statistical-modeling/anova/supporting-topics/basics/what-is-a-main-effects-plot/(Accessed on: September 28, 2023)
  56. WitayaudomP. KlinkesornU. Effect of surfactant concentration and solidification temperature on the characteristics and stability of nanostructured lipid carrier (NLC) prepared from rambutan (Nephelium lappaceum L.) kernel fat.J. Colloid Interface Sci.20175051082109210.1016/j.jcis.2017.07.008 28697547
    [Google Scholar]
  57. EmamiJ. MohitiH. HamishehkarH. VarshosazJ. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design.Res. Pharm. Sci.20151011733[PMID:26430454
    [Google Scholar]
  58. DasS. NgW.K. TanR.B.H. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs?Eur. J. Pharm. Sci.201247113915110.1016/j.ejps.2012.05.010 22664358
    [Google Scholar]
  59. XuL. WangX. LiuY. YangG. FalconerR.J. ZhaoC.X. Lipid nanoparticles for drug delivery.Adv. NanoBiomed Res.202222210010910.1002/anbr.202100109 35179344
    [Google Scholar]
  60. SajidM.U. BicerY. Impacts of ultrasonication time and surfactants on stability and optical properties of CuO, Fe3O4, and CNTs/water nanofluids for spectrum selective applications.Ultrason. Sonochem.20228810607910.1016/j.ultsonch.2022.106079 35763944
    [Google Scholar]
  61. PanditaD. AhujaA. VelpandianT. LatherV. DuttaT. KharR.K. Characterization and in vitro assessment of paclitaxel loaded lipid nanoparticles formulated using modified solvent injection technique.Pharmazie2009645301310[PMID:19530440
    [Google Scholar]
  62. LiuY. LiangQ. LiuX. RazaH. MaH. RenX. Treatment with ultrasound improves the encapsulation efficiency of resveratrol in zein-gum Arabic complex coacervates.Lebensm. Wiss. Technol.202215311233110.1016/j.lwt.2021.112331
    [Google Scholar]
  63. NairA. ShahJ. Al-DhubiabB. JacobS. PatelS. VenugopalaK. MorsyM. GuptaS. AttimaradM. SreeharshaN. ShinuP. Clarithromycin solid lipid nanoparticles for topical ocular therapy: Optimization, evaluation and in vivo studies.Pharmaceutics202113452310.3390/pharmaceutics13040523 33918870
    [Google Scholar]
  64. Introduction to Taguchi methodAvailable from: https://www.ee.iitb.ac.in/~apte/CV_PRA_TAGUCHI_INTRO.htm#:~:text=Taguchi%20method%20divides%20all%20problems,and%20nominal%2Dthe%2Dbest (Accessed on: September 28, 2023)
  65. ChaiyanaW. AnuchapreedaS. SomwonginS. MarsupP. LeeK.H. LinW.C. LueS.C. Dermal delivery enhancement of natural anti-ageing compounds from Ocimum sanctum Linn. extract by nanostructured lipid carriers.Pharmaceutics202012430910.3390/pharmaceutics12040309 32235376
    [Google Scholar]
  66. ReisS. GomesM.J. MartinsS. FerreiraD. SegundoM.A. Lipid nanoparticles for topical and transdermal application for alopecia treatment: Development, physicochemical characterization, and in vitro release and penetration studies.Int. J. Nanomedicine201491231124210.2147/IJN.S45561 24634584
    [Google Scholar]
  67. DanaeiM. DehghankholdM. AtaeiS. Hasanzadeh DavaraniF. JavanmardR. DokhaniA. KhorasaniS. MozafariM.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  68. SeverinoP. PinhoS.C. SoutoE.B. SantanaM.H.A. Crystallinity of Dynasan®114 and Dynasan®118 matrices for the production of stable Miglyol®-loaded nanoparticles.J. Therm. Anal. Calorim.2012108110110810.1007/s10973‑011‑1613‑7
    [Google Scholar]
  69. SachanA.K. GuptaA. AroraM. Formulation and characterization of nanostructured lipid carrier (NLC) based gel for topical delivery of Etoricoxib.J. Drug Deliv. Ther.20166241310.22270/jddt.v6i2.1222
    [Google Scholar]
  70. OrtizA.C. YañezO. Salas-HuenuleoE. MoralesJ.O. Development of a nanostructured lipid carrier (NLC) by a low-energy method, comparison of release kinetics and molecular dynamics simulation.Pharmaceutics202113453110.3390/pharmaceutics13040531 33920242
    [Google Scholar]
  71. FathiH.A. AllamA. ElsabahyM. FetihG. El-BadryM. Nanostructured lipid carriers for improved oral delivery and prolonged antihyperlipidemic effect of simvastatin.Colloids Surf. B Biointerfaces201816223624510.1016/j.colsurfb.2017.11.064 29197789
    [Google Scholar]
  72. BullockA.J. GarciaM. ShepherdJ. RehmanI. SheilaM.N. Bacteria induced pH changes in tissue-engineered human skin detected non-invasively using Raman confocal spectroscopy.Appl. Spectrosc. Rev.202055215817110.1080/05704928.2018.1558232
    [Google Scholar]
  73. LukićM. PantelićI. SavićS.D. Towards optimal pH of the skin and topical formulations: from the current state of the art to tailored products.Cosmetics2021836910.3390/cosmetics8030069
    [Google Scholar]
  74. GargA.B. AggarwalD. GargS.K. SinglaA.K. Spreading of semisolid formulations: An update.Pharm. Technol.20022684105Available from https://www.researchgate.net/publication/279595351_Spreading_of_semisolid_formulations_An_update
    [Google Scholar]
  75. SabaleV. SabaleP. KunjwaniH. Formulation and in vitro evaluation of the topical antiageing preparation of the fruit of Benincasa hispida.J. Ayurveda Integr. Med.20112312412810.4103/0975‑9476.85550 22022154
    [Google Scholar]
  76. BadruddozaA.Z.M. YeohT. ShahJ.C. API-polymer interactions in Sepineo P600 based topical gel formulation- impact on rheology.Int. J. Pharm.202262112182410.1016/j.ijpharm.2022.121824 35569626
    [Google Scholar]
  77. SatapathyB.S. BiswalB. PattnaikS. ParidaR. SahooR.N. A mucoadhesive nanolipo gel containing Aegle marmelos gum to enhance transdermal effectiveness of linezolid for vaginal infection: In vitro evaluation, in vitro-ex vivo correlation, pharmacokinetic studies.Int. J. Pharm.202364812354210.1016/j.ijpharm.2023.123542 37925044
    [Google Scholar]
  78. UpritS. Kumar SahuR. RoyA. PareA. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia.Saudi Pharm. J.201321437938510.1016/j.jsps.2012.11.005 24227958
    [Google Scholar]
  79. Gómez-CarracedoA. Alvarez-LorenzoC. Gómez-AmozaJ.L. ConcheiroA. Glass transitions and viscoelastic properties of Carbopol® and Noveon® compacts.Int. J. Pharm.20042741-223324310.1016/j.ijpharm.2004.01.023 15072799
    [Google Scholar]
  80. AlamM. AhmedS. Nikita; Moon, G.; Aqil, M.; Sultana, Y. Chemical engineering of a lipid nano-scaffold for the solubility enhancement of an antihyperlipidaemic drug, simvastatin; preparation, optimization, physicochemical characterization and pharmacodynamic study.Artif. Cells Nanomed. Biotechnol.201746811210.1080/21691401.2017.1396223
    [Google Scholar]
  81. DasS. NgW.K. TanR.B.H. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers: II. Evaluation of the imidazole antifungal drug-loaded nanoparticle dispersions and their gel formulations.Nanotechnology2014251010510210.1088/0957‑4484/25/10/105102 24531828
    [Google Scholar]
  82. Mathematical models of drug release. In: Bruschi, M.L., Ed.; Strategies to Modify the Drug Release from Pharmaceutical Systems.Woodhead Publishing2015638610.1016/B978‑0‑08‑100092‑2.00005‑9
    [Google Scholar]
  83. YehY.C. HuangT.H. YangS.C. ChenC.C. FangJ.Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances.Front Chem.2020828610.3389/fchem.2020.00286 32391321
    [Google Scholar]
  84. WangL. HuC. ShaoL. The antimicrobial activity of nanoparticles: Present situation and prospects for the future.Int. J. Nanomedicine2017121227124910.2147/IJN.S121956 28243086
    [Google Scholar]
  85. NagaichU. GulatiN. Nanostructured lipid carriers (NLC) based controlled release topical gel of clobetasol propionate: Design and in vivo characterization.Drug Deliv. Transl. Res.20166328929810.1007/s13346‑016‑0291‑1 27072979
    [Google Scholar]
  86. Atrux-TallauN. DenisA. PadoisK. BertholleV. HuynhT.T.N. HaftekM. FalsonF. PirotF. Skin absorption modulation: Innovative non-hazardous technologies for topical formulations.Open Dermatol. J.2010413910.2174/1874372201004010003
    [Google Scholar]
  87. MitriK. ShegokarR. GohlaS. AnselmiC. MüllerR.H. Lipid nanocarriers for dermal delivery of lutein: Preparation, characterization, stability and performance.Int. J. Pharm.20114141-226727510.1016/j.ijpharm.2011.05.008 21596122
    [Google Scholar]
  88. WavikarP. VaviaP. Nanolipidgel for enhanced skin deposition and improved antifungal activity.AAPS PharmSciTech201314122223310.1208/s12249‑012‑9908‑y 23263751
    [Google Scholar]
  89. RapalliV.K. KaulV. WaghuleT. GorantlaS. SharmaS. RoyA. DubeyS.K. SinghviG. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: Optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition.Eur. J. Pharm. Sci.202015210543810.1016/j.ejps.2020.105438 32598913
    [Google Scholar]
  90. Escobar-ChávezJ.J. Merino-SanjuánV. López-CervantesM. Urban-MorlanZ. Piñón-SegundoE. Quintanar-GuerreroD. Ganem-QuintanarA. The tape-stripping technique as a method for drug quantification in skin.J. Pharm. Pharm. Sci.200811110413010.18433/J3201Z 18445368
    [Google Scholar]
  91. ChauhanI. SinghL. Formulation and optimization of solid lipid nanoparticle-based gel for dermal delivery of linezolid using Taguchi design.Recent Adv Antiinfect Drug Discov202419432234710.2174/0127724344280309240103062810 38243985
    [Google Scholar]
  92. López-GarcíaR. Ganem-RonderoA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Occlusive effect and penetration enhancement ability.JCDSA201552627210.4236/jcdsa.2015.52008
    [Google Scholar]
  93. BonaccorsoA. CiminoC. MannoD.E. TomaselloB. SerraA. MusumeciT. PuglisiG. PignatelloR. CarboneC. Essential oil-loaded NLC for potential intranasal administration.Pharmaceutics2021138116610.3390/pharmaceutics13081166 34452126
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031307625240904050257
Loading
/content/journals/ddl/10.2174/0122103031307625240904050257
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test