Skip to content
2000
image of Pleiotropic Leukemia Inhibitory Factor Encapsulated in DODAB:MO Liposomes for Multiple Biomedical Applications

Abstract

Introduction

The development of novel drug carriers is invaluable to maximize therapeutic efficiency and improve specificity. Dioctadecyl-dimethylammonium bromide (DODAB): monoolein (MO) (1:2) liposomes exhibit non-lamellar phases in their core that improve the encapsulation ability of both hydrophobic and hydrophilic molecules. This study explores the use of this nanosystem for the therapeutic delivery of cytokines, specifically of leukemia inhibitory factor (LIF). Nanocarriers can overcome the drawbacks of direct cytokine administration, like poor bioavailability.

Methods

DODAB:MO (1:2) liposomes were produced by lipid film hydration, followed by extrusion, and used for encapsulating 0.125 and 0.25 µM LIF. The produced nanoparticles were characterized in terms of size and zeta potential, FTIR and STEM. LIF was quantified with an optimized Bradford method to determine encapsulation efficiencies, drug loading, and release profile. Cytotoxicity was assessed by hemolysis, and mouse myoblasts were used to validate bioactivity .

Results

Neither the extrusion nor the protein incorporation steps promoted significant alterations in cytokine structure. LIF-containing liposomes DODAB (1:2) nanosystem were small (~200-300nm), positively charged (~50-60mV), non-toxic, and stable at physiological pH. Biophysical characterization identified liposomal formulation of 200 µM DODAB:MO (1:2) at 0.25 µM as the most efficient system. The bioactivity analysis showed an increase of ~20% in cell proliferation after 48h of incubation when compared to free mLIF. Also, the LIF-containing DODAB:MO (1:2) liposomal formulation, when exposed to serum, revealed a capacity to protect its cargo for up to 6 h.

Conclusion

The DODAB:MO (1:2) nanosystem was found to be efficient for cytokine delivery, stabilizing mLIF, and promoting its bioactivity with multiple applications.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031336363250109091243
2025-01-14
2025-05-05
Loading full text...

Full text loading...

References

  1. Pagoni P. Korologou-Linden R.S. Howe L.D. Davey Smith G. Ben-Shlomo Y. Stergiakouli E. Anderson E.L. Causal effects of circulating cytokine concentrations on risk of Alzheimer’s disease and cognitive function. Brain Behav. Immun. 2022 104 54 64 10.1016/j.bbi.2022.05.006 35580794
    [Google Scholar]
  2. Jiang S.S. Wang Y.L. Xu Q.H. Gu L.Y. Kang R.Q. Yang W.Y. Zhang B.R. Tian J. Pu J.L. Cytokine and chemokine map of peripheral specific immune cell subsets in Parkinson’s disease. NPJ Parkinsons Dis. 2023 9 1 117 10.1038/s41531‑023‑00559‑0 37491350
    [Google Scholar]
  3. Nikovics K. Favier A.L. Rocher M. Mayinga C. Gomez J. Dufour-Gaume F. Riccobono D. In situ identification of both IL-4 and IL-10 cytokine–receptor interactions during tissue regeneration. Cells 2023 12 11 1522 10.3390/cells12111522 37296643
    [Google Scholar]
  4. Tsarouchas T.M. Wehner D. Cavone L. Munir T. Keatinge M. Lambertus M. Underhill A. Barrett T. Kassapis E. Ogryzko N. Feng Y. van Ham T.J. Becker T. Becker C.G. Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages in zebrafish spinal cord regeneration. Nat. Commun. 2018 9 1 4670 10.1038/s41467‑018‑07036‑w 30405119
    [Google Scholar]
  5. Borsini A. Di Benedetto M.G. Giacobbe J. Pariante C.M. Pro- and anti-inflammatory properties of interleukin (IL6) in vitro: Relevance for major depression and for human hippocampal neurogenesis. Int. J. Neuropsychopharmacol. 2020 23 11 738 750 10.1093/ijnp/pyaa055 32726406
    [Google Scholar]
  6. Santollani L. Wittrup K.D. Spatiotemporally programming cytokine immunotherapies through protein engineering. Immunol. Rev. 2023 320 1 10 28 10.1111/imr.13234 37409481
    [Google Scholar]
  7. Saxton R.A. Glassman C.R. Garcia K.C. Emerging principles of cytokine pharmacology and therapeutics. Nat. Rev. Drug Discov. 2023 22 1 21 37 10.1038/s41573‑022‑00557‑6 36131080
    [Google Scholar]
  8. Akbarian M. Chen S.H. Instability challenges and stabilization strategies of pharmaceutical proteins. Pharmaceutics 2022 14 11 2533 10.3390/pharmaceutics14112533 36432723
    [Google Scholar]
  9. Deckers J. Anbergen T. Hokke A.M. de Dreu A. Schrijver D.P. de Bruin K. Toner Y.C. Beldman T.J. Spangler J.B. de Greef T.F.A. Grisoni F. van der Meel R. Joosten L.A.B. Merkx M. Netea M.G. Mulder W.J.M. Engineering cytokine therapeutics. Nat. Revi. Bioenginee. 2023 1 4 286 303 10.1038/s44222‑023‑00030‑y 37064653
    [Google Scholar]
  10. Gonçalves A. Machado R. Gomes A.C. Costa A. Nanotechnology solutions for controlled cytokine delivery: An applied perspective. Appl. Sci. (Basel) 2020 10 20 7098 10.3390/app10207098
    [Google Scholar]
  11. Jones S.A. Jenkins B.J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 2018 18 12 773 789 10.1038/s41577‑018‑0066‑7 30254251
    [Google Scholar]
  12. Costa A. Franco-Duarte R. Machado R. Gomes A.C. Uncovering the promiscuous activity of IL-6 proteins: A multi-dimensional analysis of phylogeny, classification and residue conservation. Protein Sci. 2022 31 11 e4469 10.1002/pro.4469 36222303
    [Google Scholar]
  13. Pinho V. Fernandes M. da Costa A. Machado R. Gomes A.C. Leukemia inhibitory factor: Recent advances and implications in biotechnology. Cytokine Growth Factor Rev. 2020 52 25 33 10.1016/j.cytogfr.2019.11.005 31870618
    [Google Scholar]
  14. Liu C. Zhou H. Zhong J. Tang T. Cui H. Zhou J. Zhang Q. Mei Z. Leukemia inhibitory factor decreases neurogenesis and angiogenesis in a rat model of intracerebral hemorrhage. Curr. Med. Sci. 2019 39 2 298 304 10.1007/s11596‑019‑2034‑2 31016525
    [Google Scholar]
  15. Lin J. Niimi Y. Clausi M.G. Kanal H.D. Levison S.W. Neuroregenerative and protective functions of Leukemia Inhibitory Factor in perinatal hypoxic-ischemic brain injury. Exp. Neurol. 2020 330 113324 10.1016/j.expneurol.2020.113324 32320698
    [Google Scholar]
  16. Kanda M. Nagai T. Takahashi T. Liu M.L. Kondou N. Naito A.T. Akazawa H. Sashida G. Iwama A. Komuro I. Kobayashi Y. Leukemia inhibitory factor enhances endogenous cardiomyocyte regeneration after myocardial infarction. PLoS One 2016 11 5 e0156562 10.1371/journal.pone.0156562 27227407
    [Google Scholar]
  17. Hennø L.T. Storjord E. Christiansen D. Bergseth G. Ludviksen J.K. Fure H. Barene S. Nielsen E.W. Mollnes T.E. Brekke O.L. Effect of the anticoagulant, storage time and temperature of blood samples on the concentrations of 27 multiplex assayed cytokines – Consequences for defining reference values in healthy humans. Cytokine 2017 97 86 95 10.1016/j.cyto.2017.05.014 28595117
    [Google Scholar]
  18. Vincent F.B. Nim H.T. Lee J.P.W. Morand E.F. Harris J. Effect of storage duration on cytokine stability in human serum and plasma. Cytokine 2019 113 453 457 10.1016/j.cyto.2018.06.009 29909979
    [Google Scholar]
  19. Zhao W. Oskeritzian C.A. Pozez A.L. Schwartz L.B. Cytokine production by skin-derived mast cells: Endogenous proteases are responsible for degradation of cytokines. J. Immunol. 2005 175 4 2635 2642 10.4049/jimmunol.175.4.2635 16081839
    [Google Scholar]
  20. Gaggero S. Martinez-Fabregas J. Cozzani A. Fyfe P.K. Leprohon M. Yang J. Thomasen F.E. Winkelmann H. Magnez R. Conti A.G. Wilmes S. Pohler E. van Gijsel Bonnello M. Thuru X. Quesnel B. Soncin F. Piehler J. Lindorff-Larsen K. Roychoudhuri R. Moraga I. Mitra S. IL-2 is inactivated by the acidic pH environment of tumors enabling engineering of a pH-selective mutein. Sci. Immunol. 2022 7 78 eade5686 10.1126/sciimmunol.ade5686 36459543
    [Google Scholar]
  21. Hilton D.J. Nicola N.A. Waring P.M. Metcalf D. Clearance and fate of leukemia-inhibitory factor (LIF) after injection into mice. J. Cell. Physiol. 1991 148 3 430 439 10.1002/jcp.1041480315 1918172
    [Google Scholar]
  22. Lian H. Ma S. Zhao D. Zhao W. Cui Y. Hua Y. Zhang Z. Cytokine therapy combined with nanomaterials participates in cancer immunotherapy. Pharmaceutics 2022 14 12 2606 10.3390/pharmaceutics14122606 36559100
    [Google Scholar]
  23. Oliveira A.C.N. Fernandes J. Gonçalves A. Gomes A.C. Oliveira M.E.C.D.R. Lipid-based nanocarriers for siRNA delivery: Challenges, strategies and the lessons learned from the DODAX: MO liposomal system. Curr. Drug Targets 2018 20 1 29 50 10.2174/1389450119666180703145410 29968536
    [Google Scholar]
  24. Oliveira A.C.N. Martens T.F. Raemdonck K. Adati R.D. Feitosa E. Botelho C. Gomes A.C. Braeckmans K. Real Oliveira M.E.C.D. Dioctadecyldimethylammonium:monoolein nanocarriers for efficient in vitro gene silencing. ACS Appl. Mater. Interfaces 2014 6 9 6977 6989 10.1021/am500793y 24712543
    [Google Scholar]
  25. Carneiro C. Correia A. Collins T. Vilanova M. Pais C. Gomes A.C. Real Oliveira M.E.C.D. Sampaio P. DODAB:monoolein liposomes containing Candida albicans cell wall surface proteins: A novel adjuvant and delivery system. Eur. J. Pharm. Biopharm. 2015 89 190 200 10.1016/j.ejpb.2014.11.028 25499956
    [Google Scholar]
  26. Carneiro C. Correia A. Lima T. Vilanova M. Pais C. Gomes A.C. Real Oliveira M.E.C.D. Sampaio P. Protective effect of antigen delivery using monoolein-based liposomes in experimental hematogenously disseminated candidiasis. Acta Biomater. 2016 39 133 145 10.1016/j.actbio.2016.05.001 27150234
    [Google Scholar]
  27. Silva J.P.N. Oliveira I.M.S.C. Oliveira A.C.N. Lúcio M. Gomes A.C. Coutinho P.J.G. Oliveira M.E.C.D.R. Structural dynamics and physicochemical properties of pDNA/DODAB:MO lipoplexes: Effect of pH and anionic lipids in inverted non-lamellar phases versus lamellar phases. Biochim. Biophys. Acta Biomembr. 2014 1838 10 2555 2567 10.1016/j.bbamem.2014.06.014 24976292
    [Google Scholar]
  28. Silva J.P.N. Oliveira A.C.N. Lúcio M. Gomes A.C. Coutinho P.J.G. Oliveira M.E.C.D.R. Tunable pDNA/DODAB:MO lipoplexes: The effect of incubation temperature on pDNA/DODAB:MO lipoplexes structure and transfection efficiency. Colloids Surf. B Biointerfaces 2014 121 371 379 10.1016/j.colsurfb.2014.06.019 25023903
    [Google Scholar]
  29. Nicola N.A. Babon J.J. Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev. 2015 26 5 533 544 10.1016/j.cytogfr.2015.07.001 26187859
    [Google Scholar]
  30. Boulanger M.J. Bankovich A.J. Kortemme T. Baker D. Garcia K.C. Convergent mechanisms for recognition of divergent cytokines by the shared signaling receptor gp130. Mol. Cell 2003 12 3 577 589 10.1016/S1097‑2765(03)00365‑4 14527405
    [Google Scholar]
  31. Huyton T. Zhang J.G. Luo C.S. Lou M.Z. Hilton D.J. Nicola N.A. Garrett T.P.J. An unusual cytokine:Ig-domain interaction revealed in the crystal structure of leukemia inhibitory factor (LIF) in complex with the LIF receptor. Proc. Natl. Acad. Sci. USA 2007 104 31 12737 12742 10.1073/pnas.0705577104 17652170
    [Google Scholar]
  32. Plun-Favreau H. Perret D. Diveu C. Froger J. Chevalier S. Lelièvre E. Gascan H. Chabbert M. Leukemia inhibitory factor (LIF), cardiotrophin-1, and oncostatin M share structural binding determinants in the immunoglobulin-like domain of LIF receptor. J. Biol. Chem. 2003 278 29 27169 27179 10.1074/jbc.M303168200 12707269
    [Google Scholar]
  33. Oliveira A.C.N. Sárria M.P. Moreira P. Fernandes J. Castro L. Lopes I. Côrte-Real M. Cavaco-Paulo A. Real Oliveira M.E.C.D. Gomes A.C. Counter ions and constituents combination affect DODAX : MO nanocarriers toxicity in vitro and in vivo. Toxicol. Res. (Camb.) 2016 5 4 1244 1255 10.1039/C6TX00074F 30090429
    [Google Scholar]
  34. Owczarek C.M. Zhang Y. Layton M.J. Metcalf D. Roberts B. Nicola N.A. The unusual species cross-reactivity of the leukemia inhibitory factor receptor α-chain is determined primarily by the immunoglobulin-like domain. J. Biol. Chem. 1997 272 38 23976 23985 10.1074/jbc.272.38.23976 9295349
    [Google Scholar]
  35. Jo C. Kim H. Jo I. Choi I. Jung S.C. Kim J. Kim S.S. Jo S.A. Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. Biochim. Biophys. Acta Mol. Cell Res. 2005 1743 3 187 197 10.1016/j.bbamcr.2004.11.002 15843032
    [Google Scholar]
  36. Park J. Gao W. Whiston R. Strom T.B. Metcalfe S. Fahmy T.M. Modulation of CD4+ T lymphocyte lineage outcomes with targeted, nanoparticle-mediated cytokine delivery. Mol. Pharm. 2011 8 1 143 152 10.1021/mp100203a 20977190
    [Google Scholar]
  37. Davis S.M. Reichel D. Bae Y. Pennypacker K.R. Leukemia inhibitory factor-loaded nanoparticles with enhanced cytokine metabolic stability and anti-inflammatory activity. Pharm. Res. 2018 35 1 6 10.1007/s11095‑017‑2282‑4 29294201
    [Google Scholar]
  38. Stromberg Z.R. Jacobsen D.E. Kocheril P.A. Kubicek-Sutherland J.Z. Biological toxicity and environmental hazards associated with PLGA nanoparticles. Poly(Lactic-Co-Glycolic Acid) Nanoparticles Drug Delivery Elsevier 2023 457 475 10.1016/B978‑0‑323‑91215‑0.00006‑6
    [Google Scholar]
  39. Lopes I. C N Oliveira A. P Sárria M. P Neves Silva J. Gonçalves O. Gomes A.C. Real Oliveira M.E.C.D. Monoolein-based nanocarriers for enhanced folate receptor-mediated RNA delivery to cancer cells. J. Liposome Res. 2016 26 3 199 210 10.3109/08982104.2015.1076463 26340109
    [Google Scholar]
  40. Gasteiger E. Gattiker A. Hoogland C. Ivanyi I. Appel R.D. Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003 31 13 3784 3788 10.1093/nar/gkg563 12824418
    [Google Scholar]
  41. Fernandes M. Lopes I. Magalhães L. Sárria M.P. Machado R. Sousa J.C. Botelho C. Teixeira J. Gomes A.C. Novel concept of exosome-like liposomes for the treatment of Alzheimer’s disease. J. Control. Release 2021 336 130 143 10.1016/j.jconrel.2021.06.018 34126168
    [Google Scholar]
  42. Vakakis N. Bower J. Austin L. in vitro myoblast to myotube transformations in the presence of leukemia inhibitory factor. Neurochem. Int. 1995 27 4-5 329 335 10.1016/0197‑0186(95)00014‑Y 8845733
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031336363250109091243
Loading
/content/journals/ddl/10.2174/0122103031336363250109091243
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test