Skip to content
2000
image of Design and Development of Nanoparticle-loaded In-situ Gel for Enhanced and Sustained Ophthalmic Delivery

Abstract

Background

Flurbiprofen, a non-selective COX inhibitor utilized for managing mild to moderate pain and inflammation, operates through reversible inhibition of both COX-1 and COX-2 pathways. However, as a BCS class II drug, it exhibits limited aqueous solubility, leading to suboptimal ocular bioavailability and a brief corneal contact.

Objective

The goal of this study was to amplify the aqueous solubility of Flurbiprofen by formulating it into a nanosuspension, which was subsequently incorporated into an gelling system so as to extend the ocular residence time and to achieve sustained drug release.

Methods

Nanosuspensions were crafted through the anti-solvent precipitation ultra-sonication method. The assessment included parameters, such as particle size, surface morphology, XRD, and FT-IR. The optimized nanosuspension was then incorporated into a pH-sensitive gel.

Results

The developed formulation was stable and showed enhanced contact time, minimizing the frequency of administration. Morphological analysis unveiled spherical drug nanoparticles in the nanosuspension without any signs of aggregation, supported by high-resolution transmission electron microscopy. The permeation studies showed a drug release of 83.48%, indicating good permeation and histopathology, and isotonicity indicated no ocular irritation and tissue damage.

Conclusion

The design and development of Flurbiprofen nanosuspension were found to be liquid at the formulated pH and formed gel due to changes in bonds between polymers. ocular gels minimize the risk of systemic absorption of the drug, as they are designed to stay localized on the ocular surface and within the eye. An optimum point can be reached in the shortest time with minimum efforts to achieve desirable rheological and release properties for gelling systems.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031315270241120053529
2024-12-13
2025-01-24
Loading full text...

Full text loading...

References

  1. Rudraraju M. Narayanan S.P. Somanath P.R. Regulation of blood-retinal barrier cell-junctions in diabetic retinopathy. Pharmacol. Res. 2020 161 105115 10.1016/j.phrs.2020.105115 32750417
    [Google Scholar]
  2. Akhter M.H. Ahmad I. Alshahrani M.Y. Al-Harbi A.I. Khalilullah H. Afzal O. Altamimi A.S.A. Najib Ullah S.N.M. Ojha A. Karim S. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels 2022 8 2 82 10.3390/gels8020082 35200463
    [Google Scholar]
  3. Subrizi A. del Amo E.M. Korzhikov-Vlakh V. Tennikova T. Ruponen M. Urtti A. Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties. Drug Discov. Today 2019 24 8 1446 1457 10.1016/j.drudis.2019.02.001 30738982
    [Google Scholar]
  4. Shah M.R. Imran M. Ullah S. Overcoming ocular barriers through nanocarrier-based drug delivery systems. Nanocarriers for Organ-Specific and Localized Drug Delivery. Elsevier 2022 225 244 10.1016/B978‑0‑12‑821093‑2.00009‑8
    [Google Scholar]
  5. Weng Y. Liu J. Jin S. Guo W. Liang X. Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm. Sin. B 2017 7 3 281 291 10.1016/j.apsb.2016.09.001 28540165
    [Google Scholar]
  6. Mofidfar M. Abdi B. Ahadian S. Mostafavi E. Desai T.A. Abbasi F. Sun Y. Manche E.E. Ta C.N. Flowers C.W. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int. J. Pharm. 2021 607 120924 10.1016/j.ijpharm.2021.120924 34324989
    [Google Scholar]
  7. Khandbahale S.V. A Review-Nanosuspension Technology in Drug Delivery System. Asian Journal of Pharmaceutical Research 2019 9 2 130 10.5958/2231‑5691.2019.00021.2
    [Google Scholar]
  8. Gupta S. Kesarla R. Omri A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm. 2013 2013 1 16 10.1155/2013/848043 24459591
    [Google Scholar]
  9. Salawi A. Self-emulsifying drug delivery systems: a novel approach to deliver drugs. Drug Deliv. 2022 29 1 1811 1823 10.1080/10717544.2022.2083724 35666090
    [Google Scholar]
  10. Yadollahi R. Vasilev K. Simovic S. Nanosuspension Technologies for Delivery of Poorly Soluble Drugs. J. Nanomater. 2015 2015 1 216375 10.1155/2015/216375
    [Google Scholar]
  11. Purkayastha H.D. Hossian S.K.I. NANOSUSPENSION: A MODERN TECHNOLOGY USED IN DRUG DELIVERY SYSTEM. Int. J. Curr. Pharm. Res. 2019 1–3 1 3 10.22159/ijcpr.2019v11i3.34098
    [Google Scholar]
  12. Makwana S.B. Patel V.A. Parmar S.J. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci. 2016 6 1 6 10.1016/j.rinphs.2015.06.001 26949596
    [Google Scholar]
  13. Ashish B. Budhrani Kirti G.; Sahu Sukeshini B.; Lote Manish P.; Deshmukh Sagar B.; Wankhede Deepak S.; KhobragadeNanosuspension: A Modern Approach In Drug Delivery System- A Review. International Journal of Research in Pharmaceutical Sciences 2020 11 SPL4 1526 1530 10.26452/ijrps.v11iSPL4.4333
    [Google Scholar]
  14. Kocbek P. Baumgartner S. Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int. J. Pharm. 2006 312 1-2 179 186 10.1016/j.ijpharm.2006.01.008 16469459
    [Google Scholar]
  15. Seyfoddin A. Shaw J. Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv. 2010 17 7 467 489 10.3109/10717544.2010.483257 20491540
    [Google Scholar]
  16. Dasankoppa F. Kujur S. Ahmed Sholapur H.N. Jamakandi V. Design, formulation and evaluation of carboxy methyl tamarind based in situ gelling ophthalmic drug delivery system of dorzolamide hydrochloride. Indian Journal of Health Sciences and Biomedical Research (KLEU) 2016 9 1 56 [KLEU]. 10.4103/2349‑5006.183688
    [Google Scholar]
  17. Noureen S. Noreen S. Ghumman S.A. Abdelrahman E.A. Batool F. Aslam A. Mehdi M. Shirinfar B. Ahmed N. A novel pH-responsive hydrogel system based on Prunus armeniaca gum and acrylic acid: Preparation and evaluation as a potential candidate for controlled drug delivery. Eur. J. Pharm. Sci. 2023 189 106555 10.1016/j.ejps.2023.106555 37543064
    [Google Scholar]
  18. Hanagandi V. Sidagouda Patil A. Masareddy R.S. Dandagi P.M. Bolmal U.B. Development and Evaluation of Nanosuspension Incorporated in situ gel of Brimonidine Tartarate for Ocular Drug Delivery. Indian Journal of Pharmaceutical Education and Research 2022 56 1 94 102 10.5530/ijper.56.1.12
    [Google Scholar]
  19. Paul S. Majumdar S. Chakraborty M. Revolutionizing ocular drug delivery: recent advancements in in situ gel technology. Bull. Natl. Res. Cent. 2023 47 1 154 10.1186/s42269‑023‑01123‑9
    [Google Scholar]
  20. Dubashynskaya N. Poshina D. Raik S. Urtti A. Skorik Y.A. Polysaccharides in Ocular Drug Delivery. Pharmaceutics 2019 12 1 22 10.3390/pharmaceutics12010022 31878298
    [Google Scholar]
  21. Karki S. Kim H. Na S.J. Shin D. Jo K. Lee J. Thin films as an emerging platform for drug delivery. Asian Journal of Pharmaceutical Sciences 2016 11 5 559 574 10.1016/j.ajps.2016.05.004
    [Google Scholar]
  22. Taneja S. Shilpi S. Khatri K. Formulation and optimization of efavirenz nanosuspensions using the precipitation-ultrasonication technique for solubility enhancement. Artif. Cells Nanomed. Biotechnol. 2015 ••• 1 7 10.3109/21691401.2015.1008505 25724312
    [Google Scholar]
  23. Khurana L.K. Singh R. Singh H. Sharma M. Systematic Development and Optimization of an in-situ Gelling System for Moxifloxacin Ocular Nanosuspension using High-pressure Homogenization with an Improved Encapsulation Efficiency. Curr. Pharm. Des. 2018 24 13 1434 1445 10.2174/1381612824666180403115106 29611480
    [Google Scholar]
  24. Kolawole O.M. Cook M.T. In situ gelling drug delivery systems for topical drug delivery. Eur. J. Pharm. Biopharm. 2023 184 36 49 10.1016/j.ejpb.2023.01.007 36642283
    [Google Scholar]
  25. Himawan A. Djide N.J.N. Mardikasari S.A. Utami R.N. Arjuna A. Donnelly R.F. Permana A.D. A novel in vitro approach to investigate the effect of food intake on release profile of valsartan in solid dispersion-floating gel in-situ delivery system. Eur. J. Pharm. Sci. 2022 168 106057 10.1016/j.ejps.2021.106057 34743031
    [Google Scholar]
  26. Maddiboyina B. Jhawat V. Desu P.K. Gandhi S. Nakkala R.K. Singh S. Formulation and evaluation of thermosensitive flurbiprofen in situ nano gel for the ocular delivery. J. Biomater. Sci. Polym. Ed. 2021 32 12 1584 1597 10.1080/09205063.2021.1927460 33977874
    [Google Scholar]
  27. Foster C. Vitale A. Al-Dhibi H. Nonsteroidal Anti-inflammatory Drugs. StatPearls Treasure Island (FL) StatPearls Publishing 2013 10.5005/jp/books/11822_11
    [Google Scholar]
  28. Boddeda B. Boddu P. Avasarala H. Jayanti V. Design and Ocular Tolerance of Flurbiprofen Loaded Nanosuspension. Pharm. Nanotechnol. 2015 3 1 56 67 10.2174/2211738503666150630185230
    [Google Scholar]
  29. Pignatello R. Bucolo C. Spedalieri G. Maltese A. Puglisi G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 2002 23 15 3247 3255 10.1016/S0142‑9612(02)00080‑7 12102196
    [Google Scholar]
  30. Kesharwani D. Das Paul S. Paliwal R. Satapathy T. Development, QbD based optimization and in vitro characterization of Diacerein loaded nanostructured lipid carriers for topical applications. Journal of Radiation Research and Applied Sciences 2023 16 2 100565 10.1016/j.jrras.2023.100565
    [Google Scholar]
  31. Parekh H.B. Jivani R. Jivani N.P. Patel L.D. Makwana A. Sameja K. NOVEL INSITU POLYMERIC DRUG DELIVERY SYSTEM: A REVIEW. J. Drug Deliv. Ther. 2012 2 5 10.22270/jddt.v2i5.276
    [Google Scholar]
  32. Singare D.S. Marella S. Gowthamrajan K. Kulkarni G.T. Vooturi R. Rao P.S. Optimization of formulation and process variable of nanosuspension: An industrial perspective. Int. J. Pharm. 2010 402 1-2 213 220 10.1016/j.ijpharm.2010.09.041 20933066
    [Google Scholar]
  33. Sharma D.K. Pattnaik G. Behera A. Development and in-vitro, in-vivo evaluation of Pioglitazone-loaded polymeric nanoparticles using central composite design surface response methodology. OpenNano 2023 11 100141 10.1016/j.onano.2023.100141
    [Google Scholar]
  34. Dwiastuti R. Suhendra P.A. Yuliani S.H. Octa F.D.R. Application of the central composite design approach for optimization of the nanosilver formula using a natural bioreductor from Camellia sinensis L. extract. J. Appl. Pharm. Sci. 2022 ••• 48 56 10.7324/JAPS.2022.120806
    [Google Scholar]
  35. Bhattacharya S. Central composite design for response surface methodology and its application in pharmacy. Response Surface Methodology in Engineering Science IntechOpen 2021 10.5772/intechopen.95835
    [Google Scholar]
  36. Njoku N. Application of central composite design with design expert v13 in process optimization. Response Surface Methodology - Research Advances and Applications IntechOpen 2023 10.5772/intechopen.109704
    [Google Scholar]
  37. Bhargav E. Chaithanya Barghav G. Padmanabha Reddy Y. Pavan kumar C. Ramalingam P. Haranath C. A Design of Experiment (DoE) based approach for development and optimization of nanosuspensions of telmisartan, a BCS class II antihypertensive drug. Future Journal of Pharmaceutical Sciences 2020 6 1 14 10.1186/s43094‑020‑00032‑2
    [Google Scholar]
  38. Hao J. Gao Y. Zhao J. Zhang J. Li Q. Zhao Z. Liu J. Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using Box-Behnken design. AAPS PharmSciTech 2015 16 1 118 128 10.1208/s12249‑014‑0211‑y 25209687
    [Google Scholar]
  39. Liu Z. Yang L. Antisolvent precipitation for the preparation of high polymeric procyanidin nanoparticles under ultrasonication and evaluation of their antioxidant activity in vitro. Ultrason. Sonochem. 2018 43 208 218 10.1016/j.ultsonch.2018.01.019 29555277
    [Google Scholar]
  40. Nanaki S. Eleftheriou R.M. Barmpalexis P. Kostoglou M. Karavas E. Bikiaris D. Evaluation of Dissolution Enhancement of Aprepitant Drug in Ternary Pharmaceutical Solid Dispersions with Soluplus® and Poloxamer 188 Prepared by Melt Mixing. Sci 2019 1 2 48 10.3390/sci1020048
    [Google Scholar]
  41. Jakubowska E. Milanowski B. Lulek J. A Systematic Approach to the Development of Cilostazol Nanosuspension by Liquid Antisolvent Precipitation (LASP) and Its Combination with Ultrasound. Int. J. Mol. Sci. 2021 22 22 12406 10.3390/ijms222212406 34830298
    [Google Scholar]
  42. Teanmetawong S. Chantaramanee T. Lhosupasirirat S. Wongariyakawee A. Srikhirin T. A Comparison Study of Magnetic Stirrer and Sonicator Technique to Disperse 1% Span20 Treated Layered Double Hydroxides (LDHs). IOP Conf. Ser. Mater. Sci. Eng. 2019 10.1088/1757‑899X/654/1/012005
    [Google Scholar]
  43. Kumar S. Haglund B.O. Himmelstein K.J. In Situ -Forming Gels for Ophthalmic Drug Delivery. J. Ocul. Pharmacol. Ther. 1994 10 1 47 56 10.1089/jop.1994.10.47
    [Google Scholar]
  44. Patel N. Thakkar V. Metalia V. Baldaniya L. Gandhi T. Gohel M. Formulation and development of ophthalmic in situ gel for the treatment ocular inflammation and infection using application of quality by design concept. Drug Dev. Ind. Pharm. 2016 42 9 1406 1423 10.3109/03639045.2015.1137306 26716613
    [Google Scholar]
  45. Mittal N. Kaur G. In situ gelling ophthalmic drug delivery system: Formulation and evaluation. J. Appl. Polym. Sci. 2014 131 2 app.39788 10.1002/app.39788
    [Google Scholar]
  46. Sopyan I. Design-expert software (doe): An application tool for optimization in pharmaceutical preparations formulation. Int. J. Appl. Pharmaceut. 2022 2022 55 63 10.22159/ijap.2022v14i4.45144
    [Google Scholar]
  47. Dwibedi V. Rath S.K. Prakash R. Saxena S. Response surface statistical optimization of fermentation parameters for resveratrol production by the endophytic fungus Arcopilus aureus and its tyrosinase inhibitory activity. Biotechnol. Lett. 2021 43 3 627 644 10.1007/s10529‑020‑03032‑7 33159246
    [Google Scholar]
  48. Shelley H. Rodriguez-Galarza R.M. Duran S.H. Abarca E.M. Babu R.J. In Situ Gel Formulation for Enhanced Ocular Delivery of Nepafenac. J. Pharm. Sci. 2018 107 12 3089 3097 10.1016/j.xphs.2018.08.013 30170009
    [Google Scholar]
  49. Shirodkar S. Pissurlenkar R. Formulation and Characterisation of Cilnidipine Microsponge Loaded Hydrogels for Antihypertensive Activity. Drug Deliv. Lett. 2023 13 1 48 68 10.2174/2210303113666221207142644
    [Google Scholar]
  50. Ammar H.O. Salama H.A. Ghorab M. Mahmoud A.A. Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery. Drug Dev. Ind. Pharm. 2010 36 11 1330 1339 10.3109/03639041003801885 20545523
    [Google Scholar]
  51. PANKAJ JADHAV ADHIKRAO YADAV FORMULATION, OPTIMIZATION, AND IN VITRO EVALUATION OF POLYMERIC NANOSUSPENSION OF FLURBIPROFEN. Asian J. Pharm. Clin. Res. 2019 ••• 183 191 10.22159/ajpcr.2019.v12i11.35670
    [Google Scholar]
  52. Sultana A. Zare M. Thomas V. Kumar T.S.S. Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Medicine in Drug Discovery 2022 15 100134 10.1016/j.medidd.2022.100134
    [Google Scholar]
  53. Asasutjarit R. Thanasanchokpibull S. Fuongfuchat A. Veeranondha S. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels. Int. J. Pharm. 2011 411 1-2 128 135 10.1016/j.ijpharm.2011.03.054 21459137
    [Google Scholar]
  54. Kalaria V.J. Saisivam S. Alshishani A. Aljariri Alhesan J.S. Chakraborty S. Rahamathulla M. Design and evaluation of in situ gel eye drops containing nanoparticles of Gemifloxacin Mesylate. Drug Deliv. 2023 30 1 2185180 10.1080/10717544.2023.2185180 36876464
    [Google Scholar]
  55. Vyas U. Gehalot N. Jain V. Mahajan S.C. A REVIEW ON IN SITU GELLING SYSTEM FOR OPHTHALMIC DRUG DELIVERY. Current Research in Pharmaceutical Sciences 2022 11 4 98 106 10.24092/CRPS.2021.110402
    [Google Scholar]
  56. Balasingam R. Khan A. Thinakaran R. Formulation of in situ gelling system for ophthalmic delivery of erythromycin. Int. J. Stud. Res. Technol. Manage. 2017 5 1 8 10.18510/ijsrtm.2017.531
    [Google Scholar]
  57. Edsman K. Carlfors J. Petersson R. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur. J. Pharm. Sci. 1998 6 2 105 112 10.1016/S0928‑0987(97)00075‑4 9795025
    [Google Scholar]
  58. Bonferoni M.C. Rossi S. Ferrari F. Caramella C. A modified Franz diffusion cell for simultaneous assessment of drug release and washability of mucoadhesive gels. Pharm. Dev. Technol. 1999 4 1 45 53 10.1080/10837459908984223 10027212
    [Google Scholar]
  59. Ranch K.M. Maulvi F.A. Naik M.J. Koli A.R. Parikh R.K. Shah D.O. Optimization of a novel in situ gel for sustained ocular drug delivery using Box-Behnken design: In vitro, ex vivo, in vivo and human studies. Int. J. Pharm. 2019 554 264 275 10.1016/j.ijpharm.2018.11.016 30423418
    [Google Scholar]
  60. Gautam D. Chaurasia H. Singh R. Design and optimization of lomefloxacin loaded NLC gel for ophthalmic drug delivery. Int. J. Health Sci. 2022 2022 7022 7044 10.53730/ijhs.v6nS3.7637
    [Google Scholar]
  61. Uy M. Telford J.K. Optimization by Design of Experiment techniques. 2009 IEEE Aerospace conference 07-14 Mar, 2009, Big Sky, MT, USA, 2009, pp. 1-10. 10.1109/AERO.2009.4839625
    [Google Scholar]
  62. Wu H. Liu Z. Peng J. Li L. Li N. Li J. Pan H. Design and evaluation of baicalin-containing in situ pH-triggered gelling system for sustained ophthalmic drug delivery. Int. J. Pharm. 2011 410 1-2 31 40 10.1016/j.ijpharm.2011.03.007 21397671
    [Google Scholar]
  63. Charoo N.A. Kohli K. Ali A. Preparation of in situ-forming ophthalmic gels of ciprofloxacin hydrochloride for the treatment of bacterial conjunctivitis: in vitro and in vivo studies. J. Pharm. Sci. 2003 92 2 407 413 10.1002/jps.10290 12532390
    [Google Scholar]
  64. Ali F.M. Al-Shohani A.D. Preparation and evaluation of in situ ophthalmic gel with a dual triggered mechanism for the delivery of gatifloxacin and betamethasone. Al-Rafidain J. Med. Sci. 2024 6 56 63 10.54133/ajms.v6i2.597
    [Google Scholar]
  65. Senjoti F.G. Timmins P. Conway B.R. Smith A.M. Optimizing ophthalmic delivery of a poorly water soluble drug from an aqueous in situ gelling system. Eur. J. Pharm. Biopharm. 2020 154 1 7 10.1016/j.ejpb.2020.06.016 32599271
    [Google Scholar]
  66. Ahmed B. Jaiswal S. Naryal S. Shah R.M. Alany R.G. Kaur I.P. In situ gelling systems for ocular drug delivery. J. Control. Release 2024 371 67 84 10.1016/j.jconrel.2024.05.031 38768662
    [Google Scholar]
  67. Adısanoğlu P. Özgüney I. Development and characterization of thermosensitive and bioadhesive ophthalmic formulations containing flurbiprofen solid dispersions. Gels 2024 10 4 267 10.3390/gels10040267 38667685
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031315270241120053529
Loading
/content/journals/ddl/10.2174/0122103031315270241120053529
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: anti-inflammatory ; in-situ gel ; Nanosuspension ; flurbiprofen
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test