Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Background

The preparation of nanoparticles with the efficiency of treatment and diagnosis at the same time has received more and more attention in recent years. Metal nanoparticles are one of the best candidates for this purpose.

Methods

Silver sulfide nanoparticle (AgS) coated with chitosan was synthesized and then methotrexate was loaded, and then the anticancer property of the synthesized nanoparticles was examined on the cancer cells. Synthesized nanoparticles were characterized using DLS, TEM, FTIR, XRD and UV-Vis techniques. Then, the hemolytic activity of synthesized nanoparticles was evaluated using human red blood cells. Finally, the anticancer effect of synthesized nanoparticles on 4T1 cancer cells was investigated. In this study, AgS@CS nanoparticles were synthesized using the mineralization method. Next, methotrexate was loaded in the synthesized nanoparticles. AgS@CS-MTX nanoparticles have an average size of approximately 24.02 ± 6.5 nm, with a spherical shape.

Results

The synthesized nanoparticles showed a hydrodynamic size of 119.9 nm. The size obtained from DLS analysis is slightly larger than the size obtained from TEM analysis for AgS@CS-MTX nanoparticles. AgS@CS-MTX nanoparticles have a negative surface charge and tend to repel each other, so they do not show a tendency to aggregate, for this reason it can provide colloidal stability.

Conclusion

Examining the toxicity effect of synthesized nanoparticles on 4T1 cell line showed that AgS@CS nanoparticles had no significant toxicity effect on 4T1 cell line, but AgS@CS-MTX system showed significant toxicity with increasing concentration.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031300746240823094335
2024-09-10
2025-05-11
Loading full text...

Full text loading...

References

  1. de JongW.H. BormP.J. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S59618686775
    [Google Scholar]
  2. AllenT.M. CullisP.R. Liposomal drug delivery systems: From concept to clinical applications.Adv. Drug Deliv. Rev.2013651364810.1016/j.addr.2012.09.03723036225
    [Google Scholar]
  3. GeorgeA. ShahP.A. ShrivastavP.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review.Int. J. Pharm.201956124426410.1016/j.ijpharm.2019.03.01130851391
    [Google Scholar]
  4. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  5. Geszke-MoritzM. MoritzM. Quantum dots as versatile probes in medical sciences: Synthesis, modification and properties.Mater. Sci. Eng. C20133331008102110.1016/j.msec.2013.01.00323827537
    [Google Scholar]
  6. MoreP.R. PanditS. FilippisA.D. FranciG. MijakovicI. GaldieroM. Silver nanoparticles: Bactericidal and mechanistic approach against drug resistant pathogens.Microorganisms202311236910.3390/microorganisms1102036936838334
    [Google Scholar]
  7. AroraS. JainJ. RajwadeJ.M. PaknikarK.M. Cellular responses induced by silver nanoparticles: in vitro studies.Toxicol. Lett.200817929310010.1016/j.toxlet.2008.04.00918508209
    [Google Scholar]
  8. AshaRaniP.V. Low Kah MunG. HandeM.P. ValiyaveettilS. Cytotoxicity and genotoxicity of silver nanoparticles in human cells.ACS Nano20093227929010.1021/nn800596w19236062
    [Google Scholar]
  9. RaiM. KonK. IngleA. DuranN. GaldieroS. GaldieroM. Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects.Appl. Microbiol. Biotechnol.20149851951196110.1007/s00253‑013‑5473‑x24407450
    [Google Scholar]
  10. NarmaniA. JafariS.M. Chitosan-based nanodelivery systems for cancer therapy: Recent advances.Carbohydr. Polym.202127211846410.1016/j.carbpol.2021.11846434420724
    [Google Scholar]
  11. BenyettouF. RezguiR. RavauxF. JaberT. BlumerK. JouiadM. MotteL. OlsenJ.C. Platas-IglesiasC. MagzoubM. TrabolsiA. Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells.J. Mater. Chem. B Mater. Biol. Med.20153367237724510.1039/C5TB00994D32262831
    [Google Scholar]
  12. QuanQ. XieJ. GaoH. YangM. ZhangF. LiuG. LinX. WangA. EdenH.S. LeeS. ZhangG. ChenX. HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy.Mol. Pharm.2011851669167610.1021/mp200006f21838321
    [Google Scholar]
  13. NosratiH. SefidiN. SharafiA. DanafarH. Kheiri ManjiliH. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug.Bioorg. Chem.20187650150910.1016/j.bioorg.2017.12.03329310081
    [Google Scholar]
  14. SalehiabarM. NosratiH. JavaniE. AliakbarzadehF. Kheiri ManjiliH. DavaranS. DanafarH. Production of biological nanoparticles from bovine serum albumin as controlled release carrier for curcumin delivery.Int. J. Biol. Macromol.2018115838910.1016/j.ijbiomac.2018.04.04329653171
    [Google Scholar]
  15. TarantashM. NosratiH. Kheiri ManjiliH. Baradar KhoshfetratA. Preparation, characterization and in vitro anticancer activity of paclitaxel conjugated magnetic nanoparticles.Drug Dev. Ind. Pharm.201844111895190310.1080/03639045.2018.150822230073853
    [Google Scholar]
  16. WangG. LiuJ. ZhuL. GuoY. YangL. Silver sulfide nanoparticles for photodynamic therapy of human lymphoma cells via disruption of energy metabolism.RSC Advances2019951299362994110.1039/C9RA05432D35531500
    [Google Scholar]
  17. KhanZ.A. TripathiR. MishraB. Methotrexate: A detailed review on drug delivery and clinical aspects.Expert Opin. Drug Deliv.20129215116910.1517/17425247.2012.64236222251428
    [Google Scholar]
  18. BaggottJ.E. MorganS.L. Methotrexate catabolism to 7-hydroxymethotrexate in rheumatoid arthritis alters drug efficacy and retention and is reduced by folic acid supplementation.Arthritis Rheum.20096082257226110.1002/art.2468519644884
    [Google Scholar]
  19. NosratiH. AdinehvandR. Kheiri ManjiliH. RostamizadehK. DanafarH. Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG–PCL polymersomes for inhibition of MCF-7 breast cancer cell line.Pharm. Dev. Technol.201811029307260
    [Google Scholar]
  20. JadhavU.M. PatelS.N. PatilR.S. Synthesis of silver sulphide nanoparticles by modified chemical route for solar cell applications.Res. J. Chem. Sci.2013376974Available from: https://www.isca.me/rjcs/Archives/vol3/i7/10.ISCA-RJCS-2013-102.pdf
    [Google Scholar]
  21. ChiE.Y. KrishnanS. RandolphT.W. CarpenterJ.F. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation.Pharm. Res.20032091325133610.1023/A:102577142190614567625
    [Google Scholar]
  22. PochapskiD.J. Carvalho dos SantosC. LeiteG.W. PulcinelliS.H. SantilliC.V. Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: Effects of experimental conditions and electrokinetic models on the interpretation of results.Langmuir20213745133791338910.1021/acs.langmuir.1c0205634637312
    [Google Scholar]
  23. JiangF. TianQ. TangM. ChenZ. YangJ. HuJ. One-pot synthesis of large-scaled Janus Ag–Ag2S nanoparticles and their photocatalytic properties.CrystEngComm201113247189719310.1039/c1ce05632h
    [Google Scholar]
  24. AndronenkoS.I. MisraS.K. A review of EPR studies on magnetization of nanoparticles of dilute magnetic semiconductors doped by transition-metal ions.Appl. Magn. Reson.201546669370710.1007/s00723‑015‑0686‑z
    [Google Scholar]
  25. ShahbaziM.A. FaghfouriL. FerreiraM.P.A. FigueiredoP. MalekiH. SefatF. HirvonenJ. SantosH.A. The versatile biomedical applications of bismuth-based nanoparticles and composites: Therapeutic, diagnostic, biosensing, and regenerative properties.Chem. Soc. Rev.20204941253132110.1039/C9CS00283A31998912
    [Google Scholar]
  26. Abdel MaksoudM.I.A. El-SayyadG.S. AbokhadraA. SolimanL.I. El-BahnasawyH.H. AshourA.H. Influence of Mg2+ substitution on structural, optical, magnetic, and antimicrobial properties of Mn–Zn ferrite nanoparticles.J. Mater. Sci. Mater. Electron.20203132598261610.1007/s10854‑019‑02799‑4
    [Google Scholar]
  27. El-BatalA.I. NadaH.G. El-BeheryR.R. GobaraM. El-SayyadG.S. Nystatin-mediated bismuth oxide nano-drug synthesis using gamma rays for increasing the antimicrobial and antibiofilm activities against some pathogenic bacteria and Candida species.RSC Advances202010169274928910.1039/C9RA10765G35497243
    [Google Scholar]
  28. MidekessaG. GodakumaraK. OrdJ. ViilJ. LättekiviF. DissanayakeK. KopanchukS. RinkenA. AndronowskaA. BhattacharjeeS. RinkenT. FazeliA. Zeta potential of extracellular vesicles: Toward understanding the attributes that determine colloidal stability.ACS Omega2020527167011671010.1021/acsomega.0c0158232685837
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031300746240823094335
Loading
/content/journals/ddl/10.2174/0122103031300746240823094335
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test