Skip to content
2000
Volume 14, Issue 4
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

Aim

The research was carried out to develop the microemulsion-loaded gel of curcumin, alkylpolyglucoside, and tea tree oil to treat vulvovaginal candidiasis infection.

Methods

Screening of oils, surfactants, and co-surfactants was done based on solubility studies and the construction of pseudo-ternary phase diagrams with curcumin. The microemulsion was characterized for globule size, zeta potential, viscosity, and thermodynamic stability. studies were carried out using Franz diffusion cells. The antifungal activity of microemulsion-loaded hydrogel was evaluated using the cup plate method using Candida albicans ATCC 10231 in glucose yeast agar medium.

Results

The selected micro-emulsion consisted of curcumin 35µg/mL, IPM+TTO (1:1) 0.1 mL, Milcoside 100 + Acconon MC 8-2 EP NF 0.6-0.3 mL, phosphate buffer pH 4 160 mL showed maximum thermodynamic stability and exhibited lowest particle size and highest intensity. The viscosity of microemulsion-loaded gel was 11.2 pa.s. The surface tension of the microemulsion was measured by tensiometer and was found to be 26.07 mN/m. Antimicrobial susceptibility testing assay was done according to NCCLs assay protocol, and the EC50 value of our formulation was found to be 0.4465 μg/mL. drug release and permeation studies showed 67.9% release in 420 minutes and 83.02% release in 360 minutes, respectively. An irritation study concluded that there was no redness or irritation on goat mucosa.

Conclusion

The texture analysis test showed adhesiveness at -172.46 g s at - 4.60 adhesive force, and the peak load was 13.40 g. The microemulsion-loaded gel formulation can be a promising alternative to the marketed formulations available for vaginal yeast infections.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031304658240627063415
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. PallaviB. Derivatized polysaccharides preparation and evaluation as bioadhesive polymers.2016Available From: http://hdl.handle.net/10603/241336
    [Google Scholar]
  2. JainS.K. SinghR. SahuB. Development of a liposome based contraceptive system for intravaginal administration of progesterone.Drug Dev. Ind. Pharm.199723882783010.3109/03639049709150553
    [Google Scholar]
  3. AlexanderN.J. BakerE. KapteinM. KarckU. MillerL. ZampaglioneE. Why consider vaginal drug administration?Fertil. Steril.200482111210.1016/j.fertnstert.2004.01.025 15236978
    [Google Scholar]
  4. GoldJ.M. ShrimankerI. Physiology,Vaginal.Treasure Island, (FL)Stat Pearls2021
    [Google Scholar]
  5. LancharesJ.L. Recurrent vaginal candidiasis changes in etiopathogenical patterns.Int. J. Gynaecol. Obstet.200071Suppl. 1S29S35
    [Google Scholar]
  6. FerrerJ. Vaginal candidosis: epidemiological and etiological factors.Int. J. Gynaecol. Obstet.200071S1Suppl. 1212710.1016/S0020‑7292(00)00350‑7 11118561
    [Google Scholar]
  7. das Neves J.; Bahia, M.F. Gels as vaginal drug delivery systems.Int. J. Pharm.20063181-211410.1016/j.ijpharm.2006.03.012 16621366
    [Google Scholar]
  8. Medspace. Candidiasis Treatment & Management2006Available From: https://emedicine.medscape.com/article/213853-treatment?form=fpf
  9. PappasP.G. Clinical practice guideline for the management of candidiasis: 2016 Update by the Infectious Diseases Society of America Clin Infect Dis.,2016624e1e50
    [Google Scholar]
  10. VadithyaA. KumarR.M. MuraliD. ChatterjeeA. A review on vaginal route as systemic drug delivery.Crit Rev Ther Drug20121119
    [Google Scholar]
  11. CarsonC.F. RileyT.V. CooksonB.D. Efficacy and safety of tea tree oil as a topical antimicrobial agent.J. Hosp. Infect.199840317517810.1016/S0195‑6701(98)90135‑9 9830588
    [Google Scholar]
  12. WoodD.M. AthwalS. PanahlooA. The advantages and disadvantages of a ‘herbal’ medicine in a patient with diabetes mellitus: A case report.Diabet. Med.200421662562710.1111/j.1464‑5491.2004.01202.x 15154951
    [Google Scholar]
  13. MartinsC.V.B. da SilvaD.L. NeresA.T.M. MagalhãesT.F.F. WatanabeG.A. ModoloL.V. SabinoA.A. de FátimaA. de ResendeM.A. Curcumin as a promising antifungal of clinical interest.J. Antimicrob. Chemother.200863233733910.1093/jac/dkn488 19038979
    [Google Scholar]
  14. NeelofarK. ShreazS. RimpleB. MuralidharS. NikhatM. KhanL.A. Curcumin as a promising anticandidal of clinical interest.Can. J. Microbiol.201157320421010.1139/W10‑117 21358761
    [Google Scholar]
  15. RoderoC.F. Fioramonti CalixtoG.M. Cristina dos SantosK. SatoM.R. Aparecido dos Santos RamosM. MiróM.S. RodríguezE. VigezziC. BauabT.M. SotomayorC.E. ChorilliM. Curcumin-loaded liquid crystalline systems for controlled drug release and improved treatment of vulvovaginal candidiasis.Mol. Pharm.201815104491450410.1021/acs.molpharmaceut.8b00507 30184431
    [Google Scholar]
  16. PantelicI. CuckovicB. Alkyl Polyglucosides: An emerging class of sugar surfactants.Alkyl Polyglucosides; Wood head Publishing: United Kingdom2014
    [Google Scholar]
  17. PantelicI. LukicM. DanielsR. KarlsE. SavicS. 5 - Alkyl Polyglucoside-based delivery systems: In vitro/in vivo skin absorption assessment.Alkyl Polyglucosides; Wood head Publishing: United Kingdom, 2014. Wood head Publishing: United Kingdom,2014
    [Google Scholar]
  18. CoxS.D. MannC.M. MarkhamJ.L. GustafsonJ.E. WarmingtonJ.R. WyllieS.G. Determining the antimicrobial actions of tea tree oil.Molecules200162879110.3390/60100087
    [Google Scholar]
  19. HammerK.A. CarsonC.F. RileyT.V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil.J. Appl. Microbiol.200395485386010.1046/j.1365‑2672.2003.02059.x 12969301
    [Google Scholar]
  20. MehtaD.P. RathodH.J. ShahD.P. ShahC.N. A review on microemulsion based gel: A recent approach for topical drug delivery system.Res J Pharm Technol20158211810.5958/0974‑360X.2015.00021.9
    [Google Scholar]
  21. KhullarR. KumarD. SethN. SainiS. Formulation and evaluation of mefenamic acid emulgel for topical delivery.Saudi Pharm. J.2012201636710.1016/j.jsps.2011.08.001 23960777
    [Google Scholar]
  22. AlexanderA. Recent expansions in an emergent novel drug delivery technology: Emulgel.J. Control. Release20131712122
    [Google Scholar]
  23. KumarD. Emulgel-novel topical drug delivery system-A comprehensive review.Int. J. Pharm. Sci. Res.20093747334742
    [Google Scholar]
  24. AzeemA. RizwanM. AhmadF.J. IqbalZ. KharR.K. AqilM. TalegaonkarS. Nanoemulsion components screening and selection: a technical note.AAPS PharmSciTech2009101697610.1208/s12249‑008‑9178‑x 19148761
    [Google Scholar]
  25. AmraK. MominM. Formulation evaluation of ketoconazole microemulsion‐loaded hydrogel with nigella oil as a penetration enhancer.J. Cosmet. Dermatol.20191861742175010.1111/jocd.12945 30980617
    [Google Scholar]
  26. PotaśJ. SzymańskaE. BasaA. HafnerA. WinnickaK. Tragacanth gum/chitosan polyelectrolyte complexes-based hydrogels enriched with xanthan gum as promising materials for buccal application.Materials 20201418610.3390/ma14010086 33375434
    [Google Scholar]
  27. YadavV. JadhavP. DombeS. BodheA. SalunkheP. Formulation and evaluation of microsponge gel for topical delivery of the antifungal drug.Int J Appl Pharmaceut201794303710.22159/ijap.2017v9i4.17760
    [Google Scholar]
  28. RatnaR. Inactivation of Escherichia coli O157:H7 on inoculated alfalfa seeds with ozonated water under pressure.J. Food Saf.200722210711910.1111/j.1745‑4565.2002.tb00334.x
    [Google Scholar]
  29. PatelA. PatelJ. Mucoadhesive microemulsion based prolonged release vaginal gel for anti-fungal drug. Am.J. PharmTech Res.201224649661
    [Google Scholar]
  30. Üstündag-OkurN. GökçeE.H. EğrilmezS. ÖzerÖ. ErtanG. Novel ofloxacin-loaded microemulsion formulations for ocular delivery.J. Ocul. Pharmacol. Ther.201430431933210.1089/jop.2013.0114 24367973
    [Google Scholar]
  31. SutarR. MasareddyR. NageshC. Formulation and evaluation of clarithromycin poorly soluble drug as microemulsion.Int. Res. J. Pharm.2011211153158
    [Google Scholar]
  32. HachemC.Y. ClarridgeJ.E. ReddyR. FlammR. EvansD.G. TanakaS.K. GrahamD.Y. Antimicrobial susceptibility testing of Helicobacter pylori comparison of E-test, broth microdilution, and disk diffusion for ampicillin, clarithromycin, and metronidazole.Diagn. Microbiol. Infect. Dis.1996241374110.1016/0732‑8893(95)00252‑9 8988762
    [Google Scholar]
  33. BalouiriM. SadikiM. IbnsoudaS.K. Methods for in vitro evaluating antimicrobial activity: A review.J. Pharm. Anal.201662717910.1016/j.jpha.2015.11.005 29403965
    [Google Scholar]
  34. WikipediaCalibration curve.2021Available From: https://en. wikipedia.org/wiki/Calibration_curve
    [Google Scholar]
  35. ScienceDirect Topics Solubility - an overview.2021Available From: https://www.sciencedirect.com/topics/physics-and-astronomy/solubility
  36. ModiC.K. JaniD.H. Mn(III) mixed‐ligand complexes with bis ‐pyrazolones and ciprofloxacin drug: synthesis, characterization and antibacterial activities.Appl. Organomet. Chem.201125642943610.1002/aoc.1782
    [Google Scholar]
  37. WikipediaTernary plot.2021Available From: https://en.wikipedia.org/wiki/Ternary_plot
    [Google Scholar]
  38. KantzasA. Fundamentals of Fluid Flow in Porous Media.CanadaPERM Inc.2019
    [Google Scholar]
  39. PatelV. Drug-excipient compatibility studies: First step for dosage form development.J. Pharm. Innov.2015441420
    [Google Scholar]
  40. BajajS. SinglaD. SakhujaN. Stability testing of pharmaceutical products.J. Appl. Pharm. Sci.201224129138
    [Google Scholar]
  41. SandriG. BonferoniM.C. FerrariF. RossiS. CaramellaC. The role of particle size in drug release and absorption.Particulate Product.ChamSpringer201432334110.1007/978‑3‑319‑00714‑4_11
    [Google Scholar]
  42. ShahV. WilliamsR. Importance of in-vitro drug release.Topical Drug Bioavailability, Bioequivalence, and Penetration.ChamSpringer201410.1007/978‑1‑4939‑1289‑6_4
    [Google Scholar]
  43. BauerK. Antibiotic sensitivity, student health center manuals.2005Available From: http://shs-manual.ucsc.edu/policy/kirby-bauer-antibiotic-sensitivity
    [Google Scholar]
  44. SarangdevotK. SonigaraB.S. MishraA. GuptaK.C. SharmaS. Microemulsion-based vaginal gel of anti-fungal drug: design, development, and evaluation.Res J Pharm Technol.201362166173
    [Google Scholar]
  45. AlainB. Method for determining release rates of active principle ingredients from at least one semisolid formWO Patent 2016184800A1,2016
    [Google Scholar]
  46. WikipediaEx vivo.2020Available From: https://en.wikipedia.org/wiki/Ex_vivo
    [Google Scholar]
  47. PatelD. PatelV. Development and characterization of pluronic lecithin organogel containing fluocinolone acetonide.Drug Dev. Ind. Pharm.202147337738410.1080/03639045.2021.1879832 33493079
    [Google Scholar]
  48. Concórdio-ReisP. PereiraC.V. BatistaM.P. SevrinC. GrandfilsC. MarquesA.C. FortunatoE. GasparF.B. MatiasA.A. FreitasF. ReisM.A.M. Silver nanocomposites based on the bacterial fucose-rich polysaccharide secreted by Enterobacter A47 for wound dressing applications: Synthesis, characterization and in vitro bioactivity.Int. J. Biol. Macromol.202016395996910.1016/j.ijbiomac.2020.07.072 32653376
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031304658240627063415
Loading
/content/journals/ddl/10.2174/0122103031304658240627063415
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test