Skip to content
2000
image of Development and Optimization of Transferosomal Gel for Efficient Topical Delivery of Berberine Hydrochloride

Abstract

Background

Berberine is an isoquinoline alkaloid with potent anti-inflammatory effects. However, its therapeutic efficacy is often restricted by its poor solubility, absorption, and permeability, especially in topical applications. Transferosomes are elastic vesicular carriers with high skin permeability values and retention, making them suitable for encapsulating hydrophilic and lipophilic actives.

Objective

The objective of this research was to develop a transferosome-based topical gel formulation of Berberine hydrochloride (BER) to improve its skin permeability and anti-inflammatory efficacy.

Method

The thin film hydration method was used to formulate the BER transferosomes. The effects of independent variables, amount of BER in lipid phase (X), and lipid (Phospholipon 90G) to surfactant ratio (X) on BER entrapment and vesicle size were studied using face-centered central composite design. The characterization was performed using differential scanning calorimetry, transmission electron microscopy, and X-ray diffraction. The optimized batch (F5) was incorporated in Carbopol gel and further investigated for viscosity, and diffusion, skin retention by tape stripping, and anti-inflammatory efficiency.

Results

The formulation optimized with 50 mg of drug and a 5:1 lipid-to-surfactant ratio (F5) demonstrated higher drug entrapment efficiency (72.11%) and lower vesicle size (77.9 nm). TEM validated the spherical vesicle morphology, whereas DSC and XRD analysis confirmed the molecular entrapment of BER within the phospholipid vesicles. The transferosomal gel demonstrated improved BER diffusion (0.63 mg/cm2) confirmed by and diffusion experiments that revealed a 6-fold increase in flux and permeability coefficient (0.1053 mg. cm-2.h-1). The drug release from transferosome gel was non-Fickian in nature (n = 0.6575), indicating an integration of diffusion and erosion processes. Furthermore, BER transferosomal gel displayed substantial anti-inflammatory activity in rats ( < 0.001).

Conclusion

The findings demonstrated the potential of transferosomal gel as a promising approach for efficient drug delivery and therapeutic efficacy.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031316213241026192712
2024-11-01
2025-01-24
Loading full text...

Full text loading...

References

  1. Beg A.A. Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996 274 5288 782 784 10.1126/science.274.5288.782 8864118
    [Google Scholar]
  2. Chen L. Deng H. Cui H. Fang J. Zuo Z. Deng J. Li Y. Wang X. Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018 9 6 7204 7218 10.18632/oncotarget.23208 29467962
    [Google Scholar]
  3. Punchard N.A. Whelan C.J. Adcock I. The journal of inflammation. J. Inflamm. (Lond.) 2004 1 1 1 10.1186/1476‑9255‑1‑1 15813979
    [Google Scholar]
  4. Yatoo M.I. Gopalakrishnan A. Saxena A. Parray O.R. Tufani N.A. Chakraborty S. Tiwari R. Dhama K. Iqbal H.M.N. Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders - A review. Recent Pat. Inflamm. Allergy Drug Discov. 2018 12 1 39 58 10.2174/1872213X12666180115153635 29336271
    [Google Scholar]
  5. Rouschop K.M.A. Leemans J.C. Ischemia–reperfusion treatment: Opportunities point to modulation of the inflammatory response. Kidney Int. 2008 73 12 1333 1335 10.1038/ki.2008.156 18516056
    [Google Scholar]
  6. Wang X. Feng S. Ding N. He Y. Li C. Li M. Ding X. Ding H. Li J. Wu J. Li Y. Anti-inflammatory effects of berberine hydrochloride in an LPS-induced murine model of mastitis. Evid. Based Complement. Alternat. Med. 2018 2018 1 5164314 10.1155/2018/5164314 29849710
    [Google Scholar]
  7. Fang X. Wu H. Wei J. Miao R. Zhang Y. Tian J. Research progress on the pharmacological effects of berberine targeting mitochondria. Front. Endocrinol. (Lausanne) 2022 13 982145 10.3389/fendo.2022.982145 36034426
    [Google Scholar]
  8. Zhu C. Li K. Peng X.X. Yao T.J. Wang Z.Y. Hu P. Cai D. Liu H.Y. Berberine a traditional Chinese drug repurposing: Its actions in inflammation-associated ulcerative colitis and cancer therapy. Front. Immunol. 2022 13 1083788 10.3389/fimmu.2022.1083788 36561763
    [Google Scholar]
  9. Lin J. Cai Q. Liang B. Wu L. Zhuang Y. He Y. Lin W. Berberine, a traditional chinese medicine, reduces inflammation in adipose tissue, polarizes M2 macrophages, and increases energy expenditure in mice fed a high-fat diet. Med. Sci. Monit. 2019 25 87 97 10.12659/MSM.911849 30606998
    [Google Scholar]
  10. Gao Y. Wang F. Song Y. Liu H. The status of and trends in the pharmacology of berberine: A bibliometric review. Chin. Med. 2020 15 1 7 10.1186/s13020‑020‑0288‑z 31988653
    [Google Scholar]
  11. Li Q. Zhao H. Chen W. Huang P. Berberine induces apoptosis and arrests the cell cycle in multiple cancer cell lines. Arch. Med. Sci. 2023 19 5 1530 1537 10.5114/aoms/132969 37732040
    [Google Scholar]
  12. Wang Y. Liu Y. Du X. Ma H. Yao J. The anti-cancer mechanisms of berberine: A review. Cancer Manag. Res. 2020 12 695 702 10.2147/CMAR.S242329 32099466
    [Google Scholar]
  13. Almatroodi S.A. Alsahli M.A. Rahmani A.H. Berberine: An important emphasis on its anticancer effects through modulation of various cell signaling pathways. Molecules 2022 27 18 5889 10.3390/molecules27185889 36144625
    [Google Scholar]
  14. Fitzpatrick L.R. Woldemariam T. Small-molecule drugs for the treatment of inflammatory bowel disease. Comprehensive Medicinal Chemistry III. Chackalamannil S. Rotella D. Ward S.E. Oxford Elsevier 2017 495 510 10.1016/B978‑0‑12‑409547‑2.12404‑7
    [Google Scholar]
  15. Li Z. Geng Y.N. Jiang J.D. Kong W.J. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid. Based Complement. Alternat. Med. 2014 2014 1 289264 10.1155/2014/289264 24669227
    [Google Scholar]
  16. Zou K. Li Z. Zhang Y. Zhang H. Li B. Zhu W. Shi J. Jia Q. Li Y. Advances in the study of berberine and its derivatives: A focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacol. Sin. 2017 38 2 157 167 10.1038/aps.2016.125 27917872
    [Google Scholar]
  17. Azadi R. Mousavi S.E. Kazemi N.M. Yousefi-Manesh H. Rezayat S.M. Jaafari M.R. Anti-inflammatory efficacy of Berberine Nanomicelle for improvement of cerebral ischemia: Formulation, characterization and evaluation in bilateral common carotid artery occlusion rat model. BMC Pharmacol. Toxicol. 2021 22 1 54 10.1186/s40360‑021‑00525‑7 34600570
    [Google Scholar]
  18. Rathod K. Ahmed H. Gomte S.S. Chougule S. Exploring the potential of anti-inflammatory activity of berberine chloride-loaded mesoporous silica nanoparticles in carrageenan-induced rat paw edema model. J. Solid State Chem. 2023 317 123639 10.1016/j.jssc.2022.123639
    [Google Scholar]
  19. Gupta B.M.D. Dikshit B.B. Berberine in the treatment of oriental sore. Ind. Med. Gaz. 1929 64 2 67 70 29009542
    [Google Scholar]
  20. Wang C. Cheng Y. Zhang Y. Jin H. Zuo Z. Wang A. Huang J. Jiang J. Kong W. Berberine and its main metabolite berberrubine inhibit platelet activation through suppressing the class I PI3Kβ/Rasa3/Rap1 pathway. Front. Pharmacol. 2021 12 734603 10.3389/fphar.2021.734603 34690771
    [Google Scholar]
  21. Wang C. Wu Y.B. Wang A.P. Jiang J.D. Kong W.J. Evaluation of anticoagulant and antithrombotic activities of berberine: A focus on the ameliorative effect on blood hypercoagulation. Int. J. Pharmacol. 2018 14 8 1087 1098 10.3923/ijp.2018.1087.1098
    [Google Scholar]
  22. Wang X. He X. Zhang C.F. Guo C.R. Wang C.Z. Yuan C.S. Anti-arthritic effect of berberine on adjuvant-induced rheumatoid arthritis in rats. Biomed. Pharmacother. 2017 89 887 893 10.1016/j.biopha.2017.02.099 28282791
    [Google Scholar]
  23. Huang D. Wu F. Zhang A. Sun H. Wang X. Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential. Pharmacol. Res. 2021 169 105667 10.1016/j.phrs.2021.105667 33989762
    [Google Scholar]
  24. Shen P. Jiao Y. Miao L. Chen J. Momtazi-Borojeni A.A. Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management. J. Cell. Mol. Med. 2020 24 21 12234 12245 10.1111/jcmm.15803 32969153
    [Google Scholar]
  25. Vita A.A. Aljobaily H. Lyons D.O. Pullen N.A. Berberine delays onset of collagen-induced arthritis through T cell suppression. Int. J. Mol. Sci. 2021 22 7 3522 10.3390/ijms22073522 33805383
    [Google Scholar]
  26. Mehrzadi S. Fatemi I. Esmaeilizadeh M. Ghaznavi H. Kalantar H. Goudarzi M. Hepatoprotective effect of berberine against methotrexate induced liver toxicity in rats. Biomed. Pharmacother. 2018 97 233 239 10.1016/j.biopha.2017.10.113 29091871
    [Google Scholar]
  27. Li J. Pan Y. Kan M. Xiao X. Wang Y. Guan F. Zhang X. Chen L. Hepatoprotective effects of berberine on liver fibrosis via activation of AMP-activated protein kinase. Life Sci. 2014 98 1 24 30 10.1016/j.lfs.2013.12.211 24412384
    [Google Scholar]
  28. Germoush M.O. Mahmoud A.M. Berberine mitigates cyclophosphamide-induced hepatotoxicity by modulating antioxidant status and inflammatory cytokines. J. Cancer Res. Clin. Oncol. 2014 140 7 1103 1109 10.1007/s00432‑014‑1665‑8 24744190
    [Google Scholar]
  29. Di Pierro F. Putignano P. Montesi L. Moscatiello S. Marchesini Reggiani G. Villanova N. Preliminary study about the possible glycemic clinical advantage in using a fixed combination of Berberis aristata and Silybum marianum standardized extracts versus only Berberis aristata in patients with type 2 diabetes. Clin. Pharmacol. 2013 5 167 174 10.2147/CPAA.S54308 24277991
    [Google Scholar]
  30. Yin J. Xing H. Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 2008 57 5 712 717 10.1016/j.metabol.2008.01.013 18442638
    [Google Scholar]
  31. Yin J. Ye J. Jia W. Effects and mechanisms of berberine in diabetes treatment. Acta Pharm. Sin. B 2012 2 4 327 334 10.1016/j.apsb.2012.06.003
    [Google Scholar]
  32. Cicero A. F. G. Tartagni E. Antidiabetic properties of berberine: From cellular pharmacology to clinical effects Hosp Pract 2012 40 2 56 63 10.3810/hp.2012.04.970
    [Google Scholar]
  33. Utami A.R. Maksum I.P. Deawati Y. Berberine and its study as an antidiabetic compound. Biology 2023 12 7 973 10.3390/biology12070973 37508403
    [Google Scholar]
  34. Kong W.J. Wei J. Zuo Z.Y. Wang Y.M. Song D.Q. You X.F. Zhao L.X. Pan H.N. Jiang J.D. Combination of simvastatin with berberine improves the lipid-lowering efficacy. Metabolism 2008 57 8 1029 1037 10.1016/j.metabol.2008.01.037 18640378
    [Google Scholar]
  35. Kong W. Wei J. Abidi P. Lin M. Inaba S. Li C. Wang Y. Wang Z. Si S. Pan H. Wang S. Wu J. Wang Y. Li Z. Liu J. Jiang J.D. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med. 2004 10 12 1344 1351 10.1038/nm1135 15531889
    [Google Scholar]
  36. Kosalec I. Jembrek M.J. Vlainić J. The spectrum of berberine antibacterial and antifungal activities. Promising Antimicrobials from Natural Products. Rai M. Kosalec I. Cham Springer International Publishing 2022 119 132 10.1007/978‑3‑030‑83504‑0_7
    [Google Scholar]
  37. Wu S. Yang K. Hong Y. Gong Y. Ni J. Yang N. Ding W. A new perspective on the antimicrobial mechanism of berberine Hydrochloride against Staphylococcus aureus revealed by untargeted metabolomic studies. Front. Microbiol. 2022 13 917414 10.3389/fmicb.2022.917414 35910599
    [Google Scholar]
  38. Dash S. Kumar M. Pareek N. Enhanced antibacterial potential of berberine via synergism with chitosan nanoparticles. Mater. Today Proc. 2020 31 640 645 10.1016/j.matpr.2020.05.506
    [Google Scholar]
  39. Calvo A. Moreno E. Larrea E. Sanmartín C. Irache J.M. Espuelas S. Berberine-loaded liposomes for the treatment of Leishmania infantum-Infected BALB/c mice. Pharmaceutics 2020 12 9 858 10.3390/pharmaceutics12090858 32916948
    [Google Scholar]
  40. Saha P. Bhattacharjee S. Sarkar A. Manna A. Majumder S. Chatterjee M. Berberine chloride mediates its anti-leishmanial activity via differential regulation of the mitogen activated protein kinase pathway in macrophages. PLoS One 2011 6 4 e18467 10.1371/journal.pone.0018467 21483684
    [Google Scholar]
  41. Chen F.L. Yang Z.H. Liu Y. Li L.X. Liang W.C. Wang X.C. Zhou W.B. Yang Y.H. Hu R.M. Berberine inhibits the expression of TNFα, MCP-1, and IL-6 in AcLDL-stimulated macrophages through PPARγ pathway. Endocrine 2008 33 3 331 337 10.1007/s12020‑008‑9089‑3 19034703
    [Google Scholar]
  42. Ma J. Chan C.C. Huang W.C. Kuo M.L. Berberine inhibits pro-inflammatory Cytokine-induced IL-6 and CCL11 production via modulation of STAT6 pathway in human bronchial epithelial cells. Int. J. Med. Sci. 2020 17 10 1464 1473 10.7150/ijms.45400 32624703
    [Google Scholar]
  43. Wang Q. Qi J. Hu R. Chen Y. Kijlstra A. Yang P. Effect of berberine on proinflammatory cytokine production by ARPE-19 cells following stimulation with tumor necrosis factor-α. Invest. Ophthalmol. Vis. Sci. 2012 53 4 2395 2402 10.1167/iovs.11‑8982 22427564
    [Google Scholar]
  44. Li N. Gu L. Qu L. Gong J. Li Q. Zhu W. Li J. Berberine attenuates pro-inflammatory cytokine-induced tight junction disruption in an in vitro model of intestinal epithelial cells. Eur. J. Pharm. Sci. 2010 40 1 1 8 10.1016/j.ejps.2010.02.001 20149867
    [Google Scholar]
  45. Zhang M.F. Shen Y.Q. [Antidiarrheal and anti-inflammatory effects of berberine]. Chung Kuo Yao Li Hsueh Pao 1989 10 2 174 176 [Antidiarrheal and anti-inflammatory effects of berberine]. 2816420
    [Google Scholar]
  46. Reddi K. Li H. Li W. Tetali S. Berberine, A phytoalkaloid, inhibits inflammatory response induced by LPS through NF-Kappaβ pathway: Possible involvement of the IKKα. Molecules 2021 26 16 4733 10.3390/molecules26164733 34443321
    [Google Scholar]
  47. Jeong H.W. Hsu K.C. Lee J.W. Ham M. Huh J.Y. Shin H.J. Kim W.S. Kim J.B. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am. J. Physiol. Endocrinol. Metab. 2009 296 4 E955 E964 10.1152/ajpendo.90599.2008 19208854
    [Google Scholar]
  48. Yan F. Wang L. Shi Y. Cao H. Liu L. Washington M.K. Chaturvedi R. Israel D.A. Cao H. Wang B. Peek R.M. Jr Wilson K.T. Polk D.B. Berberine promotes recovery of colitis and inhibits inflammatory responses in colonic macrophages and epithelial cells in DSS-treated mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2012 302 5 G504 G514 10.1152/ajpgi.00312.2011 22173918
    [Google Scholar]
  49. Yang F. Gao R. Luo X. Liu R. Xiong D. Berberine influences multiple diseases by modifying gut microbiota. Front. Nutr. 2023 10 1187718 10.3389/fnut.2023.1187718 37599699
    [Google Scholar]
  50. Zhang L. Wu X. Yang R. Chen F. Liao Y. Zhu Z. Wu Z. Sun X. Wang L. Effects of berberine on the gastrointestinal microbiota. Front. Cell. Infect. Microbiol. 2021 10 588517 10.3389/fcimb.2020.588517 33680978
    [Google Scholar]
  51. Cheng H. Liu J. Tan Y. Feng W. Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J. Pharm. Anal. 2022 12 4 541 555 10.1016/j.jpha.2021.10.003 36105164
    [Google Scholar]
  52. Tian Y. Cai J. Gui W. Nichols R.G. Koo I. Zhang J. Anitha M. Patterson A.D. Berberine directly affects the gut microbiota to promote intestinal farnesoid x receptor activation. Drug Metab. Dispos. 2019 47 2 86 93 10.1124/dmd.118.083691 30409838
    [Google Scholar]
  53. Yang L. Yu S. Yang Y. Wu H. Zhang X. Lei Y. Lei Z. Berberine improves liver injury induced glucose and lipid metabolic disorders via alleviating ER stress of hepatocytes and modulating gut microbiota in mice. Bioorg. Med. Chem. 2022 55 116598 10.1016/j.bmc.2021.116598 34979291
    [Google Scholar]
  54. Wang L. Sagada G. Xu B. Zhang J. Shao Q. Influence of dietary berberine on liver immune response and intestinal health of black sea bream (Acanthopagrus schlegelii) fed with normal and high-lipid diets. Aquacult. Nutr. 2022 2022 1 15 10.1155/2022/6285266
    [Google Scholar]
  55. Zhou J.Y. Zhou S.W. Zhang K.B. Tang J.L. Guang L.X. Ying Y. Xu Y. Zhang L. Li D.D. Chronic effects of berberine on blood, liver glucolipid metabolism and liver PPARs expression in diabetic hyperlipidemic rats. Biol. Pharm. Bull. 2008 31 6 1169 1176 10.1248/bpb.31.1169 18520050
    [Google Scholar]
  56. Qureshi M. Qadir A. Aqil M. Sultana Y. Warsi M.H. Ismail M.V. Talegaonkar S. Berberine loaded dermal quality by design adapted chemically engineered lipid nano-constructs-gel formulation for the treatment of skin acne. J. Drug Deliv. Sci. Technol. 2021 66 102805 10.1016/j.jddst.2021.102805
    [Google Scholar]
  57. Alexander A. Ajazuddin Patel R.J. Saraf S. Saraf S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J. Control. Release 2016 241 110 124 10.1016/j.jconrel.2016.09.017 27663228
    [Google Scholar]
  58. Rajan R. Jose S. Biju Mukund V.P. Vasudevan D. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res. 2011 2 3 138 143 10.4103/2231‑4040.85524 22171309
    [Google Scholar]
  59. Gupta A. Aggarwal G. Singla S. Arora R. Transfersomes: A novel vesicular carrier for enhanced transdermal delivery of sertraline: Development, characterization, and performance evaluation. Sci. Pharm. 2012 80 4 1061 1080 10.3797/scipharm.1208‑02 23264950
    [Google Scholar]
  60. Yu Y.Q. Yang X. Wu X.F. Fan Y.B. Enhancing permeation of drug molecules across the skin via delivery in Nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol. 2021 9 646554 10.3389/fbioe.2021.646554 33855015
    [Google Scholar]
  61. Mirhadi E. Rezaee M. Malaekeh-Nikouei B. Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomed. Pharmacother. 2018 104 465 473 10.1016/j.biopha.2018.05.067 29793179
    [Google Scholar]
  62. Behl T. Singh S. Sharma N. Zahoor I. Albarrati A. Albratty M. Meraya A.M. Najmi A. Bungau S. Expatiating the pharmacological and nanotechnological aspects of the alkaloidal drug berberine: Current and future trends. Molecules 2022 27 12 3705 10.3390/molecules27123705 35744831
    [Google Scholar]
  63. Chaudhary H. Kohli K. Kumar V. Nano-transfersomes as a novel carrier for transdermal delivery. Int. J. Pharm. 2013 454 1 367 380 10.1016/j.ijpharm.2013.07.031 23871739
    [Google Scholar]
  64. Elkomy M.H. El Menshawe S.F. Abou-Taleb H.A. Elkarmalawy M.H. Loratadine bioavailability via buccal transferosomal gel: Formulation, statistical optimization, in vitro / in vivo characterization, and pharmacokinetics in human volunteers. Drug Deliv. 2017 24 1 781 791 10.1080/10717544.2017.1321061 28480758
    [Google Scholar]
  65. Malakar J. Sen S.O. Nayak A.K. Sen K.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm. J. 2012 20 4 355 363 10.1016/j.jsps.2012.02.001 23960810
    [Google Scholar]
  66. Das B. Sen S.O. Maji R. Nayak A.K. Sen K.K. Transferosomal gel for transdermal delivery of risperidone: Formulation optimization and ex-vivo permeation. J. Drug Deliv. Sci. Technol. 2017 38 59 71 10.1016/j.jddst.2017.01.006
    [Google Scholar]
  67. Tsai C.J. Hsu L.R. Fang J.Y. Lin H.H. Chitosan hydrogel as a base for transdermal delivery of berberine and its evaluation in rat skin. Biol. Pharm. Bull. 1999 22 4 397 401 10.1248/bpb.22.397 10328561
    [Google Scholar]
  68. AL Shuwaili A.H. Rasool B.K.A. Abdulrasool A.A. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur. J. Pharm. Biopharm. 2016 102 101 114 10.1016/j.ejpb.2016.02.013 26925505
    [Google Scholar]
  69. Telange D.R. Nirgulkar S.B. Umekar M.J. Patil A.T. Pethe A.M. Bali N.R. Enhanced transdermal permeation and anti-inflammatory potential of phospholipids complex-loaded matrix film of umbelliferone: Formulation development, physico-chemical and functional characterization. Eur. J. Pharm. Sci. 2019 131 23 38 10.1016/j.ejps.2019.02.006 30735820
    [Google Scholar]
  70. Deshkar S.S. Palve V.K. Formulation and development of thermosensitive cyclodextrin-based in situ gel of voriconazole for vaginal delivery. J. Drug Deliv. Sci. Technol. 2019 49 277 285 10.1016/j.jddst.2018.11.023
    [Google Scholar]
  71. Joshi A. Kaur J. Kulkarni R. Chaudhari R. in-vitro and Ex- vivo evaluation of Raloxifene hydrochloride delivery using nano- transfersome based formulations. J. Drug Deliv. Sci. Technol. 2018 45 151 158 10.1016/j.jddst.2018.02.006
    [Google Scholar]
  72. Naz I. Masoud M.S. Chauhdary Z. Shah M.A. Panichayupakaranant P. Anti-inflammatory potential of berberine-rich extract via modulation of inflammation biomarkers. J. Food Biochem. 2022 46 12 e14389 10.1111/jfbc.14389 36121315
    [Google Scholar]
  73. Abdellatif M.M. Khalil I.A. Khalil M.A.F. Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: in-vitro, ex-vivo and in-vivo evaluation. Int. J. Pharm. 2017 527 1-2 1 11 10.1016/j.ijpharm.2017.05.029 28522423
    [Google Scholar]
  74. Ahad A. Raish M. Al-Mohizea A.M. Al-Jenoobi F.I. Alam M.A. Enhanced anti-inflammatory activity of carbopol loaded meloxicam nanoethosomes gel. Int. J. Biol. Macromol. 2014 67 99 104 10.1016/j.ijbiomac.2014.03.011 24657163
    [Google Scholar]
  75. Elmowafy M. Samy A. Abdelaziz A.E. Shalaby K. Salama A. Raslan M.A. Abdelgawad M.A. Polymeric nanoparticles based topical gel of poorly soluble drug: Formulation, ex-vivo and in vivo evaluation. Beni. Suef Univ. J. Basic Appl. Sci. 2017 6 2 184 191 10.1016/j.bjbas.2017.03.004
    [Google Scholar]
  76. Adnan M. Afzal O. S A Altamimi A. Alamri M.A. Haider T. Faheem Haider M. Development and optimization of transethosomal gel of apigenin for topical delivery: in-vitro, ex-vivo and cell line assessment. Int. J. Pharm. 2023 631 122506 10.1016/j.ijpharm.2022.122506 36535455
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031316213241026192712
Loading
/content/journals/ddl/10.2174/0122103031316213241026192712
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: transferosome ; skin permeation ; vesicular carrier ; topical delivery ; phospholipon ; Berberine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test