Skip to content
2000
Volume 14, Issue 4
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

One of the most powerful and inventive fabrication techniques used to create novel structures and solid materials using precise additive manufacturing technology is 5D and 4D printing, which is an improved version of 3D printing. It catches people's attention because of its capacity to generate fast, highly complex, adaptable product design and fabrication. Real-time sensing, change adaptation, and printing state prediction are made possible by this technology with the use of artificial intelligence (AI). The process of 3D printing involves the use of sophisticated materials and computer-aided design (CAD) with tomography scanning controlled by artificial intelligence (AI). The printing material is deposited according to the specifications of the file, typically in STL format; however, the printing process takes time.4D printing, which incorporates intelligent materials with time as a fourth dimension, can solve this drawback. About 80% of the time will be saved by this technique's self-repair and self-assembly qualities. One limitation of 3D printing is that it cannot print complex shapes with curved surfaces. However, this limitation can be solved by using 5D printing, which uses rotation of the print bed and extruder head to achieve additive manufacturing in five different axes. Some printed materials are made sensitive to temperature, humidity, light, and other parameters so they can respond to stimuli. With its effective and efficient manufacturing for the necessary design precision, this review assesses the potential of these procedures with AI intervention in medicine and pharmacy.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031309831240531084125
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. BadugeS.K. ThilakarathnaS. PereraJ.S. ArashpourM. SharafiP. TeodosioB. ShringiA. MendisP. Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications.Autom. Construct.202214110444010.1016/j.autcon.2022.104440
    [Google Scholar]
  2. LaiJ. WangC. WangM. 3D printing in biomedical engineering: Processes, materials, and applications.Appl. Phys. Rev.20218202132210.1063/5.0024177
    [Google Scholar]
  3. ZhaoS. TayyebiM. Mahdireza Yarigarravesh; Hu, G. A review of magnesium corrosion in bio-applications: Mechanism, classification, modeling, in-vitro, and in-vivo experimental testing, and tailoring Mg corrosion rate.J. Mater. Sci.20235830121581218110.1007/s10853‑023‑08782‑z
    [Google Scholar]
  4. WangC. HuangW. ZhouY. HeL. HeZ. ChenZ. HeX. TianS. LiaoJ. LuB. WeiY. WangM. 3D printing of bone tissue engineering scaffolds.Bioact. Mater.202051829110.1016/j.bioactmat.2020.01.004 31956737
    [Google Scholar]
  5. XieK. WangN. GuoY. ZhaoS. TanJ. WangL. LiG. WuJ. YangY. XuW. ChenJ. JiangW. FuP. HaoY. Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: An in vitro and in vivostudy.Bioact. Mater.2022814015210.1016/j.bioactmat.2021.06.032 34541392
    [Google Scholar]
  6. MurphyS.V. AtalaA. 3D bioprinting of tissues and organs.Nat. Biotechnol.201432877378510.1038/nbt.2958 25093879
    [Google Scholar]
  7. GaoC. LiY. LiuX. HuangJ. ZhangZ. 3D bioprinted conductive spinal cord biomimetic scaffolds for promoting neuronal differentiation of neural stem cells and repairing of spinal cord injury.Chem. Eng. J.202345113878810.1016/j.cej.2022.138788
    [Google Scholar]
  8. KuangX. RoachD.J. WuJ. HamelC.M. DingZ. WangT. DunnM.L. QiH.J. Advances in 4D Printing: Materials and applications.Adv. Funct. Mater.2019292180529010.1002/adfm.201805290
    [Google Scholar]
  9. RahmatabadiD. AberoumandM. SoltanmohammadiK. SoleymanE. GhasemiI. BaniassadiM. AbriniaK. ZolfagharianA. BodaghiM. BaghaniM. A new strategy for achieving shape memory effects in 4D printed two-layer composite structures.Polymers20221424544610.3390/polym14245446 36559813
    [Google Scholar]
  10. AberoumandM. SoltanmohammadiK. RahmatabadiD. SoleymanE. GhasemiI. BaniassadiM. AbriniaK. BodaghiM. BaghaniM. 4D printing of polyvinyl chloride (PVC): A detailed analysis of microstructure, programming, and shape memory performance.Macromol. Mater. Eng.20233087220067710.1002/mame.202200677
    [Google Scholar]
  11. WangM. 5D printing and its application in tissue engineering. In: Materials Research Society (MRS); Spring Meeting2021
    [Google Scholar]
  12. ChuaC.K. YeongW.Y. Bioprinting: Principles and Applications.SingaporeWorld Scientific Publishing Co Inc2014
    [Google Scholar]
  13. VacantiJ.P. LangerR. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation.Lancet1999354Suppl. 1S32S3410.1016/S0140‑6736(99)90247‑7 10437854
    [Google Scholar]
  14. ZhouW. QiaoZ. Nazarzadeh ZareE. HuangJ. ZhengX. SunX. ShaoM. WangH. WangX. ChenD. ZhengJ. FangS. LiY.M. ZhangX. YangL. MakvandiP. WuA. 4D-printed dynamic materials in biomedical applications: Chemistry, challenges and their future perspectives in the clinical sector.J. Med. Chem.202063158003802410.1021/acs.jmedchem.9b02115 32255358
    [Google Scholar]
  15. WangC. ZhaoQ. WangM. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.Biofabrication20179202503110.1088/1758‑5090/aa71c9 28589918
    [Google Scholar]
  16. DuanB. WangM. ZhouW.Y. CheungW.L. LiZ.Y. LuW.W. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering.Acta Biomater.20106124495450510.1016/j.actbio.2010.06.024 20601244
    [Google Scholar]
  17. ZhangW. ShiW. WuS. KussM. JiangX. UntrauerJ.B. ReidS.P. DuanB. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration.Biofabrication202012035020
    [Google Scholar]
  18. HaleemA. JavaidM. VaishyaR. 5D printing and its expected applications in Orthopaedics.J. Clin. Orthop. Trauma201910480981010.1016/j.jcot.2018.11.014 31316262
    [Google Scholar]
  19. ChanB.P. LeongK.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations.Eur. Spine J.200817S4Suppl. 446747910.1007/s00586‑008‑0745‑3 19005702
    [Google Scholar]
  20. GeorgantzinosS.K. GiannopoulosG.I. BakalisP.A. Additive manufacturing for effective smart structures: The idea of 6D printing.Journal of Composites Science20215511910.3390/jcs5050119
    [Google Scholar]
  21. ZhangW. ShiW. WuS. KussM. JiangX. UntrauerJ.B. ReidS.P. DuanB. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration.Biofabrication202012303502010.1088/1758‑5090/ab906e 32369796
    [Google Scholar]
  22. BoseS. BhattacharjeeA. BanerjeeD. BoccacciniA.R. BandyopadhyayA. Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds.Addit. Manuf.20214010189510.1016/j.addma.2021.101895 34692425
    [Google Scholar]
  23. ZhangM. LinR. WangX. XueJ. DengC. FengC. ZhuangH. MaJ. QinC. WanL. ChangJ. WuC. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration.Sci. Adv.2020612eaaz672510.1126/sciadv.aaz6725 32219170
    [Google Scholar]
  24. ZhuL. LiangH. LvF. XieD. WangC. MaoY. YangY. TianZ. ShenL. Design and compressive fatigue properties of irregular porous scaffolds for orthopedics fabricated using selective laser melting.ACS Biomater. Sci. Eng.2021741663167210.1021/acsbiomaterials.0c01392 33682413
    [Google Scholar]
  25. LaiJ. WangC. LiuJ. ChenS. LiuC. HuangX. WuJ. PanY. XieY. WangM. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with in situ delivery of osteogenic peptide and mesenchymal stem cells.Biofabrication202214404500610.1088/1758‑5090/ac84b0 35896092
    [Google Scholar]
  26. LiS. WangW. LiW. XieM. DengC. SunX. WangC. LiuY. ShiG. XuY. MaX. WangJ. Fabrication of thermoresponsive hydrogel scaffolds with engineered microscale vasculatures.Adv. Funct. Mater.20213127210268510.1002/adfm.202102685
    [Google Scholar]
  27. AlexanderA.E. WakeN. ChepelevL. BrantnerP. RyanJ. WangK.C. A guideline for 3D printing terminology in biomedical research utilizing ISO/ASTM standards.3D Printing Med.2021716
    [Google Scholar]
  28. KhooZ.X. TeohJ.E.M. LiuY. ChuaC.K. YangS. AnJ. LeongK.F. YeongW.Y. 3D printing of smart materials: A review on recent progresses in 4D printing.Virtual Phys. Prototyp.201510310312210.1080/17452759.2015.1097054
    [Google Scholar]
  29. LaiJ. YeX. LiuJ. WangC. LiJ. WangX. MaM. WangM. 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose.Mater. Des.202120510969910.1016/j.matdes.2021.109699
    [Google Scholar]
  30. van ManenT. JanbazS. ZadpoorA.A. Programming 2D/3D shape-shifting with hobbyist 3D printers.Mater. Horiz.2017461064106910.1039/C7MH00269F 29308207
    [Google Scholar]
  31. WeemsA.C. ArnoM.C. YuW. HucksteppR.T.R. DoveA.P. 4D polycarbonates via stereolithography as scaffolds for soft tissue repair.Nat. Commun.2021121377110.1038/s41467‑021‑23956‑6 34226548
    [Google Scholar]
  32. KimS.H. SeoY.B. YeonY.K. LeeY.J. ParkH.S. SultanM.T. LeeJ.M. LeeJ.S. LeeO.J. HongH. LeeH. AjiteruO. SuhY.J. SongS.H. LeeK.H. ParkC.H. 4D-bioprinted silk hydrogels for tissue engineering.Biomaterials202026012028110.1016/j.biomaterials.2020.120281 32858503
    [Google Scholar]
  33. ZhengY. HanQ. LiD. ShengF. SongZ. WangJ. Promotion of tendon growth into implant through pore-size design of a Ti-6Al-4 V porous scaffold prepared by 3D printing.Mater. Des.202119710921910.1016/j.matdes.2020.109219
    [Google Scholar]
  34. LiX. LiuB. PeiB. ChenJ. ZhouD. PengJ. ZhangX. JiaW. XuT. Inkjet bioprinting of biomaterials.Chem. Rev.202012019107931083310.1021/acs.chemrev.0c00008 32902959
    [Google Scholar]
  35. ZhangJ. ByersP. ErbenA. FrankC. Schulte-SpechtelL. HeymannM. DochevaD. HuberH.P. SudhopS. Clausen-SchaumannH. Single cell bioprinting with ultrashort laser pulses.Adv. Funct. Mater.20213119210006610.1002/adfm.202100066
    [Google Scholar]
  36. ShopperlyL.K. SpinnenJ. KrügerJ.P. EndresM. SittingerM. LamT. KlokeL. DehneT. Blends of gelatin and hyaluronic acid stratified by stereolithographic bioprinting approximate cartilaginous matrix gradients.J. Biomed. Mater. Res. B Appl. Biomater.2022110102310232210.1002/jbm.b.35079 35532378
    [Google Scholar]
  37. YouS. XiangY. HwangH.H. BerryD.B. KiratitanapornW. GuanJ. YaoE. TangM. ZhongZ. MaX. WangpraseurtD. SunY. LuT. ChenS. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues.Sci. Adv.202398eade792310.1126/sciadv.ade7923 36812321
    [Google Scholar]
  38. DuanB. HockadayL.A. KangK.H. ButcherJ.T.3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels.J. Biomed. Mater. Res. A2013101A51255126410.1002/jbm.a.34420 23015540
    [Google Scholar]
  39. GregorA. FilováE. NovákM. KronekJ. ChlupH. BuzgoM. BlahnováV. LukášováV. BartošM. NečasA. HošekJ. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer.J. Biol. Eng.20171113110.1186/s13036‑017‑0074‑3 29046717
    [Google Scholar]
  40. WangC. LaiJ. LiK. ZhuS. LuB. LiuJ. TangY. WeiY. Cryogenic 3D printing of dual-delivery scaffolds for improved bone regeneration with enhanced vascularization.Bioact. Mater.20216113714510.1016/j.bioactmat.2020.07.007 32817920
    [Google Scholar]
  41. ZhuW. CuiH. BoualamB. MasoodF. FlynnE. RaoR.D. ZhangZ.Y. ZhangL.G. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering.Nanotechnology2018291818510110.1088/1361‑6528/aaafa1 29446757
    [Google Scholar]
  42. HongH. SeoY.B. KimD.Y. LeeJ.S. LeeY.J. LeeH. AjiteruO. SultanM.T. LeeO.J. KimS.H. ParkC.H. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering.Biomaterials202023211967910.1016/j.biomaterials.2019.119679 31865191
    [Google Scholar]
  43. JiangX. WuS. KussM. KongY. ShiW. StreubelP.N. LiT. DuanB. 3D printing of multilayered scaffolds for rotator cuff tendon regeneration.Bioact. Mater.20205363664310.1016/j.bioactmat.2020.04.017 32405578
    [Google Scholar]
  44. TouréA.B.R. MeleE. ChristieJ.K. Multi-layer scaffolds of poly (Caprolactone), poly (glycerol sebacate) and bioactive glasses manufactured by combined 3d printing and electrospinning.Nanomaterials 202010462610.3390/nano10040626 32231007
    [Google Scholar]
  45. MillikS.C. DostieA.M. KarisD.G. SmithP.T. McKennaM. ChanN. CurtisC.D. NanceE. ThebergeA.B. NelsonA. 3D printed coaxial nozzles for the extrusion of hydrogel tubes toward modeling vascular endothelium.Biofabrication201911404500910.1088/1758‑5090/ab2b4d 31220824
    [Google Scholar]
  46. WangY. KankalaR.K. ZhuK. WangS.B. ZhangY.S. ChenA.Z. Coaxial extrusion of tubular tissue constructs using a gelatin/GelMA blend bioink.ACS Biomater. Sci. Eng.20195105514552410.1021/acsbiomaterials.9b00926 33464071
    [Google Scholar]
  47. GrigoryanB. PaulsenS.J. CorbettD.C. SazerD.W. FortinC.L. ZaitaA.J. GreenfieldP.T. CalafatN.J. GounleyJ.P. TaA.H. JohanssonF. RandlesA. RosenkrantzJ.E. Louis-RosenbergJ.D. GalieP.A. StevensK.R. MillerJ.S. Multivascular networks and functional intravascular topologies within biocompatible hydrogels.Science2019364643945846410.1126/science.aav9750 31048486
    [Google Scholar]
  48. PengK. LiuX. ZhaoH. LuH. LvF. LiuL. HuangY. WangS. GuQ. 3D bioprinting of reinforced vessels by dual-cross-linked biocompatible hydrogels.ACS Appl. Bio Mater.2021454549455610.1021/acsabm.1c00283 35006791
    [Google Scholar]
  49. SingS.L. AnJ. YeongW.Y. WiriaF.E. Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs.J. Orthop. Res.201634336938510.1002/jor.23075 26488900
    [Google Scholar]
  50. BandyopadhyayA. KrishnaB.V. XueW. BoseS. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants.J. Mater. Sci. Mater. Med.200920S1Suppl. 1293410.1007/s10856‑008‑3478‑2 18521725
    [Google Scholar]
  51. ValotL. MartinezJ. MehdiA. SubraG. Chemical insights into bioinks for 3D printing.Chem. Soc. Rev.201948154049408610.1039/C7CS00718C 31271159
    [Google Scholar]
  52. ChenY. LiW. ZhangC. WuZ. LiuJ. Recent developments of biomaterials for additive manufacturing of bone scaffolds.Adv. Healthc. Mater.2020923200072410.1002/adhm.202000724 32743960
    [Google Scholar]
  53. ZhengX. HuangJ. LinJ. YangD. XuT. ChenD. ZanX. WuA. 3D bioprinting in orthopedics translational research.J. Biomater. Sci. Polym. Ed.201930131172118710.1080/09205063.2019.1623989 31124402
    [Google Scholar]
  54. WangY. ZhengG. JiangN. YingG. LiY. CaiX. MengJ. MaiL. GuoM. ZhangY.S. ZhangX. Nature-inspired micropatterns.Nature Reviews Methods Primers2023316810.1038/s43586‑023‑00251‑w
    [Google Scholar]
  55. GhoshU. NingS. WangY. KongY.L. Addressing unmet clinical needs with 3D printing technologies.Adv. Healthc. Mater.2018717180041710.1002/adhm.201800417 30004185
    [Google Scholar]
  56. QianQ. KampsJ.H. PriceB. GuH. WildmanR. HagueR. BeginesB. TuckC. 3D reactive inkjet printing of bisphenol A-polycarbonate.Addit. Manuf.20225410274510.1016/j.addma.2022.102745
    [Google Scholar]
  57. JinZ. LiY. YuK. LiuL. FuJ. YaoX. ZhangA. HeY. 3D printing of physical organ models: Recent developments and challenges.Adv. Sci.2021817210139410.1002/advs.202101394 34240580
    [Google Scholar]
  58. ZubK. HoeppenerS. SchubertU.S. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications.Adv. Mater.20223431210501510.1002/adma.202105015 35338719
    [Google Scholar]
  59. ParaskevoudisK. KarayannisP. KoumoulosE.P. Real-time 3D printing remote defect detection (stringing) with computer vision and artificial intelligence.Processes 2020811146410.3390/pr8111464
    [Google Scholar]
  60. ZhuZ. NgD.W.H. ParkH.S. McAlpineM.C. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies.Nat. Rev. Mater.202061274710.1038/s41578‑020‑00235‑2
    [Google Scholar]
  61. ArmillottaA. BellottiM. CavallaroM. Warpage of FDM parts: Experimental tests and analytic model.Robot. Comput.-Integr. Manuf.20185014015210.1016/j.rcim.2017.09.007
    [Google Scholar]
  62. AcharyaR. SharonJ.A. StaroselskyA. Prediction of microstructure in laser powder bed fusion process.Acta Mater.201712436037110.1016/j.actamat.2016.11.018
    [Google Scholar]
  63. LeeV.K. KimD.Y. NgoH. LeeY. SeoL. YooS.S. VincentP.A. DaiG. Creating perfused functional vascular channels using 3D bio-printing technology.Biomaterials201435288092810210.1016/j.biomaterials.2014.05.083 24965886
    [Google Scholar]
  64. CuiX. BolandT. Human microvasculature fabrication using thermal inkjet printing technology.Biomaterials200930316221622710.1016/j.biomaterials.2009.07.056 19695697
    [Google Scholar]
  65. WangZ. KapadiaW. LiC. LinF. PereiraR.F. GranjaP.L. SarmentoB. CuiW. Tissue-specific engineering: 3D bioprinting in regenerative medicine.J. Control. Release202132923725610.1016/j.jconrel.2020.11.044 33259853
    [Google Scholar]
  66. ZhengF. DerbyB. WongJ. Fabrication of microvascular constructs using high resolution electrohydrodynamic inkjet printing.Biofabrication202113303500610.1088/1758‑5090/abd158 33285527
    [Google Scholar]
  67. ZhangF. ZhangZ. ZhouT. LiuY. LengJ. Shape memory polymer nanofibers and their composites: Electrospinning, structure, performance, and applications.Front. Mater.201526210.3389/fmats.2015.00062
    [Google Scholar]
  68. ChenM. LiL. XiaL. ZhangF. JiangS. HuH. LiX. WangH. Temperature responsive shape-memory scaffolds with circumferentially aligned nanofibers for guiding smooth muscle cell behavior.Macromol. Biosci.2020202190031210.1002/mabi.201900312 31854123
    [Google Scholar]
  69. NiiyamaE. TanabeK. UtoK. KikuchiA. EbaraM. Shape-memory nanofiber meshes with programmable cell orientation.Fibers 2019732010.3390/fib7030020
    [Google Scholar]
  70. LandsmanT.L. TouchetT. HasanS.M. SmithC. RussellB. RiveraJ. MaitlandD.J. Cosgriff-HernandezE. A shape memory foam composite with enhanced fluid uptake and bactericidal properties as a hemostatic agent.Acta Biomater.201747919910.1016/j.actbio.2016.10.008 27721009
    [Google Scholar]
  71. SabziM. BabaahmadiM. RahnamaM. Thermally and electrically triggered triple-shape memory behavior of poly (vinyl acetate)/poly (lactic acid) due to graphene-induced phase separation.ACS Appl. Mater. Interfaces2017928240612407010.1021/acsami.7b02259 28640585
    [Google Scholar]
  72. WangJ. XiongH. ZhuT. LiuY. PanH. FanC. ZhaoX. LuW.W. Bioinspired multichannel nerve guidance conduit based on shape memory nanofibers for potential application in peripheral nerve repair.ACS Nano20201410125791259510.1021/acsnano.0c03570 32786254
    [Google Scholar]
  73. BalakrishnanH.K. BadarF. DoevenE.H. NovakJ.I. MerendaA. DuméeL.F. LoyJ. GuijtR.M. 3D printing: An alternative microfabrication approach with unprecedented opportunities in design.Anal. Chem.202193135036610.1021/acs.analchem.0c04672 33263392
    [Google Scholar]
  74. RahmanS.S. ArshadM. QureshiA. UllahA. Fabrication of a self-healing, 3D printable, and reprocessable biobased elastomer.ACS Appl. Mater. Interfaces20201246519275193910.1021/acsami.0c14220 33156602
    [Google Scholar]
  75. DaikuaraL.Y. YueZ. SkropetaD. WallaceG.G. In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering.Acta Biomater.202112328629710.1016/j.actbio.2021.01.021 33476829
    [Google Scholar]
  76. MonksP. WychowaniecJ.K. McKiernanE. ClerkinS. CreanJ. RodriguezB.J. ReynaudE.G. HeiseA. BroughamD.F. Spatiotemporally resolved heat dissipation in 3D patterned magnetically responsive hydrogels.Small2021175200445210.1002/smll.202004452 33369876
    [Google Scholar]
  77. MessaoudiO. HenrionnetC. BourgeK. LoeuilleD. GilletP. PinzanoA. Stem cells and extrusion 3D printing for hyaline cartilage engineering.Cells2020101210.3390/cells10010002 33374921
    [Google Scholar]
  78. SagerV.F. MunkM.B. HansenM.S. BredieW.L.P. AhrnéL. Formulation of heat-induced whey protein gels for extrusion-based 3D printing.Foods2020101810.3390/foods10010008 33375171
    [Google Scholar]
  79. UnagollaJ.M. JayasuriyaA.C. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives.Appl. Mater. Today20201810047910.1016/j.apmt.2019.100479 32775607
    [Google Scholar]
  80. ZhuJ. ZhangQ. YangT. LiuY. LiuR. 3D printing of multi-scalable structures via high penetration near-infrared photopolymerization.Nat. Commun.2020111346210.1038/s41467‑020‑17251‑z 32651379
    [Google Scholar]
  81. KérourédanO. HakobyanD. RémyM. ZianeS. DusserreN. FricainJ.C. DelmondS. ThébaudN.B. DevillardR. In situ prevascularization designed by laser-assisted bioprinting: Effect on bone regeneration.Biofabrication201911404500210.1088/1758‑5090/ab2620 31151125
    [Google Scholar]
  82. KirillovaA. MaxsonR. StoychevG. GomillionC.T. IonovL. 4D biofabrication using shape‐morphing hydrogels.Adv. Mater.2017291703443
    [Google Scholar]
  83. DevillardC.D. MandonC.A. LambertS.A. BlumL.J. MarquetteC.A. Bioinspired multi-activities 4D printing objects: a new approach toward complex tissue engineering.Biotechnol. J.2018131800098
    [Google Scholar]
  84. BaruiS. PandaA.K. NaskarS. KuppurajR. BasuS. BasuB. 3D inkjet printing of biomaterials with strength reliability and cytocompatibility: Quantitative process strategy for Ti-6Al-4V.Biomaterials201921311921210.1016/j.biomaterials.2019.05.023 31152931
    [Google Scholar]
  85. MilićJ.V. DiederichF. The quest for molecular grippers: Photo-electric control of molecular gripping machinery.Chemistry201925368440845210.1002/chem.201900852 31111578
    [Google Scholar]
  86. ShangY. WangJ. IkedaT. JiangL. Bio-inspired liquid crystal actuator materials.J. Mater. Chem. C Mater. Opt. Electron. Devices20197123413342810.1039/C9TC00107G
    [Google Scholar]
  87. AgarwalS. JiangS. ChenY. Progress in the field of water and/or temperature-triggered polymer actuators.Macromol. Mater. Eng.20193042180054810.1002/mame.201800548
    [Google Scholar]
  88. GruhnT. EmmerichH. Simulation of stimuli-responsive polymer networks.Chemosensors 201313436710.3390/chemosensors1030043
    [Google Scholar]
  89. CoxS.C. ThornbyJ.A. GibbonsG.J. WilliamsM.A. MallickK.K. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.Mater. Sci. Eng. C20154723724710.1016/j.msec.2014.11.024 25492194
    [Google Scholar]
  90. FengP. WuP. GaoC. YangY. GuoW. YangW. ShuaiC. A multimaterial scaffold with tunable properties: Toward bone tissue repair.Adv. Sci. (Weinh.)201856170081710.1002/advs.201700817 29984132
    [Google Scholar]
  91. MatterM.T. LiJ.H. LeseI. SchreinerC. BernardL. ScholderO. HubeliJ. KeevendK. TsolakiE. BerteroE. BertazzoS. ZborayR. OlariuR. ConstantinescuM.A. FigiR. HerrmannI.K. Multiscale analysis of metal oxide nanoparticles in tissue: Insights into biodistribution and biotransformation.Adv. Sci. (Weinh.)2020715200091210.1002/advs.202000912 32775166
    [Google Scholar]
  92. JohnJ.V. McCarthyA. WangH. ChenS. SuY. DavisE. LiX. ParkJ.S. ReinhardtR.A. XieJ. Engineering biomimetic nanofiber microspheres with tailored size, predesigned structure, and desired composition via gas bubble-mediated coaxial electrospray.Small20201619190739310.1002/smll.201907393 32212416
    [Google Scholar]
  93. XuL. GaoS. ZhouR. ZhouF. QiaoY. QiuD. Bioactive pore‐forming bone adhesives facilitating cell ingrowth for fracture healing.Adv. Mater.20203210190749110.1002/adma.201907491 31984560
    [Google Scholar]
  94. de Melo PereiraD. HabibovicP. Biomineralization‐inspired material design for bone regeneration.Adv. Healthc. Mater.2018722180070010.1002/adhm.201800700 30240157
    [Google Scholar]
  95. AdeleB. Bone mineral crystal size.Osteoporos. Int.200314Suppl. 5162110.1007/s00198‑003‑1468‑2 14504701
    [Google Scholar]
  96. ZhouF. HongY. LiangR. ZhangX. LiaoY. JiangD. ZhangJ. ShengZ. XieC. PengZ.J.B. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration.Biomaterials2020258120287
    [Google Scholar]
  97. Fernandez-YagueM.A. AbbahS.A. McNamaraL. ZeugolisD.I. PanditA. BiggsM.J. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies.Adv. Drug Deliv. Rev.20158412910.1016/j.addr.2014.09.005 25236302
    [Google Scholar]
  98. BarrosN.R. KimH.J. GouidieM.J. LeeL. BandaruP. BantonE.A. SarikhaniE. SunW. ZhangS. ChoH.J. HartelM.C. OstrovidovS. AhadianS. HussainS.M. AshammakhiN. DokmeciM.R. HerculanoR.D. LeeJ. KhademhosseiniA. Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering.Biofabrication202113035030
    [Google Scholar]
  99. MurshedM. McKeeM.D. Molecular determinants of extracellular matrix mineralization in bone and blood vessels.Curr. Opin. Nephrol. Hypertens.201019435936510.1097/MNH.0b013e3283393a2b 20489614
    [Google Scholar]
  100. LangdahlB. FerrariS. DempsterD.W. Bone modeling and remodeling: Potential as therapeutic targets for the treatment of osteoporosis.Ther. Adv. Musculoskelet. Dis.20168622523510.1177/1759720X16670154 28255336
    [Google Scholar]
  101. LiuY. LuoD. WangT. Hierarchical structures of bone and bioinspired bone tissue engineering.Small201612344611463210.1002/smll.201600626 27322951
    [Google Scholar]
  102. TertulianoO.A. GreerJ.R. The nanocomposite nature of bone drives its strength and damage resistance.Nat. Mater.201615111195120210.1038/nmat4719 27500809
    [Google Scholar]
  103. WangL. ZhuL. WangZ. LouA. YangY. GuoY. LiuS. ZhangC. ZhangZ. HuH. YangB. ZhangP. OuyangH. ZhangZ. Development of a centrally vascularized tissue engineering bone graft with the unique core-shell composite structure for large femoral bone defect treatment.Biomaterials2018175446010.1016/j.biomaterials.2018.05.017 29800757
    [Google Scholar]
  104. AnadaT. PanC.C. StahlA. MoriS. FukudaJ. SuzukiO. YangY. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis.Int. J. Mol. Sci.2019205109610.3390/ijms20051096 30836606
    [Google Scholar]
  105. VidalL. KampleitnerC. KrissianS. BrennanM.Á. HoffmannO. RaymondY. MaazouzY. GinebraM.P. RossetP. LayrolleP. Regeneration of segmental defects in metatarsus of sheep with vascularized and customized 3D-printed calcium phosphate scaffolds.Sci. Rep.2020101706810.1038/s41598‑020‑63742‑w 32341459
    [Google Scholar]
  106. LiB. RuanC. MaY. HuangZ. HuangZ. ZhouG. ZhangJ. WangH. WuZ. QiuG. Fabrication of vascularized bone flaps with sustained release of recombinant human bone morphogenetic protein-2 and arteriovenous bundle.Tissue Eng. Part A20182417-181413142210.1089/ten.tea.2018.0002 29676206
    [Google Scholar]
  107. CharbonnierB. BaradaranA. SatoD. AlghamdiO. ZhangZ. ZhangY.L. GbureckU. GilardinoM. HarveyE. MakhoulN. BarraletJ. Material‐induced venosome‐supported bone tubes.Adv. Sci.2019617190084410.1002/advs.201900844 31508287
    [Google Scholar]
  108. FengC. ZhangW. DengC. LiG. ChangJ. ZhangZ. JiangX. WuC. 3D printing of lotus root‐like biomimetic materials for cell delivery and tissue regeneration.Adv. Sci. (Weinh.)2017412170040110.1002/advs.201700401 29270348
    [Google Scholar]
  109. TianF. CondeJ. BaoC. ChenY. CurtinJ. CuiD. Gold nanostars for efficient in vitro and in vivoreal-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging.Biomaterials2016106879710.1016/j.biomaterials.2016.08.014 27552319
    [Google Scholar]
  110. GaoB. YangQ. ZhaoX. JinG. MaY. XuF. 4D bioprinting for biomedical applications.Trends Biotechnol.201634974675610.1016/j.tibtech.2016.03.004 27056447
    [Google Scholar]
  111. MiaoS. CastroN. NowickiM. XiaL. CuiH. ZhouX. ZhuW. LeeS. SarkarK. VozziG. TabataY. FisherJ. ZhangL.G. 4D printing of polymeric materials for tissue and organ regeneration.Mater. Today2017201057759110.1016/j.mattod.2017.06.005 29403328
    [Google Scholar]
  112. FalahatiM. AhmadvandP. SafaeeS. ChangY.C. LyuZ. ChenR. LiL. LinY. Smart polymers and nanocomposites for 3D and 4D printing.Mater. Today20204021524510.1016/j.mattod.2020.06.001
    [Google Scholar]
  113. WanZ. ZhangP. LiuY. LvL. ZhouY. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.Acta Biomater.2020101264210.1016/j.actbio.2019.10.038 31672585
    [Google Scholar]
  114. MelocchiA. UboldiM. CereaM. FoppoliA. MaroniA. MoutaharrikS. PaluganL. ZemaL. GazzanigaA. Shape memory materials and 4D printing in pharmaceutics.Adv. Drug Deliv. Rev.202117321623710.1016/j.addr.2021.03.013 33774118
    [Google Scholar]
  115. ZhangC. CaiD. LiaoP. SuJ.W. DengH. VardhanabhutiB. UleryB.D. ChenS.Y. LinJ. 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation.Acta Biomater.202112210111010.1016/j.actbio.2020.12.042 33359298
    [Google Scholar]
  116. MiriA.K. KhalilpourA. CecenB. MaharjanS. ShinS.R. KhademhosseiniA. Multiscale bioprinting of vascularized models.Biomaterials201919820421610.1016/j.biomaterials.2018.08.006 30244825
    [Google Scholar]
  117. DevillardC.D. MandonC.A. LambertS.A. BlumL.J. MarquetteC.A. Bioinspired multi‐activities 4D printing objects: A new approach toward complex tissue engineering.Biotechnol. J.20181312180009810.1002/biot.201800098 30192055
    [Google Scholar]
  118. de MarcoC. PanéS. NelsonB.J. 4D printing and robotics.Sci. Robot.2018318eaau044910.1126/scirobotics.aau0449 33141711
    [Google Scholar]
  119. KirillovaA. MaxsonR. StoychevG. GomillionC.T. IonovL. 4D biofabrication using shape‐morphing hydrogels.Adv. Mater.20172946170344310.1002/adma.201703443 29024044
    [Google Scholar]
  120. RafieeM. FarahaniR.D. TherriaultD. Multi‐material 3D and 4D printing: A survey.Adv. Sci. (Weinh.)2020712190230710.1002/advs.201902307 32596102
    [Google Scholar]
  121. EinhornT.A. GerstenfeldL.C. Fracture healing: Mechanisms and interventions.Nat. Rev. Rheumatol.2015111455410.1038/nrrheum.2014.164 25266456
    [Google Scholar]
  122. RenB. SongK. SanikommuA.R. ChaiY. LongmireM.A. ChaiW. MurfeeW.L. HuangY. Study of sacrificial ink-assisted embedded printing for 3D perfusable channel creation for biomedical applications.Appl. Phys. Rev.20229101140810.1063/5.0068329 35242266
    [Google Scholar]
  123. ShaoL. GaoQ. XieC. FuJ. XiangM. HeY. Synchronous 3D bioprinting of large‐scale cell‐laden constructs with nutrient networks.Adv. Healthc. Mater.2020915190114210.1002/adhm.201901142 31846229
    [Google Scholar]
  124. ZeinaliK. KhorasaniM.T. RashidiA. Daliri JouparidM. Fabrication of graphene oxide aerogel to repair neural tissue.Journal of Clinical Research in Paramedical Sciences2021102e11922110.5812/jcrps.119221
    [Google Scholar]
  125. GirãoA.F. SousaJ. Domínguez-BajoA. González-MayorgaA. BdikinI. Pujades-OteroE. Casañ-PastorN. HortigüelaM.J. Otero-IruruetaG. CompletoA. SerranoM.C. MarquesP.A.A.P. 3D reduced graphene oxide scaffolds with a combinatorial fibrous-porous architecture for neural tissue engineering.ACS Appl. Mater. Interfaces20201235389623897510.1021/acsami.0c10599 32805917
    [Google Scholar]
  126. LiuX. HaoM. ChenZ. ZhangT. HuangJ. DaiJ. ZhangZ. 3D bioprinted neural tissue constructs for spinal cord injury repair.Biomaterials202127212077110.1016/j.biomaterials.2021.120771 33798962
    [Google Scholar]
  127. MiaoS. CuiH. NowickiM. XiaL. ZhouX. LeeS.J. ZhuW. SarkarK. ZhangZ. ZhangL.G. Stereolithographic 4D bioprinting of multiresponsive architectures for neural engineering.Adv. Biosyst.201829180010110.1002/adbi.201800101 30906853
    [Google Scholar]
  128. ZhangZ. JørgensenM.L. WangZ. AmagatJ. WangY. LiQ. DongM. ChenM. 3D anisotropic photocatalytic architectures as bioactive nerve guidance conduits for peripheral neural regeneration.Biomaterials202025312010810.1016/j.biomaterials.2020.120108 32428776
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031309831240531084125
Loading
/content/journals/ddl/10.2174/0122103031309831240531084125
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test