Skip to content
2000
image of A Comprehensive Review on Role of Natural Polymers in Gastro Retentive Drug Delivery System (GRDDS)

Abstract

This review is to present a general outline of potent & promising natural polymers (on which only slight research is done) along with their attributes & their pharmaceutical functions in the development of GRDDS (gastro retentive drug delivery system). Therefore, there is a need of more attention & focus on some of these natural polymers which are playing a crucial & indispensable role in the fabrication of GRDDS. Recent & current research trends shows that progressively natural polymers are replacing synthetic polymers in the fabrication of GRDDS as they are more safe, non-toxic, biodegradable, biocompatible, economical, regulatory acceptance, Also, it has been noticed by the researchers that natural polymer due to their properties have successfully amplified gastric residence time, dissolution & bioavailability of the gastroretentive dosage forms.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031301526241010021238
2024-10-14
2025-01-24
Loading full text...

Full text loading...

References

  1. Gayakwad B.P. Natural polymers in the development of gastroretentive systems: A review. Nat. Volatiles & Essent. Oils 2021 8 5 2895 2906
    [Google Scholar]
  2. Kagan L. Hoffman A. Systems for region selective drug delivery in the gastrointestinal tract: Biopharmaceutical considerations. Expert Opin. Drug Deliv. 2008 5 6 681 692 10.1517/17425247.5.6.681 18532923
    [Google Scholar]
  3. Joshi P. A review on gastroretentive drug delivery system. Journal of Pharmaceutical Science and Bioscientific Research. 2012 2 3 123 128
    [Google Scholar]
  4. Ainurofi A. Daryati A. Murtadla F.A. Salimah F. Akbar N.M. Faizun R.A. The Use of Natural and Synthetic Polymers in the Formulation of Gastro retentive Drug Delivery System. Int. J. Drug Delivery Tech. 2023 13 1 434 441 10.25258/ijddt.13.1.69
    [Google Scholar]
  5. Ananthakumar R. Drug Invent. Today 2018 10 285 289
    [Google Scholar]
  6. Singh B. Kim K.H. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. J. Control. Release 2000 63 3 235 259 10.1016/S0168‑3659(99)00204‑7 10601721
    [Google Scholar]
  7. Liu Y. Yang T. Wei S. Zhou C. Lan Y. Cao A. Yang J. Wang W. Mucus adhesion- and penetration-enhanced liposomes for paclitaxel oral delivery. Int. J. Pharm. 2018 537 1-2 245 256 10.1016/j.ijpharm.2017.12.044 29288808
    [Google Scholar]
  8. Lopes C.M. Bettencourt C. Rossi A. Buttini F. Barata P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int. J. Pharm. 2016 510 1 144 158 10.1016/j.ijpharm.2016.05.016 27173823
    [Google Scholar]
  9. Sung Y.K. Kim S.W. Recent advances in polymeric drug delivery systems. Biomater. Res. 2020 24 1 12 10.1186/s40824‑020‑00190‑7 32537239
    [Google Scholar]
  10. Sen O. Manna S. Nandi G. Jana S. Jana S. Recent advances in alginate based gastroretentive technologies for drug delivery applications. Med. Novel Technol. Devices 2023 18 100236 10.1016/j.medntd.2023.100236
    [Google Scholar]
  11. Vllasaliu D. Thanou M. Stolnik S. Fowler R. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin. Drug Deliv. 2018 15 8 759 770 10.1080/17425247.2018.1504017 30033780
    [Google Scholar]
  12. Gugulothu D. The extraction and investigation of polysaccharide mucilages for use as excipients in drug delivery systems and their application for developing floating tablets of silymarin. J. Excip. Food Chem. 2021 12 4 70 86
    [Google Scholar]
  13. Mandal U.K. Chatterjee B. Senjoti F.G. Gastro-retentive drug delivery systems and their in vivo success: A recent update. Asian J. Pharm. Sci. 2016 11 5 575 584 10.1016/j.ajps.2016.04.007
    [Google Scholar]
  14. Vinchurkar K. Sainy J. Khan M.A. Mane S. Mishra D.K. Dixit P. Features and Facts of a Gastroretentive Drug Delivery System-A Review. Turk. J. Pharm. Sci. 2022 19 4 476 487 10.4274/tjps.galenos.2021.44959 36047602
    [Google Scholar]
  15. Seth N. Gill N.S. Gastro retentive drug delivery system: A significant tool to increase the gastric residence time of drugs. Int. J. Curr. Pharm. Res. 2021 2021 7 11 10.22159/ijcpr.2021v13i1.40818
    [Google Scholar]
  16. Lodh H. Sheeba F. Chourasia P.K. Pardhe H.A. Pallavi N. Floating drug delivery system: A brief review. Asian JPharmTechnol. 2020 10 4 255 264
    [Google Scholar]
  17. Prinderre P. Sauzet C. Fuxen C. Advances in gastro retentive drug-delivery systems. Expert Opin. Drug Deliv. 2011 8 9 1189 1203 10.1517/17425247.2011.592828 21671821
    [Google Scholar]
  18. Andrews G.P. Laverty T.P. Jones D.S. Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm. 2009 71 3 505 518 10.1016/j.ejpb.2008.09.028 18984051
    [Google Scholar]
  19. Suradkar P. Mishra R. Nandgude T. Overview on Trends in Development of Gastroretentive Drug Delivery System. Research Journal of Pharmacy and Technology 2019 12 11 5633 5640 10.5958/0974‑360X.2019.00975.2
    [Google Scholar]
  20. Jyoti SS A Review On Gastro-Retentive Drug Delivery System Along With Regional Market Survey. J Pharm Exper Med 2021 2 2 1 10
    [Google Scholar]
  21. Patole R. Chaware B. Mohite V. Redasani V. A Review for Gastro - Retentive Drug Delivery System. Asian Journal of Pharmaceutical Research and Development 2023 11 4 79 94 10.22270/ajprd.v11i4.1291
    [Google Scholar]
  22. Krishn A. in vitroin vivo studies of floating microspheres for gastroretentive drug delivery system:A review. Asian J. Pharm. Clin. Res. 2021 14 1 13 26
    [Google Scholar]
  23. More S. Gavali K. Doke O. Kasgawade P. Gastroretentive drug delivery system. J. Drug Deliv. Ther. 2018 8 4 10.22270/jddt.v8i4.1788
    [Google Scholar]
  24. Sowmya B. Arvapalli S. Gupta A. A review on gastroretentive drug delivery system. World Journal of Pharmaceutical & Life Sciences 2019 5 4 101 110
    [Google Scholar]
  25. Payghan S. Novel approach in gastro retentive drug delivery system: Floating microspheres. Int J Pharm Bio. Sci. Arch. 2014 2 9 22
    [Google Scholar]
  26. Guan J. Zhou L. Nie S. Yan T. Tang X. Pan W. A novel gastric-resident osmotic pump tablet: in vitro and in vivo evaluation. Int. J. Pharm. 2010 383 1-2 30 36 10.1016/j.ijpharm.2009.08.043 19733646
    [Google Scholar]
  27. Murphy C. Pillay V. Choonara Y. du Toit L. Gastroretentive drug delivery systems: current developments in novel system design and evaluation. Curr. Drug Deliv. 2009 6 5 451 460 10.2174/156720109789941687 19751198
    [Google Scholar]
  28. Nayak A.K. Gastroretentive drug delivery systems: A review. Asian J. Pharm. Clin. Res. 2010 3 1 2 10
    [Google Scholar]
  29. Chen J. Park K. Synthesis and characterization of superporous hydrogel composites. J. Control. Release 2000 65 1-2 73 82 10.1016/S0168‑3659(99)00238‑2 10699272
    [Google Scholar]
  30. Kockisch S. Rees G.D. Young S.A. Tsibouklis J. Smart J.D. Polymeric microspheres for drug delivery to the oral cavity: anin vitro evaluation of mucoadhesive potential. J. Pharm. Sci. 2003 92 8 1614 1623 10.1002/jps.10423 12884248
    [Google Scholar]
  31. Techniques and polymers used to design gastroretentive drug delivery systems – a review. World J. Pharm. Pharm. Sci. 2014 3 97 110
    [Google Scholar]
  32. Chun M.K. Sah H. Choi H.K. Preparation of mucoadhesive microspheres containing antimicrobial agents for eradication of H. pylori. Int. J. Pharm. 2005 297 1-2 172 179 15907604
    [Google Scholar]
  33. Huang Y. Leobandung W. Foss A. Peppas N.A. Molecular aspects of muco- and bioadhesion. J. Control. Release 2000 65 1-2 63 71 10.1016/S0168‑3659(99)00233‑3 10699271
    [Google Scholar]
  34. Gröning R. Berntgen M. Georgarakis M. Acyclovir serum concentrations following peroral administration of magnetic depot tablets and the influence of extracorporal magnets to control gastrointestinal transit. Eur J Pharm Biopharm. 1998 46 3 285 91
    [Google Scholar]
  35. Jagdale S.C. Design development and evaluation of floating tablets of tapentadol hydrochloride using chitosan. Asian J. Pharm. Clin. Res. 2012 5 4 163 168
    [Google Scholar]
  36. Bhosale A.R. Shinde J.V. Chavan R.S. A Comprehensive Review on Floating Drug Delivery System (FDDS). J. Drug Deliv. Ther. 2020 10 6 174 182 10.22270/jddt.v10i6.4461
    [Google Scholar]
  37. Arora S. Floating drug delivery systems: A review. AAPS PharmSciTech 2005 47 372 390
    [Google Scholar]
  38. Nayak A.K. Malakar J. Sen K.K. Gastroretentive drug delivery technologies: Current approaches and future potential. Journal of Pharmaceutical Education and Research. 2010 1 2 1
    [Google Scholar]
  39. Deshpande R.D. Development of noneffervescent low density floating tablets of cefpodoxime proxetil. Int J Pharm Res 2014 3 3 69 77
    [Google Scholar]
  40. Satinderkakar R.S. Shallusandhan R. Gastroretentive drug delivery systems: A review. Afr. J. Pharm. Pharmacol. 2015 9 12 405 417 10.5897/AJPP2015.4307
    [Google Scholar]
  41. Hwang S.J. Park H. Park K. Gastric retentive drug-delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 1998 15 3 243 284 9699081
    [Google Scholar]
  42. Reddy L.H.V. Murthy R.S.R. Floating dosage systems in drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 2002 19 6 553 585 10.1615/CritRevTherDrugCarrierSyst.v19.i6.20 12822735
    [Google Scholar]
  43. Vinodbhai P.K. Sustained release floating microspheres of acyclovir: formulation, optimization, characterization and in vitro evaluation. Int. J. Drug Deliv. 2011 3 242 251
    [Google Scholar]
  44. Talukder R. Fassihi R. Gastroretentive delivery systems: hollow beads. Drug Dev. Ind. Pharm. 2004 30 4 405 412 10.1081/DDC‑120030935 15132183
    [Google Scholar]
  45. Bansal M. Gupta D.K. Sachdeva M. Kamini Formulation and Characterization of Expandable Tablet of Diacerein using Swellable Polymers. J. Drug Deliv. Ther. 2022 12 5 156 169 10.22270/jddt.v12i5.5612
    [Google Scholar]
  46. Ahmed W. El-Gogary R.I. Nasr M. Sammour O.A. Development and in vitro/in vivo Evaluation of Itopride Hydrochloride Expanding Tablets. J. Pharm. Innov. 2023 18 3 1350 1361 10.1007/s12247‑023‑09729‑2
    [Google Scholar]
  47. Sivaneswari S. Karthikeyan E. Chandana P.J. Novel expandable gastro retentive system by unfolding mechanism of levetiracetam using simple lattice design – Formulation optimization and in vitro evaluation. Bull. Fac. Pharm. Cairo Univ. 2017 55 1 63 72 10.1016/j.bfopcu.2017.02.003
    [Google Scholar]
  48. Kota R.K. Bhikshapathi D.V. Gande S. Formulation and in vivo Evaluation of Mucoadhesive Microspheres of Valsartan using Natural Gum. International Journal of Pharmaceutical Sciences and Nanotechnology 2019 12 1 4393 4402 [IJPSN]. 10.37285/ijpsn.2019.12.1.6
    [Google Scholar]
  49. Amin M.L. Ahmed T. Mannan M.A. Development of floating- mucoadhesive microsphere for site specific release of metronidazole. Adv. Pharm. Bull. 2016 6 2 195 200 10.15171/apb.2016.027 27478781
    [Google Scholar]
  50. El Nashar N.F. Donia A.A. Mady O.Y. El Maghraby G.M. Formulation of clarithromycin floating microspheres for eradication of Helicobacter pylori. J. Drug Deliv. Sci. Technol. 2017 41 213 221 10.1016/j.jddst.2017.07.016
    [Google Scholar]
  51. Waterman K.C. A critical review of gastric retentive controlled drug delivery. Pharm. Dev. Technol. 2007 12 1 1 10 10.1080/10837450601168680 17484139
    [Google Scholar]
  52. Bathool A. Gowda D.V. Khan M. Ahmed A. Vasudha S.L. Rohitash K. Development and evaluation of microporous osmotic tablets of diltiazem hydrochloride. J. Adv. Pharm. Technol. Res. 2012 3 2 124 129 10.4103/2231‑4040.97292 22837961
    [Google Scholar]
  53. Issarachot O. Bunlung S. Kaewkroek K. Wiwattanapatapee R. Superporous hydrogels based on blends of chitosan and polyvinyl alcohol as a carrier for enhanced gastric delivery of resveratrol. Saudi Pharm. J. 2023 31 3 335 347 10.1016/j.jsps.2023.01.001 37026050
    [Google Scholar]
  54. Desu P.K. Pasam V. Kotra V. Implications of superporous hydrogel composites-based gastroretentive drug delivery systems with improved biopharmaceutical performance of fluvastatin. J. Drug Deliv. Sci. Technol. 2020 57 101668 10.1016/j.jddst.2020.101668
    [Google Scholar]
  55. Raghu Kiran C.V.S. Gopinath C. Development and evaluation of interpenetrating polymer network based superporous hydrogel gastroretentive drug delivery systems (SPH IPN-GRDDS). Mater. Today Proc. 2021 46 3056 3061 10.1016/j.matpr.2021.02.381
    [Google Scholar]
  56. Kulkarni V.S. Natural polymers-a comprehensive review. Int. J. Res. Pharm. Biomed. Sci. 2012 3 4 1597 1613
    [Google Scholar]
  57. Tura G.T. Eshete W.B. Tucho G.T. Antibacterial efficacy of local plants and their contribution to public health in rural Ethiopia. Antimicrob. Resist. Infect. Control 2017 6 1 76 10.1186/s13756‑017‑0236‑6 28775846
    [Google Scholar]
  58. Bala R. Rana R. Madaan R. Natural gums and mucilage asmatrix formers in sustained released dosage forms. ResJPharmTechnol. 2019 12 10 5119 5125
    [Google Scholar]
  59. Thombre N. Aher A. Shimpi P. Formulation development and evaluation of gum damar based sustained release matrix tablet of metoprolol succinate. Asian J. Pharm. Res. Dev. 2020 8 3 81 86
    [Google Scholar]
  60. Singh P. Natural excipients inPharmaceutical formulations. Evidence basedvalidation of Traditional Medicines. Berlin, Heidelberg, Germany Springer 2021 829 869
    [Google Scholar]
  61. Alalor C. Evaluation of ciprofloxacin floating-bioadhesive tablet formulated with okra gum as multifunctional polymer. Pharmaceutical and Biosciences Journal 2018 6 2 1
    [Google Scholar]
  62. Ogaji I. Hoag S. Novel extraction and application of okra gum as a film coating agent using theophylline as a model drug. J. Adv. Pharm. Technol. Res. 2014 5 2 70 77 10.4103/2231‑4040.133427 24959415
    [Google Scholar]
  63. Campo V.L. Kawano D.F. Carrageenan: biological properties, chemical modifications and structural analysis–a review. Carbohydr. Polym. 2009 77 2 167 180 10.1016/j.carbpol.2009.01.020
    [Google Scholar]
  64. Ilango K. in vitro and in vivo evaluation of okra polysaccharide-based colon-targeted drug delivery systems. Int. J. Pharm. Sci. Rev. Res. 2010 5 138 145
    [Google Scholar]
  65. Sheikh F.A. Hussain M.A. Ashraf M.U. Haseeb M.T. Farid-ul-Haq M. Linseed hydrogel based floating drug delivery system for fluoroquinolone antibiotics: Design, in vitro drug release and in vivo real-time floating detection. Saudi Pharm. J. 2020 28 5 538 549 10.1016/j.jsps.2020.03.005 32435134
    [Google Scholar]
  66. Ghumman S.A. Noreen S. tul Muntaha S. Linum usitatissimum seed mucilage-alginate mucoadhesive microspheres of metformin HCl: Fabrication, characterization and evaluation. Int. J. Biol. Macromol. 2020 155 358 368 10.1016/j.ijbiomac.2020.03.181 32224187
    [Google Scholar]
  67. Mahant S. Khurana N. Dua S. Thakur P. Bakshi I. Formulation and evaluation of mucoadhesive tablets using flax seed mucilage. J. Pharm. Biomed. Sci. 2011 6 18 1 7
    [Google Scholar]
  68. Bahulkar S.S. Munot N.M. Surwase S.S. Synthesis, characterization of thiolated karaya gum and evaluation of effect of pH on its mucoadhesive and sustained release properties. Carbohydr. Polym. 2015 130 183 190 10.1016/j.carbpol.2015.04.064 26076615
    [Google Scholar]
  69. Singh B. Sharma V. Chauhan D. Gastroretentive floating sterculia–alginate beads for use in antiulcer drug delivery. Chem. Eng. Res. Des. 2010 88 8 997 1012 10.1016/j.cherd.2010.01.017
    [Google Scholar]
  70. Sethi S. Kaith B.S. Kaur M. Sharma N. Khullar S. Study of a cross-linked hydrogel of Karaya gum and Starch as a controlled drug delivery system. J. Biomater. Sci. Polym. Ed. 2019 30 18 1687 1708 10.1080/09205063.2019.1659710 31443620
    [Google Scholar]
  71. Nayak A.K. Pal D. Santra K. Tamarind seed polysaccharide–gellan mucoadhesive beads for controlled release of metformin HCl. Carbohydr. Polym. 2014 103 154 163 10.1016/j.carbpol.2013.12.031 24528714
    [Google Scholar]
  72. Razavi M. Karimian H. Chai Hong Y. Chung L.Y. Noordin M.I. Nyamathulla S. Gamma scintigraphic evaluation of floating gastroretentive tablets of metformin HCl using a combination of three natural polymers in rabbits. Drug Des. Devel. Ther. 2015 9 4373 4386 10.2147/DDDT.S86263 26273196
    [Google Scholar]
  73. Sumathi S. Ray A.R. Release behaviour of drugs from tamarind seed polysaccharide tablets. J. Pharm. Pharm. Sci. 2002 5 1 12 18 12042114
    [Google Scholar]
  74. Formulation and evaluation of Gastroretantive floating tablet using Carbopol with xanthan gum and guar gum. Int. J. Chemtech Res. 2021 10 300 308
    [Google Scholar]
  75. Prakash U. Singh D.R. Role of xanthan gum (Xanthomonascompestris) in gastroretentive drug delivery system: an overview. Int Res J Pharm 2013 35 38
    [Google Scholar]
  76. Cai X. Du X. Cui D. Wang X. Yang Z. Zhu G. Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocoll. 2019 91 238 245 10.1016/j.foodhyd.2019.01.034
    [Google Scholar]
  77. Bhagwat D.A. Kolekar V.R. Nadaf S.J. Choudhari P.B. More H.N. Killedar S.G. Acrylamide grafted neem (Azadirachta indica) gum polymer: Screening and exploration as a drug release retardant for tablet formulation. Carbohydr. Polym. 2020 229 115357 10.1016/j.carbpol.2019.115357 31826453
    [Google Scholar]
  78. Patil T. Green synthesis of polyacrylamide grafted Neem Gum for gastro retentive floating drug delivery of Ciprofloxacin Hydrochloride: in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2022 72 1-2 103417
    [Google Scholar]
  79. Rai A. Malviya R.K. Patidar D. Sharma K. Raj V. Formulation development and evaluation of gastroretentive delivery system (microspheres) using natural polymer. J. Drug Deliv. Ther. 2019 9 4 496 503 10.22270/jddt.v9i4.3079
    [Google Scholar]
  80. Bera H. Gaini C. Kumar S. Sarkar S. Boddupalli S. Ippagunta S.R. HPMC-based gastroretentive dual working matrices coated with Ca +2 ion crosslinked alginate-fenugreek gum gel membrane. Mater. Sci. Eng. C 2016 67 170 181 10.1016/j.msec.2016.05.016 27287111
    [Google Scholar]
  81. Malasiya R. Shukla T.P. Formulation development and evaluation of gastroretentive mucoadhesive tablets of glimepiride using natural polymers. J. Drug Deliv. Ther. 2020 10 4-s 153 159 10.22270/jddt.v10i4‑s.4264
    [Google Scholar]
  82. Ranade A. Ranpise N. Ramesh C. Exploring the potential of gastro retentive dosage form in delivery of ellagic acid and aloe vera gel powder for treatment of gastric ulcers. Curr. Drug Deliv. 2014 11 2 287 297 10.2174/1567201810666131122153041 24261674
    [Google Scholar]
  83. Chinthaginjala H. Barghav G.C. Reddy C.M. Pradeepkumar B. Abdul Ahad H. Formulation and in vitro evaluation of floatingtablets of dicloxacillin sodiumusingdifferentpolymers. J. Young Pharm. 2019 11 3 247 253 10.5530/jyp.2019.11.51
    [Google Scholar]
  84. Choudhary P.D. Pawar H.A. Recently investigated natural gums and mucilages as pharmaceutical excipients: an overview. J. Pharm. (Cairo) 2014 2014 1 9 10.1155/2014/204849 26556189
    [Google Scholar]
  85. Zeng H. Controlled- release emulsion compositions. Tech. Rep., Penwest Pharmaceuticals 2007
    [Google Scholar]
  86. Alur H.H. Pather S.I. Mitra A.K. Johnston T.P. Evaluation of the gum from Hakea gibbosa as a sustained-release and mucoadhesive component in buccal tablets. Pharm. Dev. Technol. 1999 4 3 347 358 10.1081/PDT‑100101370 10434280
    [Google Scholar]
  87. Choudhary P.D. Pawar H.A. Recently investigated natural gums & mucilage as pharmaceutical excipient:an OverviewPubl. Corp. J. Pharmacol. 2014 2014 ID204849
    [Google Scholar]
  88. Krishna R.R. Murthy T. e.g. K. Preparation and evaluation of mucoadhesive microcapsules of glipizideformulatedwith gum kondagogu: in vitro and in vivo. ActPharmSci. 2010 52 3 335 344
    [Google Scholar]
  89. Ravi V. Kumar P. Investigation of kondagogu gum as a pharmaceutical excipient: A case study in developing floating matrix tablet. Int. J. Pharm. Tech. Res. 2013 5 1 70 78
    [Google Scholar]
  90. Singh K. Kumar A. Langyan N. Ahuja M. Evaluation of Mimosa pudica seed mucilage as sustained-release excipient. AAPS PharmSciTech 2009 10 4 1121 1127 10.1208/s12249‑009‑9307‑1 19763837
    [Google Scholar]
  91. Mahor S. Chandra P. Prasad N. Design and in-vitro Evaluation of Float-adhesive Famotidine Microspheres by using Natural Polymers for Gastroretentive Properties. Indian Journal of Pharmaceutical Education and Research 2021 55 2 407 417 10.5530/ijper.55.2.78
    [Google Scholar]
  92. Saravanan C. Purushothaman M. Effect of peanut husk powder as a natural polymer in the formulation and Evaluation of gastro-retentive drug delivery system of valsartan floating tablets. J. Glob. Trends Pharm. Sci. 2016 7 2 3133 3137
    [Google Scholar]
  93. Ishak R.A.H. Awad G.A.S. Mortada N.D. Nour S.A.K. Preparation, in vitro and in vivo evaluation of stomach-specific metronidazole-loaded alginate beads as local anti-Helicobacter pylori therapy. J. Control. Release 2007 119 2 207 214 10.1016/j.jconrel.2007.02.012 17412443
    [Google Scholar]
  94. Chaves de Souza M.P. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int. J. Biol. Macromol. 2020 159 15 804 822
    [Google Scholar]
  95. Somasekhar C. Krishan S.K. Ahmed M.G. Ramesh B. Formulation and evaluation of chitosan based effervescent floating tablet of verapamil hydrochloride. Int J Bio Allied Sci. 2012 1 11 1711 1720
    [Google Scholar]
  96. Sriamornsak P. Sungthongjeen S. Puttipipatkhachorn S. Use of pectin as a carrier for intragastric floating drug delivery: Carbonate salt contained beads. Carbohydr. Polym. 2007 67 3 436 445 10.1016/j.carbpol.2006.06.013
    [Google Scholar]
  97. Prajapati V.D. Jani G.K. Khutliwala T.A. Zala B.S. Raft forming system—An upcoming approach of gastroretentive drug delivery system. J. Control. Release 2013 168 2 151 165 10.1016/j.jconrel.2013.02.028 23500062
    [Google Scholar]
  98. Rao K.P. Prabhashankar B. Kumar A. Khan A. Biradar S.S. Srishail S.P. Satyanath B. Formulation and roentgenographic studies of naproxen-pectin-based matrix tablets for colon drug delivery. Yale J. Biol. Med. 2003 76 4-6 149 154 15482652
    [Google Scholar]
  99. Bhurat M. Barhate S. PreliminaryEvaluationof Remusatiavivipara tubersMucilageasGelling Agent. ResJPharmTechnol. 2013 6 4 1 5
    [Google Scholar]
  100. Bonferoni M.C. Rossi S. Ferrari F. Caramella C. Development of oral controlled-release tablet formulations based on diltiazem-carrageenan complex. Pharm. Dev. Technol. 2004 9 2 155 162 10.1081/PDT‑120027428 15202574
    [Google Scholar]
  101. Jani G.K. Shah D.P. Evaluation of mucilage of Hibiscus rosasinensis Linn as rate controlling matrix for sustained release of diclofenac. Drug Dev. Ind. Pharm. 2008 34 8 807 816 10.1080/03639040801925768 18686091
    [Google Scholar]
  102. Nayak A.K. Chapter 11 - Cashew gum in drug delivery applications. Natural Polysaccharides in Drug Delivery and Biomedical Applications 2019 263 283 10.1016/B978‑0‑12‑817055‑7.00011‑X
    [Google Scholar]
  103. Paula H.C.B. de Oliveira E.F. Abreu F.O.M.S. de Paula R.C.M. Alginate/cashew gum floating bead as a matrix for larvicide release. Mater. Sci. Eng. C 2012 32 6 1421 1427 10.1016/j.msec.2012.04.021 24364941
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031301526241010021238
Loading
/content/journals/ddl/10.2174/0122103031301526241010021238
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test