- Home
- A-Z Publications
- Current Pharmaceutical Design
- Previous Issues
- Volume 30, Issue 31, 2024
Current Pharmaceutical Design - Volume 30, Issue 31, 2024
Volume 30, Issue 31, 2024
-
-
An Insight into Biodegradable Polymers and their Biomedical Applications for Wound Healing
Biodegradable polymers, encompassing both natural and synthetic polymers, have demonstrated efficacy as carriers for synthetic drugs, natural bioactive molecules, and inorganic metals. This is due to their ability to control the release of these substances. As a result, various advanced materials, such as nanoparticle-loaded hydrogels, nanofibrous scaffolds, and nanocomposites, have been developed. These materials have shown promise in enhancing processes, such as cell proliferation, vascular angiogenesis, hair growth, and wound healing management. Natural polymers, including hyaluronic acid, collagen, chitosan, gelatin, and alginate, as well as synthetic polymers like polylactic acid, polyglycolic acid, polylactic co-glycolic acid, and PCA, have significant potential for promoting wound healing. This study examines the advancements in biodegradable polymers for wound healing, specifically focusing on each polymer and its distinctive formulations. It also discusses the in vitro experiments conducted using different cell lines, as well as the in vivo studies that explore the numerous uses of these polymers in wound healing. The discussion also included the exploration of modifications or combinations of several polymers, as well as surface changes, in order to produce synergistic effects and address the limitations of individual polymers. The goal was to expedite the healing process of different chronic wounds. Due to this, there have been notable advancements in the technological use of polymeric mixes, including biodegradable polymer-based scaffolds, which have accelerated the process of wound healing.
-
-
-
Green Synthesis of Silver Nanoparticles and their Potential Applications in Mitigating Cancer
In recent years, the field of nanotechnology has brought about significant advancements that have transformed the landscape of disease diagnosis, prevention, and treatment, particularly in the realm of medical science. Among the various approaches to nanoparticle synthesis, the green synthesis method has garnered increasing attention. Silver nanoparticles (AgNPs) have emerged as particularly noteworthy nanomaterials within the spectrum of metallic nanoparticles employed for biomedical applications. AgNPs possess several key attributes that make them highly valuable in the biomedical field. They are biocompatible, cost-effective, and environmentally friendly, rendering them suitable for various bioengineering and biomedical applications. Notably, AgNPs have found a prominent role in the domain of cancer diagnosis. Research investigations have provided evidence of AgNPs' anticancer activity, which involves mechanisms such as DNA damage, cell cycle arrest, induction of apoptosis, and the regulation of specific cytokine genes. The synthesis of AgNPs primarily involves the reduction of silver ions by reducing agents. Interestingly, natural products and living organisms have proven to be effective sources for the generation of precursor materials used in AgNP synthesis. This comprehensive review aims to summarize the key aspects of AgNPs, including their characterization, properties, and recent advancements in the field of biogenic AgNP synthesis. Furthermore, the review highlights the potential applications of these nanoparticles in combating cancer.
-
-
-
The Effects of Nicotine and Cannabinoids on Cytokines
Authors: Grace Miller, Ojas Pareek, Samantha L. Penman and Panayotis K. ThanosBackground: The usage of nicotine and cannabinoids has rapidly grown in popularity, leading to increased research into how they can affect people’s health, both positively and negatively. Nicotine, Cannabidiol (CBD), and Δ9-tetrahydrocannabinol (THC) have been shown to have significant effects on cytokine function and inflammatory response.
ObjectiveThis study aimed to review and summarize the current literature on the effects of nicotine and cannabinoids on cytokines, including interleukins, TNF, IFN, and TGF-β.
MethodsLiterature search was conducted on Medline/PubMed electronic databases utilizing the search terms “nicotine” OR “cannabis” OR “cannabinoids” AND “cytokine” AND “inflammation” AND “stress” AND “immune” from 11/1973 to 02/2024.
ResultsTHC and CBD usage have been associated with conflicting impacts on immune response, and observed to both exacerbate and inhibit inflammation. Nicotine has been shown to be generally pro-inflammatory with regards to cytokines. These responses have been reported to have significant effects on bodily response to inflammation-related diseases. Nicotine usage is associated with worsened outcomes for some conditions, like chronic pain, but improved outcomes for others, like arthritis. The impacts of cannabinoid usage tend to be more positive, exerting anti-inflammatory effects across a wide range of diseases. Given the widespread usage of these substances, it is important to understand the nature of their consequences on immune functions and the underlying mechanisms by which they act.
ConclusionThis review has covered how cannabinoids and nicotine affect inflammation directly and how these effects can be attributed to the treatment of inflammatory diseases. In summary, the existing research studying the effects of cannabinoids and nicotine supports the major relationship between nicotine and cannabis use and inflammatory diseases.
-
-
-
Nephroprotective Effect of Ferula assa-foetida Oleo Gum Resin on Type 2 Diabetic Rats
Authors: Seyyed Majid Bagheri, Elham Hakimizadeh and Mohammad AllahtavakoliObjectiveDiabetic nephropathy is one of the main causes of kidney failure in the end stage of diabetes worldwide. On the other hand, asafoetida is a gum whose hypoglycemic effects have been proven. The present study was conducted with the aim of using asafoetida to prevent diabetic nephropathy.
MethodsDiabetes was induced by a high-fat diet (60%) and streptozotocin injection (35 mg/kg) in rats. Diabetic rats were treated with an oral dose of 50 mg/kg of asafoetida for 8 weeks. At the end of the experiment, serum and urine parameters were examined. Antioxidant enzymes and lipid peroxidation levels in the kidney were also determined along with its histological examination. The expression levels of tumor necrosis factor-alpha and Transforming growth factor beta genes were also evaluated.
ResultsGlucose, cholesterol, triglyceride, and HbA1c concentrations were significantly reduced in the asafoetida 50. On the other hand, in the treatment group, serum creatinine, urea, and albumin levels decreased and increased in urine. Antioxidant enzymes in the kidney improved significantly, and the expression of tumour necrosis factor-alpha and transforming growth factor-beta genes decreased. Histopathological examination also showed that necrosis, epithelial damage, and leukocyte infiltration increased in the diabetic and decreased in the treatment group.
ConclusionThe result of biochemical analysis, enzymatic, and histological examinations showed that asafoetida may delay the progression of diabetic nephropathy due to the presence of anti-inflammatory and antioxidant activities.
-
-
-
Doxorubicin-induced Immunogenic Cell Death Impairs Tumor Progression and Distant Metastasis in a 4T1 Breast Cancer Tumor Model
IntroductionCancer is an individual disease and its formation and development are specific to each host. Conventional treatments are ineffective in complex cases, such as metastasis, and have severe adverse side effects. New strategies are needed to address the problem, and the use of immunogenic cell death (ICD) as a trigger or booster of the immune system through the exposure of damage-associated molecular patterns, along with tumor antigens, by cancerous cells is presented as an immunization approach in this work.
MethodsFor this purpose, 4T1 cells were exposed to doxorubicin (DOX) for 24 hours and then, these cells undergoing ICD were subcutaneously administered to mice. The ICD induction by DOX on 4T1 was assessed by flow cytometry and image analysis. This immunization process was performed three times and after the last administration, the immunized mice were challenged with a subcutaneous xenograft of live cancer cells.
ResultsThe results demonstrate that the mice immunized with cells undergoing ICD after exposure to DOX presented no primary tumor or indications of distant metastatic lesion development.
ConclusionIn summary, our findings indicate that the immunization process utilizing ICD is indeed efficacious in managing this aggressive form of pre-clinical breast cancer.
-
Volumes & issues
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)