Skip to content
2000
Volume 30, Issue 31
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The usage of nicotine and cannabinoids has rapidly grown in popularity, leading to increased research into how they can affect people’s health, both positively and negatively. Nicotine, Cannabidiol (CBD), and Δ9-tetrahydrocannabinol (THC) have been shown to have significant effects on cytokine function and inflammatory response.

Objective

This study aimed to review and summarize the current literature on the effects of nicotine and cannabinoids on cytokines, including interleukins, TNF, IFN, and TGF-β.

Methods

Literature search was conducted on Medline/PubMed electronic databases utilizing the search terms “nicotine” OR “cannabis” OR “cannabinoids” AND “cytokine” AND “inflammation” AND “stress” AND “immune” from 11/1973 to 02/2024.

Results

THC and CBD usage have been associated with conflicting impacts on immune response, and 
observed to both exacerbate and inhibit inflammation. Nicotine has been shown to be generally pro-inflammatory with regards to cytokines. These responses have been reported to have significant effects on bodily response to inflammation-related diseases. Nicotine usage is associated with worsened outcomes for some conditions, like chronic pain, but improved outcomes for others, like arthritis. The impacts of cannabinoid usage tend to be more positive, exerting anti-inflammatory effects across a wide range of diseases. Given the widespread usage of these substances, it is important to understand the nature of their consequences on immune functions and the underlying mechanisms by which they act.

Conclusion

This review has covered how cannabinoids and nicotine affect inflammation directly and how these effects can be attributed to the treatment of inflammatory diseases. In summary, the existing research studying the effects of cannabinoids and nicotine supports the major relationship between nicotine and cannabis use and inflammatory diseases.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128293077240529111824
2024-06-07
2024-11-16
Loading full text...

Full text loading...

References

  1. MlostJ. BrykM. StarowiczK. Cannabidiol for pain treatment: focus on pharmacology and mechanism of action.Int. J. Mol. Sci.20202122887010.3390/ijms21228870 33238607
    [Google Scholar]
  2. LafayeG. KarilaL. BlechaL. BenyaminaA. Cannabis, cannabinoids, and health.Dialogues Clin. Neurosci.201719330931610.31887/DCNS.2017.19.3/glafaye 29302228
    [Google Scholar]
  3. CroxfordJ.L. YamamuraT. Cannabinoids and the immune system: Potential for the treatment of inflammatory diseases?J. Neuroimmunol.20051661-231810.1016/j.jneuroim.2005.04.023 16023222
    [Google Scholar]
  4. NagarkattiP. PandeyR. RiederS.A. HegdeV.L. NagarkattiM. Cannabinoids as novel anti-inflammatory drugs.Future Med. Chem.2009171333134910.4155/fmc.09.93 20191092
    [Google Scholar]
  5. KatchanV. DavidP. ShoenfeldY. Cannabinoids and autoimmune diseases: A systematic review.Autoimmun. Rev.201615651352810.1016/j.autrev.2016.02.008 26876387
    [Google Scholar]
  6. SuryavanshiS.V. KovalchukI. KovalchukO. Cannabinoids as key regulators of inflammasome signaling: A current perspective.Front. Immunol.20211161361310.3389/fimmu.2020.613613 33584697
    [Google Scholar]
  7. WidysantoA. CombestF.E. DhakalA. SaadabadiA. Nicotine addiction.Treasure Island, FLStatPearls2023
    [Google Scholar]
  8. DratcuL. BolandX. Does nicotine prevent cytokine storms in COVID-19?Cureus20201210e11220
    [Google Scholar]
  9. TirganN. KulpG.A. GuptaP. Nicotine exposure exacerbates development of cataracts in a type 1 diabetic rat model.Exp. Diabetes Res.201220121710.1155/2012/349320 23049540
    [Google Scholar]
  10. CohenK. WeizmanA. WeinsteinA. Positive and negative effects of cannabis and cannabinoids on health.Clin. Pharmacol. Ther.201910551139114710.1002/cpt.1381 30703255
    [Google Scholar]
  11. RossJ.A. LevyS. The Impact of cannabis use on adolescent neurodevelopment and clinical outcomes amidst changing state policies.Clin. Ther.202345653554010.1016/j.clinthera.2023.03.009 37414504
    [Google Scholar]
  12. ShethP. MehtaF. JangidG. The rising use of e-cigarettes: Unveiling the health risks and controversies.Cardiol. Rev.202410.1097/CRD.0000000000000666 38385663
    [Google Scholar]
  13. FagerströmK. Nicotine: Pharmacology, toxicity and therapeutic use.J Smok. Cessat.201492535910.1017/jsc.2014.27
    [Google Scholar]
  14. BenowitzN.L. HukkanenJ. JacobP.III Nicotine chemistry, metabolism, kinetics and biomarkers.Handb. Exp. Pharmacol.2009192192296010.1007/978‑3‑540‑69248‑5_2 19184645
    [Google Scholar]
  15. OsgoeiT.L. ParivarK. EbrahimiM. MortazE. Nicotine modulates the release of inflammatory cytokines and expression of TLR2, TLR4 of cord blood mononuclear cells.Iran. J. Allergy Asthma Immunol.201817437237810.18502/ijaai.v17i4.96 30537800
    [Google Scholar]
  16. ParamoP.Y.X. ChenG. AshmoreJ.H. Nicotine-n′-oxidation by flavin monooxygenase enzymes.Cancer Epidemiol. Biomarkers Prev.201928231132010.1158/1055‑9965.EPI‑18‑0669 30381441
    [Google Scholar]
  17. BenowitzN.L. Pharmacology of nicotine: Addiction, smoking-induced disease, and therapeutics.Annu. Rev. Pharmacol. Toxicol.2009491577110.1146/annurev.pharmtox.48.113006.094742 18834313
    [Google Scholar]
  18. HoT.N.T. AbrahamN. LewisR.J. Structure-function of neuronal nicotinic acetylcholine receptor inhibitors derived from natural toxins.Front. Neurosci.20201460900510.3389/fnins.2020.609005 33324158
    [Google Scholar]
  19. LloydG.K. WilliamsM. Neuronal nicotinic acetylcholine receptors as novel drug targets.J. Pharmacol. Exp. Ther.20002922461467 10640281
    [Google Scholar]
  20. MiyazawaA. FujiyoshiY. UnwinN. Structure and gating mechanism of the acetylcholine receptor pore.Nature2003423694394995510.1038/nature01748 12827192
    [Google Scholar]
  21. WangD. ZhouR. YaoY. Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro.J. Pharmacol. Exp. Ther.2010335355356110.1124/jpet.110.169961 20843956
    [Google Scholar]
  22. WangH. YuM. OchaniM. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation.Nature2003421692138438810.1038/nature01339 12508119
    [Google Scholar]
  23. De RosaM.J. EsandiM.C. GarelliA. RayesD. BouzatC. Relationship between α7 nAChR and apoptosis in human lymphocytes.J. Neuroimmunol.20051601-215416110.1016/j.jneuroim.2004.11.010 15710468
    [Google Scholar]
  24. SaeedR.W. VarmaS. NemeroffP.T. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation.J. Exp. Med.200520171113112310.1084/jem.20040463 15809354
    [Google Scholar]
  25. De BiasiM. DaniJ.A. Reward, addiction, withdrawal to nicotine.Annu. Rev. Neurosci.201134110513010.1146/annurev‑neuro‑061010‑113734 21438686
    [Google Scholar]
  26. GrenhoffJ. JonesA.G. SvenssonT.H. Nicotinic effects on the firing pattern of midbrain dopamine neurons.Acta Physiol. Scand.1986128335135810.1111/j.1748‑1716.1986.tb07988.x 3788613
    [Google Scholar]
  27. ImperatoA. MulasA. Di ChiaraG. Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats.Eur. J. Pharmacol.19861322-333733810.1016/0014‑2999(86)90629‑1 3816984
    [Google Scholar]
  28. EngvallM.M. EvrardA. PonsS. Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors.Neuron200650691192110.1016/j.neuron.2006.05.007 16772172
    [Google Scholar]
  29. PonsS. FattoreL. CossuG. Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration.J. Neurosci.20082847123181232710.1523/JNEUROSCI.3918‑08.2008 19020025
    [Google Scholar]
  30. ZhangT. ZhangL. LiangY. SiapasA.G. ZhouF.M. DaniJ.A. Dopamine signaling differences in the nucleus accumbens and dorsal striatum exploited by nicotine.J. Neurosci.200929134035404310.1523/JNEUROSCI.0261‑09.2009 19339599
    [Google Scholar]
  31. WilliamsonE.M. EvansF.J. Cannabinoids in clinical practice.Drugs20006061303131410.2165/00003495‑200060060‑00005 11152013
    [Google Scholar]
  32. CooperZ.D. HaneyM. Actions of delta-9-tetrahydrocannabinol in cannabis: Relation to use, abuse, dependence.Int. Rev. Psychiatry200921210411210.1080/09540260902782752 19367504
    [Google Scholar]
  33. MechoulamR. ParkerL.A. The endocannabinoid system and the brain.Annu. Rev. Psychol.2013641214710.1146/annurev‑psych‑113011‑143739 22804774
    [Google Scholar]
  34. GrotenhermenF. Pharmacokinetics and pharmacodynamics of cannabinoids.Clin. Pharmacokinet.200342432736010.2165/00003088‑200342040‑00003 12648025
    [Google Scholar]
  35. TandaG. PontieriF.E. ChiaraG.D. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common mu1 opioid receptor mechanism.Science199727653212048205010.1126/science.276.5321.2048 9197269
    [Google Scholar]
  36. BossongM.G. van BerckelB.N.M. BoellaardR. Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum.Neuropsychopharmacology200934375976610.1038/npp.2008.138 18754005
    [Google Scholar]
  37. BarkusE. MorrisonP.D. VuleticD. Does intravenous Δ9-tetrahydrocannabinol increase dopamine release? A SPET study.J. Psychopharmacol.201125111462146810.1177/0269881110382465 20851843
    [Google Scholar]
  38. van HellH.H. JagerG. BossongM.G. Involvement of the endocannabinoid system in reward processing in the human brain.Psychopharmacology 2012219498199010.1007/s00213‑011‑2428‑8 21822593
    [Google Scholar]
  39. GrotenhermenF. VahlM.K. The therapeutic potential of cannabis and cannabinoids.Dtsch. Arztebl. Int.201210929-3049550110.3238/arztebl.2012.0495 23008748
    [Google Scholar]
  40. StarowiczK FinnDP Chapter Thirteen - Cannabinoids and Pain: Sites and Mechanisms of Action. Advances in Pharmacology 80. Academic Press 2017437475
    [Google Scholar]
  41. SofiaR.D. KnoblochL.C. VassarH.B. The anti-edema activity of various naturally occurring cannabinoids.Res. Commun. Chem. Pathol. Pharmacol.197363909918 4760897
    [Google Scholar]
  42. SofiaD.R. NalepaS.D. VassarH.B. KnoblochL.C. Comparative anti-phlogistic activity of Δ9-tetrahydrocannabinol, hydrocortisone and aspirin in various rat paw edema models.Life Sci.197415225126010.1016/0024‑3205(74)90214‑8 4549916
    [Google Scholar]
  43. WirthP.W. WatsonS.E. ElSohlyM. TurnerC.E. MurphyJ.C. Anti-inflammatory properties of cannabichromene.Life Sci.198026231991199510.1016/0024‑3205(80)90631‑1 7401911
    [Google Scholar]
  44. WirthP.W. WatsonE.S. ElsohlyM.A. SeidelR. MurphyJ.C. TurnerC.E. Anti-inflammatory activity of cannabichromene homologs.J. Pharm. Sci.198069111359136010.1002/jps.2600691136 7452475
    [Google Scholar]
  45. TurnerC. ElsohlyM.A. Biological activity of cannabichromene, its homologs and isomers.J. Clin. Pharmacol.198121S1283S291S10.1002/j.1552‑4604.1981.tb02606.x 7298870
    [Google Scholar]
  46. MechoulamR. ParkerL.A. GallilyR. Cannabidiol: An overview of some pharmacological aspects.J. Clin. Pharmacol.200242S111S19S10.1002/j.1552‑4604.2002.tb05998.x 12412831
    [Google Scholar]
  47. SchubartC.D. SommerI.E.C. PoliF.P. de WitteL. KahnR.S. BoksM.P.M. Cannabidiol as a potential treatment for psychosis.Eur. Neuropsychopharmacol.2014241516410.1016/j.euroneuro.2013.11.002 24309088
    [Google Scholar]
  48. SkelleyJ.W. DeasC.M. CurrenZ. EnnisJ. Use of cannabidiol in anxiety and anxiety-related disorders.J. Am. Pharm. Assoc.202060125326110.1016/j.japh.2019.11.008 31866386
    [Google Scholar]
  49. ZuardiA.W. ShirakawaI. FinkelfarbE. KarniolI.G. Action of cannabidiol on the anxiety and other effects produced by? 9-THC in normal subjects.Psychopharmacology198276324525010.1007/BF00432554 6285406
    [Google Scholar]
  50. SalesA.J. FogaçaM.V. SartimA.G. Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex.Mol. Neurobiol.20195621070108110.1007/s12035‑018‑1143‑4 29869197
    [Google Scholar]
  51. OsborneA.L. SolowijN. BabicI. HuangX.F. GreenW.K. Improved social interaction, recognition and working memory with cannabidiol treatment in a prenatal infection (poly I:C) rat model.Neuropsychopharmacology20174271447145710.1038/npp.2017.40 28230072
    [Google Scholar]
  52. GutiérrezG.M.S. NavarreteF. GasparyanA. OlivaresA.A. SalaF. ManzanaresJ. Cannabidiol: A potential new alternative for the treatment of anxiety, depression, and psychotic disorders.Biomolecules20201011157510.3390/biom10111575 33228239
    [Google Scholar]
  53. PertweeR.G. Pharmacological Actions of Cannabinoids. Cannabinoids.Berlin, HeidelbergSpringer Berlin Heidelberg200515110.1007/3‑540‑26573‑2_1
    [Google Scholar]
  54. AmarB.M. Cannabinoids in medicine: A review of their therapeutic potential.J. Ethnopharmacol.20061051-212510.1016/j.jep.2006.02.001 16540272
    [Google Scholar]
  55. IzzoA.A. BorrelliF. CapassoR. Di MarzoV. MechoulamR. Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herb.Trends Pharmacol. Sci.2009301051552710.1016/j.tips.2009.07.006
    [Google Scholar]
  56. MaioneS. CostaB. Di MarzoV. Endocannabinoids: A unique opportunity to develop multitarget analgesics.Pain2013154S1S87S9310.1016/j.pain.2013.03.023 23623250
    [Google Scholar]
  57. PhilpottH.T. O’BrienM. McDougallJ.J. Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis.Pain2017158122442245110.1097/j.pain.0000000000001052 28885454
    [Google Scholar]
  58. WongH. CairnsB.E. Cannabidiol, cannabinol and their combinations act as peripheral analgesics in a rat model of myofascial pain.Arch. Oral Biol.2019104333910.1016/j.archoralbio.2019.05.028 31158702
    [Google Scholar]
  59. CabreraR.C.L. RudmanK.S. HornimanN. ClarksonN. PageC. The anti-inflammatory effects of cannabidiol and cannabigerol alone, and in combination.Pulm. Pharmacol. Ther.20216910204710.1016/j.pupt.2021.102047 34082108
    [Google Scholar]
  60. MillerR.J. MillerR.E. Is cannabis an effective treatment for joint pain?Clin. Exp. Rheumatol.201710755967
    [Google Scholar]
  61. MalfaitA.M. GallilyR. SumariwallaP.F. The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis.Proc. Natl. Acad. Sci. 200097179561956610.1073/pnas.160105897
    [Google Scholar]
  62. BursteinS. Cannabidiol (CBD) and its analogs: A review of their effects on inflammation.Bioorg. Med. Chem.20152371377138510.1016/j.bmc.2015.01.059 25703248
    [Google Scholar]
  63. AroutC.A. HaneyM. HerrmannE.S. BediG. CooperZ.D. The dose‐dependent analgesic effects, abuse liability, safety and tolerability of oral cannabidiol in healthy humans.Br. J. Clin. Pharmacol.2021
    [Google Scholar]
  64. LuH.C. MackieK. An introduction to the endogenous cannabinoid system.Biol. Psychiatry201679751652510.1016/j.biopsych.2015.07.028 26698193
    [Google Scholar]
  65. PandeyR. MousawyK. NagarkattiM. NagarkattiP. Endocannabinoids and immune regulation.Pharmacol. Res.2009602859210.1016/j.phrs.2009.03.019 19428268
    [Google Scholar]
  66. Di MarzoV. De PetrocellisL. SepeN. BuonoA. Biosynthesis of anandamide and related acylethanolamides in mouse J774 macrophages and N18 neuroblastoma cells.Biochem. J.1996316397798410.1042/bj3160977 8670178
    [Google Scholar]
  67. BisognoT. MaurelliS. MelckD. De PetrocellisL. Di MarzoV. Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes.J. Biol. Chem.199727263315332310.1074/jbc.272.6.3315 9013571
    [Google Scholar]
  68. PestonjamaspV.K. BursteinS.H. Anandamide synthesis is induced by arachidonate mobilizing agonists in cells of the immune system.Biochim. Biophys. Acta Lipids Lipid Metab.199813942-324926010.1016/S0005‑2760(98)00110‑6 9795237
    [Google Scholar]
  69. HillardC.J. Circulating endocannabinoids: From whence do they come and where are they going?Neuropsychopharmacology201843115517210.1038/npp.2017.130 28653665
    [Google Scholar]
  70. WalterL. FranklinA. WittingA. Nonpsychotropic cannabinoid receptors regulate microglial cell migration.J. Neurosci.20032341398140510.1523/JNEUROSCI.23‑04‑01398.2003 12598628
    [Google Scholar]
  71. DecaraJ. RiveraP. GamberoL.A.J. Peroxisome proliferator-activated receptors: Experimental targeting for the treatment of inflammatory bowel diseases.Front. Pharmacol.20201173010.3389/fphar.2020.00730 32536865
    [Google Scholar]
  72. ReggioP. Endocannabinoid binding to the cannabinoid receptors: What is known and what remains unknown.Curr. Med. Chem.201017141468148610.2174/092986710790980005 20166921
    [Google Scholar]
  73. MelvilleL.K. ZhuY.F. SidhuJ. Evaluation of the preclinical analgesic efficacy of naturally derived, orally administered oil forms of Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and their 1:1 combination.PloS one2020156e0234176
    [Google Scholar]
  74. TanasescuR ConstantinescuCS Cannabinoids and the immune system: An overview. Immunobiology (1979)2010215858897
    [Google Scholar]
  75. LunnC.A. FineJ.S. TrianaR.A. A novel cannabinoid peripheral cannabinoid receptor-selective inverse agonist blocks leukocyte recruitment in vivo.J. Pharmacol. Exp. Ther.2006316278078810.1124/jpet.105.093500 16258021
    [Google Scholar]
  76. MageedA.S.S. AmmarR.M. NassarN.N. MoawadH. KamelA.S. Role of PI3K/Akt axis in mitigating hippocampal ischemia-reperfusion injury via CB1 receptor stimulation by paracetamol and FAAH inhibitor in rat.Neuropharmacology202220710893510.1016/j.neuropharm.2021.108935 34968475
    [Google Scholar]
  77. ElmazogluZ. LópezR.E. CamposM.O.N. Cannabinoid-profiled agents improve cell survival via reduction of oxidative stress and inflammation, and Nrf2 activation in a toxic model combining hyperglycemia+Aβ1-42 peptide in rat hippocampal neurons.Neurochem. Int.202014010481710.1016/j.neuint.2020.104817 32781098
    [Google Scholar]
  78. SireeshD. DhamodharanU. EzhilarasiK. VijayV. RamkumarK.M. Association of NF-E2 related factor 2 (Nrf2) and inflammatory cytokines in recent onset type 2 diabetes mellitus.Sci. Rep.201881512610.1038/s41598‑018‑22913‑6 29572460
    [Google Scholar]
  79. SahaS. ButtariB. PanieriE. ProfumoE. SasoL. An overview of Nrf2 signaling pathway and its role in inflammation.Molecules20202522547410.3390/molecules25225474 33238435
    [Google Scholar]
  80. DinarelloC.A. Proinflammatory cytokines.Chest2000118250350810.1378/chest.118.2.503 10936147
    [Google Scholar]
  81. ZhangJ.M. AnJ. Cytokines, inflammation, and pain.Int. Anesthesiol. Clin.2007452273710.1097/AIA.0b013e318034194e 17426506
    [Google Scholar]
  82. DinarelloC.A. Historical insights into cytokines.Eur. J. Immunol.200737S1S34S4510.1002/eji.200737772 17972343
    [Google Scholar]
  83. OpalS.M. DePaloV.A. Anti-inflammatory cytokines.Chest200011741162117210.1378/chest.117.4.1162 10767254
    [Google Scholar]
  84. MunozC. CarletJ. FittingC. MissetB. BlériotJ.P. CavaillonJ.M. Dysregulation of in vitro cytokine production by monocytes during sepsis.J. Clin. Invest.19918851747175410.1172/JCI115493 1939659
    [Google Scholar]
  85. KasaiT. InadaK. TakakuwaT. Anti-inflammatory cytokine levels in patients with septic shock.Res. Commun. Mol. Pathol. Pharmacol.19979813442 9434313
    [Google Scholar]
  86. BrockerC. ThompsonD. MatsumotoA. NebertD.W. VasiliouV. Evolutionary divergence and functions of the human interleukin (IL) gene family.Hum. Genomics201051305510.1186/1479‑7364‑5‑1‑30 21106488
    [Google Scholar]
  87. FieldsJ.K. GüntherS. SundbergE.J. Structural basis of IL-1 family cytokine signaling.Front. Immunol.201910141210.3389/fimmu.2019.01412 31281320
    [Google Scholar]
  88. LinJ.X. LeonardW.J. the common cytokine receptor γ chain family of cytokines.Cold Spring Harb. Perspect. Biol.2018109a02844910.1101/cshperspect.a028449 29038115
    [Google Scholar]
  89. GourN. KarpW.M. IL-4 and IL-13 signaling in allergic airway disease.Cytokine2015751687810.1016/j.cyto.2015.05.014 26070934
    [Google Scholar]
  90. JunttilaI.S. Tuning the cytokine responses: An update on interleukin (IL)-4 and IL-13 receptor complexes.Front. Immunol.2018988810.3389/fimmu.2018.00888 29930549
    [Google Scholar]
  91. LiX. ShaoY. ShaX. IL-35 (Interleukin-35) suppresses endothelial cell activation by inhibiting mitochondrial reactive oxygen species-mediated site-specific acetylation of H3K14 (Histone 3 Lysine 14).Arterioscler. Thromb. Vasc. Biol.201838359960910.1161/ATVBAHA.117.310626 29371247
    [Google Scholar]
  92. IyerS.S. ChengG. role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease.Crit. Rev. Immunol.20123212363
    [Google Scholar]
  93. HuangK.Y. HsuY.H. ChenW.Y. The roles of IL-19 and IL-20 in the inflammation of degenerative lumbar spondylolisthesis.J. Inflamm. 20181511910.1186/s12950‑018‑0195‑6 30250404
    [Google Scholar]
  94. KingoK. MössnerR. KõksS. Association analysis of IL19, IL20 and IL24 genes in palmoplantar pustulosis.Br. J. Dermatol.2007156464665210.1111/j.1365‑2133.2006.07731.x 17263806
    [Google Scholar]
  95. HymowitzS.G. FilvaroffE.H. YinJ.P. IL-17s adopt a cystine knot fold: Structure and activity of a novel cytokine, IL-17F, and implications for receptor binding.EMBO J.200120195332534110.1093/emboj/20.19.5332 11574464
    [Google Scholar]
  96. MilovanovicJ. ArsenijevicA. StojanovicB. Interleukin-17 in chronic inflammatory neurological diseases.Front. Immunol.20201194710.3389/fimmu.2020.00947 32582147
    [Google Scholar]
  97. LiM.O. WanY.Y. SanjabiS. RobertsonA.K.L. FlavellR.A. Transforming growth factor-β regulation of immune responses.Annu. Rev. Immunol.20062419914610.1146/annurev.immunol.24.021605.090737 16551245
    [Google Scholar]
  98. OhS.A. LiM.O. TGF-β: Guardian of T cell function.J. Immunol.201319183973397910.4049/jimmunol.1301843 24098055
    [Google Scholar]
  99. TravisM.A. SheppardD. TGF-β activation and function in immunity.Annu. Rev. Immunol.2014321518210.1146/annurev‑immunol‑032713‑120257 24313777
    [Google Scholar]
  100. MassaguéJ. TGFβ signalling in context.Nat. Rev. Mol. Cell Biol.2012131061663010.1038/nrm3434 22992590
    [Google Scholar]
  101. Prud’hommeG.J. Pathobiology of transforming growth factor β in cancer, fibrosis and immunologic disease, and therapeutic considerations.Lab. Invest.200787111077109110.1038/labinvest.3700669 17724448
    [Google Scholar]
  102. LiM.O. FlavellR.A. TGF-β: A master of all T cell trades.Cell2008134339240410.1016/j.cell.2008.07.025 18692464
    [Google Scholar]
  103. CooperW.O. FavaR.A. GatesC.A. CremerM.A. TownesA.S. Acceleration of onset of collagen-induced arthritis by intra-articular injection of tumour necrosis factor or transforming growth factor-beta.Clin. Exp. Immunol.200889224425010.1111/j.1365‑2249.1992.tb06939.x 1638767
    [Google Scholar]
  104. ShevachE.M. ThorntonA.M. tTregs, pTregs, and iTregs: Similarities and differences.Immunol. Rev.201425918810210.1111/imr.12160 24712461
    [Google Scholar]
  105. LlorenteL. ZouW. LevyY. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus.J. Exp. Med.1995181383984410.1084/jem.181.3.839 7869046
    [Google Scholar]
  106. LeeM.S. MuellerR. WickerL.S. PetersonL.B. SarvetnickN. IL-10 is necessary and sufficient for autoimmune diabetes in conjunction with NOD MHC homozygosity.J. Exp. Med.199618362663266810.1084/jem.183.6.2663 8676087
    [Google Scholar]
  107. FerreiraV.L. BorbaH. BonettiA.F. LeonartL.P. PontaroloR. Cytokines and interferons: Types and functions autoantibodies and cytokines.IntechOpen2018
    [Google Scholar]
  108. CastroF. CardosoA.P. GonçalvesR.M. SerreK. OliveiraM.J. Interferon-gamma at the crossroads of tumor immune surveillance or Evasion.Front. Immunol.2018984710.3389/fimmu.2018.00847 29780381
    [Google Scholar]
  109. IvanovI.I. ZhouL. LittmanD.R. Transcriptional regulation of Th17 cell differentiation.Semin. Immunol.200719640941710.1016/j.smim.2007.10.011 18053739
    [Google Scholar]
  110. BettelliE. KornT. OukkaM. KuchrooV.K. Induction and effector functions of TH17 cells.Nature200845371981051105710.1038/nature07036 18563156
    [Google Scholar]
  111. FengG. GaoW. StromT.B. Exogenous IFN‐γ ex vivo shapes the alloreactive T‐cell repertoire by inhibition of Th17 responses and generation of functional Foxp3 + regulatory T cells.Eur. J. Immunol.20083892512252710.1002/eji.200838411 18792404
    [Google Scholar]
  112. PeckA. MellinsE.D. Plasticity of T‐cell phenotype and function: The T helper type 17 example.Immunology2010129214715310.1111/j.1365‑2567.2009.03189.x 19922424
    [Google Scholar]
  113. MoudgilK.D. ChoubeyD. Cytokines in autoimmunity: Role in induction, regulation, and treatment.J. Interferon Cytokine Res.2011311069570310.1089/jir.2011.0065 21942420
    [Google Scholar]
  114. StaniferM.L. GuoC. DoldanP. BoulantS. Importance of type I and III interferons at respiratory and intestinal barrier surfaces.Front. Immunol.20201160864510.3389/fimmu.2020.608645 33362795
    [Google Scholar]
  115. KotenkoS.V. GallagherG. BaurinV.V. IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex.Nat. Immunol.200341697710.1038/ni875 12483210
    [Google Scholar]
  116. SheppardP. KindsvogelW. XuW. IL-28, IL-29 and their class II cytokine receptor IL-28R.Nat. Immunol.200341636810.1038/ni873 12469119
    [Google Scholar]
  117. SommereynsC. PaulS. StaeheliP. MichielsT. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo.PLoS Pathog.200843e100001710.1371/journal.ppat.1000017 18369468
    [Google Scholar]
  118. MordsteinM. NeugebauerE. DittV. Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections.J. Virol.201084115670567710.1128/JVI.00272‑10 20335250
    [Google Scholar]
  119. PottJ. MahlakõivT. MordsteinM. IFN-λ determines the intestinal epithelial antiviral host defense.Proc. Natl. Acad. Sci. 2011108197944794910.1073/pnas.1100552108 21518880
    [Google Scholar]
  120. ChuW.M. Tumor necrosis factor.Cancer Lett.2013328222222510.1016/j.canlet.2012.10.014 23085193
    [Google Scholar]
  121. HamatyC.F. CombeB. HahneM. MorelJ. Lymphotoxin α revisited: General features and implications in rheumatoid arthritis.Arthritis Res. Ther.201113423210.1186/ar3376 21861866
    [Google Scholar]
  122. WangX. LinY. Tumor necrosis factor and cancer, buddies or foes?Acta Pharmacol. Sin.200829111275128810.1111/j.1745‑7254.2008.00889.x 18954521
    [Google Scholar]
  123. YuanM. KiertscherS.M. ChengQ. ZoumalanR. TashkinD.P. RothM.D. Δ9-Tetrahydrocannabinol regulates Th1/Th2 cytokine balance in activated human T cells.J. Neuroimmunol.20021331-212413110.1016/S0165‑5728(02)00370‑3 12446015
    [Google Scholar]
  124. NewtonC.A. KleinT.W. FriedmanH. Secondary immunity to Legionella pneumophila and Th1 activity are suppressed by delta-9-tetrahydrocannabinol injection.Infect. Immun.19946294015402010.1128/iai.62.9.4015‑4020.1994 8063421
    [Google Scholar]
  125. SrivastavaM.D. SrivastavaB.I.S. BrouhardB. Δ9-tetrahydrocannabinol and cannabidiol alter cytokine production by human immune cells.Immunopharmacology199840317918510.1016/S0162‑3109(98)00041‑1 9858061
    [Google Scholar]
  126. KleinT.W. NewtonC.A. NakachiN. FriedmanH. {Delta}9-tetrahydrocannabinol treatment suppresses immunity and early IFN-{gamma}, IL-12, and IL-12 receptor {beta}2 responses to Legionella pneumophila infection.J. Immunol.2000164126461
    [Google Scholar]
  127. SmithS.R. TerminelliC. DenhardtG. Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti-inflammatory interleukin-10 in endotoxemic mice.J. Pharmacol. Exp. Ther.20002931136150 10734163
    [Google Scholar]
  128. GardnerB. ZuL.X. SharmaS. Autocrine and paracrine regulation of lymphocyte CB2 receptor expression by TGF-β.Biochem. Biophys. Res. Commun.20022901919610.1006/bbrc.2001.6179 11779138
    [Google Scholar]
  129. ZurierR.B. BursteinS.H. Cannabinoids, inflammation, and fibrosis.FASEB J.201630113682368910.1096/fj.201600646R 27435265
    [Google Scholar]
  130. NicholsJ.M. KaplanB.L.F. Immune responses regulated by cannabidiol.Cannabis Cannabinoid Res.202051123110.1089/can.2018.0073 32322673
    [Google Scholar]
  131. BritchS.C. GoodmanA.G. WileyJ.L. PondelickA.M. CraftR.M. Antinociceptive and immune effects of Delta-9-tetrahydrocannabinol or cannabidiol in male versus female rats with persistent inflammatory pain.J. Pharmacol. Exp. Ther.2020373341642810.1124/jpet.119.263319 32179573
    [Google Scholar]
  132. JanT.R. FarrajA.K. HarkemaJ.R. KaminskiN.E. Attenuation of the ovalbumin-induced allergic airway response by cannabinoid treatment in A/J mice.Toxicol. Appl. Pharmacol.20031881243510.1016/S0041‑008X(03)00010‑3 12668119
    [Google Scholar]
  133. LuT. NewtonC. PerkinsI. FriedmanH. KleinT.W. Cannabinoid treatment suppresses the T-helper cell-polarizing function of mouse dendritic cells stimulated with Legionella pneumophila infection.J. Pharmacol. Exp. Ther.2006319126927610.1124/jpet.106.108381 16837556
    [Google Scholar]
  134. RizzoM.D. CrawfordR.B. BachA. SermetS. AmalfitanoA. KaminskiN.E. Δ 9-tetrahydrocannabinol suppresses monocyte-mediated astrocyte production of monocyte chemoattractant protein 1 and interleukin-6 in a toll-like receptor 7-stimulated human coculture.J. Pharmacol. Exp. Ther.2019371119120110.1124/jpet.119.260661 31383729
    [Google Scholar]
  135. PuffenbargerR.A. BootheA.C. CabralG.A. Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells.Glia2000291586910.1002/(SICI)1098‑1136(20000101)29:1<58::AID‑GLIA6>3.0.CO;2‑W 10594923
    [Google Scholar]
  136. ZamberlettiE. GabaglioM. PriniP. RubinoT. ParolaroD. Cortical neuroinflammation contributes to long-term cognitive dysfunctions following adolescent delta-9-tetrahydrocannabinol treatment in female rats.Eur. Neuropsychopharmacol.201525122404241510.1016/j.euroneuro.2015.09.021 26499171
    [Google Scholar]
  137. YekhtinZ. KhujaI. MeiriD. OrR. HazanA.O. Differential effects of D9 tetrahydrocannabinol (THC)- and cannabidiol (CBD)-based cannabinoid treatments on macrophage immune function in vitro and on gastrointestinal inflammation in a murine model.Biomedicines2022108179310.3390/biomedicines10081793 35892693
    [Google Scholar]
  138. VerricoC.D. WessonS. KonduriV. A randomized, double-blind, placebo-controlled study of daily cannabidiol for the treatment of canine osteoarthritis pain.Pain202016192191220210.1097/j.pain.0000000000001896 32345916
    [Google Scholar]
  139. KarmausP.W.F. WagnerJ.G. HarkemaJ.R. KaminskiN.E. KaplanB.L.F. Cannabidiol (CBD) enhances lipopolysaccharide (LPS)-induced pulmonary inflammation in C57BL/6 mice.J. Immunotoxicol.201310332132810.3109/1547691X.2012.741628 23173851
    [Google Scholar]
  140. GallilyR. YekhtinZ. HanušL.O. Overcoming the bell-shaped dose-response of cannabidiol by using cannabis extract enriched in cannabidiol.Pharmacol. Pharm.201562758510.4236/pp.2015.62010
    [Google Scholar]
  141. GallilyR. YekhtinZ. HanušL.O. The anti-inflammatory properties of terpenoids from cannabis.Cannabis Cannabinoid Res.20183128229010.1089/can.2018.0014 30596146
    [Google Scholar]
  142. DhitalS. StokesJ.V. ParkN. SeoK.S. KaplanB.L.F. Cannabidiol (CBD) induces functional Tregs in response to low-level T cell activation.Cell. Immunol.2017312253410.1016/j.cellimm.2016.11.006 27865421
    [Google Scholar]
  143. KozelaE. JuknatA. GaoF. KaushanskyN. CoppolaG. VogelZ. Pathways and gene networks mediating the regulatory effects of cannabidiol, a nonpsychoactive cannabinoid, in autoimmune T cells.J. Neuroinflammation201613113610.1186/s12974‑016‑0603‑x 27256343
    [Google Scholar]
  144. WeissL. ZeiraM. ReichS. Cannabidiol lowers incidence of diabetes in non-obese diabetic mice.Autoimmunity200639214315110.1080/08916930500356674 16698671
    [Google Scholar]
  145. GomesJ.P. WatadA. ShoenfeldY. Nicotine and autoimmunity: The lotus’ flower in tobacco.Pharmacol. Res.201812810110910.1016/j.phrs.2017.10.005 29051105
    [Google Scholar]
  146. ZhouY. ZuoX. LiY. WangY. ZhaoH. XiaoX. Nicotine inhibits tumor necrosis factor-α induced IL-6 and IL-8 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis.Rheumatol. Int.20123219710410.1007/s00296‑010‑1549‑4 20665032
    [Google Scholar]
  147. TottiN.III McCuskerK.T. CampbellE.J. GriffinG.L. SeniorR.M. Nicotine is chemotactic for neutrophils and enhances neutrophil responsiveness to chemotactic peptides.Science1984223463216917110.1126/science.6318317 6318317
    [Google Scholar]
  148. FurieM.B. RaffanelloJ.A. GergelE.I. LisinskiT.J. HorbL.D. Extracts of smokeless tobacco induce pro-inflammatory changes in cultured human vascular endothelial cells.Immunopharmacology20004711323
    [Google Scholar]
  149. WendellK.J. SteinS.H. Regulation of cytokine production in human gingival fibroblasts following treatment with nicotine and lipopolysaccharide.J. Periodontol.20017281038104410.1902/jop.2001.72.8.1038
    [Google Scholar]
  150. AicherA. HeeschenC. MohauptM. CookeJ.P. ZeiherA.M. DimmelerS. Nicotine strongly activates dendritic cell-mediated adaptive immunity: Potential role for progression of atherosclerotic lesions.Circulation2003107460461110.1161/01.CIR.0000047279.42427.6D 12566374
    [Google Scholar]
  151. VassalloR. KroeningP.R. ParambilJ. KitaH. Nicotine and oxidative cigarette smoke constituents induce immune-modulatory and pro-inflammatory dendritic cell responses.Mol. Immunol.200845123321332910.1016/j.molimm.2008.04.014 18533267
    [Google Scholar]
  152. ArcosG.I. GeraghtyP. BaumlinN. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner.Thorax201671121119112910.1136/thoraxjnl‑2015‑208039 27558745
    [Google Scholar]
  153. RackeM.K. JalbutD.S. CannellaB. AlbertP.S. RaineC.S. McFarlinD.E. Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-beta 1.J. Immunol.1991146930123017
    [Google Scholar]
  154. MageedR.A. AdamsG. WoodrowD. PodhajcerO.L. ChernajovskyY. Prevention of collagen-induced arthritis by gene delivery of soluble p75 tumour necrosis factor receptor.Gene Ther.19985121584159210.1038/sj.gt.3300785 10023437
    [Google Scholar]
  155. TriantaphyllopoulosK.A. WilliamsR.O. TailorH. ChernajovskyY. Amelioration of collagen-induced arthritis and suppression of interferon-? interleukin-12, and tumor necrosis factor? production by interferon-? gene therapy.Arthritis Rheum.1999421909910.1002/1529‑0131(199901)42:1<90::AID‑ANR12>3.0.CO;2‑A 9920019
    [Google Scholar]
  156. CroxfordJ.L. MillerS.D. Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R(+)WIN55,212.J. Clin. Invest.200311181231124010.1172/JCI200317652 12697742
    [Google Scholar]
  157. MassiP. VaccaniA. ParolaroD. Cannabinoids, immune system and cytokine network.Curr. Pharm. Des.200612243135314610.2174/138161206777947425 16918439
    [Google Scholar]
  158. van BreemenR.B. MuchiriR.N. BatesT.A. Cannabinoids block cellular entry of SARS-CoV-2 and the emerging variants.J. Nat. Prod.202285117618410.1021/acs.jnatprod.1c00946 35007072
    [Google Scholar]
  159. PereiraC.F. VargasD. TonelotoF.L. ItoV.D. VolpatoR.J. Implications of cannabis and cannabinoid use in COVID-19: Scoping review.Rev. Bras. Enferm.202275S1e20201374
    [Google Scholar]
  160. FontanetA. TondeurL. MadecY. Cluster of COVID-19 in Northern France: A retrospective closed cohort study.medRxiv20202020.04.18.20071134
    [Google Scholar]
  161. MiyaraM. TubachF. PourcherV. Low rate of daily smokers in patients with symptomatic COVID-19.medRxiv20202020.06.10.2012751410.1101/2020.06.10.20127514
    [Google Scholar]
  162. ChangeuxJ.P. AmouraZ. ReyF.A. MiyaraM. A nicotinic hypothesis for COVID-19 with preventive and therapeutic implications.C. R. Biol.20203431333910.5802/crbiol.8 32720486
    [Google Scholar]
  163. RussoE.B. Cannabis therapeutics and the future of neurology.Front. Integr. Nuerosci.2018125110.3389/fnint.2018.00051 30405366
    [Google Scholar]
  164. MechaM. SalinasC.F.J. FeliúA. MestreL. GuazaC. Perspectives on cannabis-based therapy of multiple sclerosis: A mini-review.Front. Cell. Neurosci.2020143410.3389/fncel.2020.00034 32140100
    [Google Scholar]
  165. CroxfordJ.L. PryceG. JacksonS.J. Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis.J. Neuroimmunol.20081931-212012910.1016/j.jneuroim.2007.10.024 18037503
    [Google Scholar]
  166. MechaM. FeliúA. IñigoP.M. MestreL. SalinasC.F.J. GuazaC. Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: A role for A2A receptors.Neurobiol. Dis.20135914115010.1016/j.nbd.2013.06.016 23851307
    [Google Scholar]
  167. WadeD.T. MakelaP. RobsonP. HouseH. BatemanC. Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients.Mult. Scler.200410443444110.1191/1352458504ms1082oa 15327042
    [Google Scholar]
  168. RogD. NurmikkoT. YoungC. Oromucosal Δ9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: An uncontrolled, open-label, 2-year extension trial.Clin. Ther.20072992068207910.1016/j.clinthera.2007.09.013 18035205
    [Google Scholar]
  169. HernánM.A. OlekM.J. AscherioA. Cigarette smoking and incidence of multiple sclerosis.Am. J. Epidemiol.20011541697410.1093/aje/154.1.69 11427406
    [Google Scholar]
  170. SundströmP. NyströmL. Smoking worsens the prognosis in multiple sclerosis.Mult. Scler.20081481031103510.1177/1352458508093615 18632778
    [Google Scholar]
  171. NizriE. SinaiI.T.M. LoryO. UrtregerO.A. LaviE. BrennerT. Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses.J. Immunol.2009183106681668810.4049/jimmunol.0902212 19846875
    [Google Scholar]
  172. PittasF. PonsonbyA.L. MeiI.A.F. Smoking is associated with progressive disease course and increased progression in clinical disability in a prospective cohort of people with multiple sclerosis.J. Neurol.2009256457758510.1007/s00415‑009‑0120‑2 19365595
    [Google Scholar]
  173. ShiF.D. PiaoW.H. KuoY.P. CampagnoloD.I. VollmerT.L. LukasR.J. Nicotinic attenuation of central nervous system inflammation and autoimmunity.J. Immunol.200918231730173910.4049/jimmunol.182.3.1730 19155522
    [Google Scholar]
  174. GaoZ. TsirkaS.E. Animal models of MS reveal multiple roles of microglia in disease pathogenesis.Neurol. Res. Int.201120111910.1155/2011/383087 22203900
    [Google Scholar]
  175. HaoJ. SimardA.R. TurnerG.H. Attenuation of CNS inflammatory responses by nicotine involves α7 and non-α7 nicotinic receptors.Exp. Neurol.2011227111011910.1016/j.expneurol.2010.09.020 20932827
    [Google Scholar]
  176. van NoortJ.M. van den ElsenP.J. van HorssenJ. GeurtsJ.J. van der ValkP. AmorS. Preactive multiple sclerosis lesions offer novel clues for neuroprotective therapeutic strategies.CNS Neurol. Disord. Drug Targets2011101688110.2174/187152711794488566 21143143
    [Google Scholar]
  177. ZhangZ. ZhangZ.Y. SchittenhelmJ. WuY. MeyermannR. SchluesenerH.J. Parenchymal accumulation of CD163+ macrophages/microglia in multiple sclerosis brains.J. Neuroimmunol.20112371-2737910.1016/j.jneuroim.2011.06.006 21737148
    [Google Scholar]
  178. GradeS. BernardinoL. MalvaJ.O. Oligodendrogenesis from neural stem cells: Perspectives for remyelinating strategies.Int. J. Dev. Neurosci.201331769270010.1016/j.ijdevneu.2013.01.004 23340483
    [Google Scholar]
  179. NaddafiF. HaidariR.M. AziziG. SedaghatR. MirshafieyA. Novel therapeutic approach by nicotine in experimental model of multiple sclerosis.Innov. Clin. Neurosci.20131042025 23696955
    [Google Scholar]
  180. SimardA.R. GanY. PierreS.S. Differential modulation of EAE by α9*‐ and β2*‐nicotinic acetylcholine receptors.Immunol. Cell Biol.201391319520010.1038/icb.2013.1 23399696
    [Google Scholar]
  181. GaoZ. NissenJ.C. LegakisL. TsirkaS.E. Nicotine modulates neurogenesis in the central canal during experimental autoimmune encephalomyelitis.Neuroscience2015297112110.1016/j.neuroscience.2015.03.031 25813705
    [Google Scholar]
  182. GaoZ. NissenJ.C. JiK. TsirkaS.E. The experimental autoimmune encephalomyelitis disease course is modulated by nicotine and other cigarette smoke components.PLoS One201499e10797910.1371/journal.pone.0107979 25250777
    [Google Scholar]
  183. ChoyE.H.S. PanayiG.S. Cytokine pathways and joint inflammation in rheumatoid arthritis.N. Engl. J. Med.20013441290791610.1056/NEJM200103223441207 11259725
    [Google Scholar]
  184. WuS. LuoH. XiaoX. ZhangH. LiT. ZuoX. Attenuation of collagen induced arthritis via suppression on Th17 response by activating cholinergic anti-inflammatory pathway with nicotine.Eur. J. Pharmacol.20147359710410.1016/j.ejphar.2014.04.019 24755145
    [Google Scholar]
  185. BlakeD.R. RobsonP. HoM. JubbR.W. McCabeC.S. Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis.Rheumatology2006451505210.1093/rheumatology/kei183 16282192
    [Google Scholar]
  186. ZurierR.B. RossettiR.G. LaneJ.H. GoldbergJ.M. HunterS.A. BursteinS.H. Dimethylheptyl-THC-11 OIC acid: A nonpsychoactive antiinflammatory agent with a cannabinoid template structure.Arthritis Rheum.199841116317010.1002/1529‑0131(199801)41:1<163::AID‑ART20>3.0.CO;2‑9 9433882
    [Google Scholar]
  187. SumariwallaP.F. GallilyR. TchilibonS. FrideE. MechoulamR. FeldmannM. A novel synthetic, nonpsychoactive cannabinoid acid (HU‐320) with antiinflammatory properties in murine collagen‐induced arthritis.Arthritis Rheum.200450398599810.1002/art.20050 15022343
    [Google Scholar]
  188. ZurierR.B. RossettiR.G. BursteinS.H. BidingerB. Suppression of human monocyte interleukin-1β production by ajulemic acid, a nonpsychoactive cannabinoid.Biochem. Pharmacol.200365464965510.1016/S0006‑2952(02)01604‑0 12566094
    [Google Scholar]
  189. JohnsonD.R. StebulisJ.A. RossettiR.G. BursteinS.H. ZurierR.B. Suppression of fibroblast metalloproteinases by ajulemic acid, a nonpsychoactive cannabinoid acid.J. Cell. Biochem.2007100118419010.1002/jcb.21046 16927387
    [Google Scholar]
  190. SelviE. LorenziniS. GonzalezG.E. Inhibitory effect of synthetic cannabinoids on cytokine production in rheumatoid fibroblast-like synoviocytes.Clin. Exp. Rheumatol.2008264574581 18799087
    [Google Scholar]
  191. LowinT. KokC. SmutnyS. PongratzG. Impact of Δ9-tetrahydrocannabinol on rheumatoid arthritis synovial fibroblasts alone and in co-culture with peripheral blood mononuclear cells.Biomedicines2022105111810.3390/biomedicines10051118 35625855
    [Google Scholar]
  192. LowinT. TingtingR. ZurmahrJ. ClassenT. SchneiderM. PongratzG. Cannabidiol (CBD): A killer for inflammatory rheumatoid arthritis synovial fibroblasts.Cell Death Dis.202011871410.1038/s41419‑020‑02892‑1 32873774
    [Google Scholar]
  193. van MaanenM.A. LebreM.C. van der PollT. Stimulation of nicotinic acetylcholine receptors attenuates collagen‐induced arthritis in mice.Arthritis Rheum.200960111412210.1002/art.24177 19116908
    [Google Scholar]
  194. YangY. YangY. YangJ. XieR. RenY. FanH. Regulatory effect of nicotine on collagen-induced arthritis and on the induction and function of in vitro-cultured Th17 cells.Mod. Rheumatol.201424578178710.3109/14397595.2013.862352 24313917
    [Google Scholar]
  195. MaoJ. PriceD.D. LuJ. KenistonL. MayerD.J. Two distinctive antinociceptive systems in rats with pathological pain.Neurosci. Lett.20002801131610.1016/S0304‑3940(99)00998‑2 10696800
    [Google Scholar]
  196. CoxM.L. WelchS.P. The antinociceptive effect of Delta9-tetrahydrocannabinol in the arthritic rat.Eur. J. Pharmacol.20044931-3657410.1016/j.ejphar.2004.04.022 15189765
    [Google Scholar]
  197. SchleyM. LeglerA. SkoppG. SchmelzM. KonradC. RukwiedR. Delta‐9-THC based monotherapy in fibromyalgia patients on experimentally induced pain, axon reflex flare, and pain relief.Curr. Med. Res. Opin.20062271269127610.1185/030079906X112651 16834825
    [Google Scholar]
  198. LynchM.E. WareM.A. Cannabinoids for the treatment of chronic non-cancer pain: An updated systematic review of randomized controlled trials.J. Neuroimmune Pharmacol.201510229330110.1007/s11481‑015‑9600‑6 25796592
    [Google Scholar]
  199. DitreJ.W. BrandonT.H. ZaleE.L. MeagherM.M. Pain, nicotine, and smoking: Research findings and mechanistic considerations.Psychol. Bull.201113761065109310.1037/a0025544 21967450
    [Google Scholar]
  200. SmuckM. SchneiderB.J. EhsanianR. MartinE. KaoM.C.J. Smoking is associated with pain in all body regions, with greatest influence on spinal pain.Pain Med.20202191759176810.1093/pm/pnz224 31578562
    [Google Scholar]
  201. RabinovitchA. An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus.Diabetes Metab. Rev.199814212915110.1002/(SICI)1099‑0895(199806)14:2<129::AID‑DMR208>3.0.CO;2‑V 9679667
    [Google Scholar]
  202. RabinovitchA. PinzonS.W.L. Cytokines and their roles in pancreatic islet beta-cell destruction and insulin-dependent diabetes mellitus.Biochem. Pharmacol.19985581139114910.1016/S0006‑2952(97)00492‑9 9719467
    [Google Scholar]
  203. LiX. KaminskiN.E. FischerL.J. Examination of the immunosuppressive effect of Δ9-tetrahydrocannabinol in streptozotocin-induced autoimmune diabetes.Int. Immunopharmacol.20011469971210.1016/S1567‑5769(01)00003‑0 11357882
    [Google Scholar]
  204. IbrahimM.M. DengH. ZvonokA. Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: Pain inhibition by receptors not present in the CNS.Proc. Natl. Acad. Sci. 200310018105291053310.1073/pnas.1834309100 12917492
    [Google Scholar]
  205. BottazzoG.F. BonifacioE. Immune factors in the pathogenesis of Insulin-dependent diabetes mellitus.Textbook Diabetes1991122140
    [Google Scholar]
  206. RabinovitchA. Immunoregulatory and cytokine imbalances in the pathogenesis of IDDM. Therapeutic intervention by immunostimulation?Diabetes199443561362110.2337/diab.43.5.613 8168635
    [Google Scholar]
  207. NoorchashmH. KwokW. RabinovitchA. HarrisonL.C. Immunology of IDDM.Diabetologia199740S3B50B5710.1007/BF03168187 9345646
    [Google Scholar]
  208. IzzoA.A. CamilleriM. Emerging role of cannabinoids in gastrointestinal and liver diseases: Basic and clinical aspects.Gut20085781140115510.1136/gut.2008.148791 18397936
    [Google Scholar]
  209. HegdeV.L. HegdeS. CravattB.F. HofsethL.J. NagarkattiM. NagarkattiP.S. Attenuation of experimental autoimmune hepatitis by exogenous and endogenous cannabinoids: Involvement of regulatory T cells.Mol. Pharmacol.2008741203310.1124/mol.108.047035 18388242
    [Google Scholar]
  210. AbdrakhmanovaG.R. AlSharariS. KangM. DamajM.I. AkbaraliH.I. α7-nAChR-mediated suppression of hyperexcitability of colonic dorsal root ganglia neurons in experimental colitis.Am. J. Physiol. Gastrointest. Liver Physiol.20102993G761G76810.1152/ajpgi.00175.2010 20595621
    [Google Scholar]
  211. LakhanS.E. KirchgessnerA. Anti-inflammatory effects of nicotine in obesity and ulcerative colitis.J. Transl. Med.20119112910.1186/1479‑5876‑9‑129 21810260
    [Google Scholar]
  212. GolubV. ReddyD.S. Cannabidiol therapy for refractory epilepsy and seizure disorders.cannabinoids and neuropsychiatric disorders.ChamSpringer International Publishing20219311010.1007/978‑3‑030‑57369‑0_7
    [Google Scholar]
  213. O’SullivanS.E. JensenS.S. NikolajsenG.N. BruunH.Z. BhullerR. HoengJ. The therapeutic potential of purified cannabidiol.J Cannabis Res2023512110.1186/s42238‑023‑00186‑9 37312194
    [Google Scholar]
  214. D’EliaR.V. HarrisonK. OystonP.C. LukaszewskiR.A. ClarkG.C. Targeting the “cytokine storm” for therapeutic benefit.Clin. Vaccine Immunol.201320331932710.1128/CVI.00636‑12 23283640
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128293077240529111824
Loading
/content/journals/cpd/10.2174/0113816128293077240529111824
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cannabidiol; cannabinoids; Cytokines; inflammation; nicotine; tetrahydrocannabinol
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test