- Home
- A-Z Publications
- Current Pharmaceutical Design
- Previous Issues
- Volume 30, Issue 3, 2024
Current Pharmaceutical Design - Volume 30, Issue 3, 2024
Volume 30, Issue 3, 2024
-
-
Free Radicals, Mitochondrial Dysfunction and Sepsis-induced Organ Dysfunction: A Mechanistic Insight
Authors: Sanni Kumar, Vijay Kumar Srivastava, Sanket Kaushik, Juhi Saxena and Anupam JyotiSepsis is a complex clinical condition and a leading cause of death worldwide. During Sepsis, there is a derailment in the host response to infection, which can progress to severe sepsis and multiple organ dysfunction or failure, which leads to death. Free radicals, including reactive oxygen species (ROS) generated predominantly in mitochondria, are one of the key players in impairing normal organ function in sepsis. ROS contributing to oxidative stress has been reported to be the main culprit in the injury of the lung, heart, liver, kidney, gastrointestinal, and other organs. Here in the present review, we describe the generation, and essential properties of various types of ROS, their effect on macromolecules, and their role in mitochondrial dysfunction. Furthermore, the mechanism involved in the ROS-mediated pathogenesis of sepsis-induced organ dysfunction has also been discussed.
-
-
-
The Significance and Importance of dPCR, qPCR, and SYBR Green PCR Kit in the Detection of Numerous Diseases
Authors: Mohamad Hesam Shahrajabian and Wenli SunDigital PCR (dPCR) is the latest technique that has become commercially accessible for various types of research. This method uses Taq polymerase in a standard polymerase chain reaction (PCR) to amplify a target DNA fragment from a complex sample, like quantitative PCR (qPCR) and droplet digital PCR (dd- PCR). ddPCR may facilitate microRNA (miRNA) measurement, particularly in liquid biopsy, because it has been proven to be more effective and sensitive, and in this method, ddPCR can provide an unprecedented chance for deoxyribonucleic acid (DNA) methylation research because of its capability to increase sensitivity and precision over conventional PCR-based methods. qPCR has also been found to be a valuable standard technique to measure both copy DNA (cDNA) and genomic DNA (gDNA) levels, although the finding data can be significantly variable and non-reproducible without relevant validation and verification of both primers and samples. The SYBR green quantitative real-time PCR (qPCR) method has been reported as an appropriate technique for quantitative detection and species discrimination, and has been applied profitably in different experiments to determine, quantify, and discriminate species. Although both TaqMan qRT-PCR and SYBR green qRT-PCR are sensitive and rapid, the SYBR green qRT-PCR assay is easy and the TaqMan qRT-PCR assay is specific but expensive due to the probe required. This review aimed to introduce dPCR, qPCR, SYBR green PCR kit, and digital PCR, compare them, and also introduce their advantages in the detection of different diseases.
-
-
-
Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review
Authors: Evgenii Gusev and Alexey SarapultsevIntroduction: This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. Objective: We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. Methods: This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-ΚB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. Results: The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. Conclusion: The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
-
-
-
Exploring the Effect of Xiao-Chai-Hu Decoction on Treating Psoriasis Based on Network Pharmacology and Experiment Validation
Authors: Ke He, Ziyang Wang, Meng Liu, Wenqian Du, Tingyi Yin, Ruimin Bai, Qiqi Duan, Yuqian Wang, Hao Lei and Yan ZhengBackground: Psoriasis is a chronic, inflammatory and recurrent skin disease. Xiao-Chai-Hu Decoction (XCHD) has shown good effects against some inflammatory diseases and cancers. However, the pharmacological effect and mechanisms of XCHD on psoriasis are not yet clear. Objective: To uncover the effect and mechanisms of XCHD on psoriasis by integrating network pharmacology, molecular docking, and in vivo experiments. Methods: The active ingredients and corresponding targets of XCHD were screened through Traditional Chinese Medicine Systems Pharmacology Database and Analysis (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID). Differentially expressed genes (DEGs) of psoriasis were obtained from the gene expression omnibus (GEO) database. The XCHD-psoriasis intersection targets were obtained by intersecting XCHD targets, and DEGs were used to establish the “herb-active ingredient-target” network and Protein-Protein Interaction (PPI) Network. The hub targets were identified based on the PPI network by Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed next. Molecular docking was executed via AutoDockTools-1.5.6. Finally, in vivo experiments were carried out further to validate the therapeutic effects of XCHD on psoriasis. Results: 58 active components and 219 targets of XCHD were screened. 4 top-active components (quercetin, baicalein, wogonin and kaempferol) and 7 hub targets (IL1B, CXCL8, CCND1, FOS, MMP9, STAT1 and CCL2) were identified. GO and KEGG pathway enrichment analyses indicated that the TNF signaling pathway, IL-17 signaling pathway and several pathways were involved. Molecular docking results indicated that hub genes had a good affinity to the corresponding key compounds. In imiquimod (IMQ)-induced psoriasis mouse models, XCHD could significantly improve psoriasis-like skin lesions, downregulate KRT17 and Ki67, and inhibit inflammation cytokines and VEGF. Conclusion: XCHD showed the therapeutic effect on psoriasis by regulating keratinocyte differentiation, and suppressing inflammation and angiogenesis, which provided a theoretical basis for further experiments and clinical research.
-
-
-
Artesunate Inhibits the Growth of Insulinoma Cells via SLC7A11/ GPX4-mediated Ferroptosis
Authors: Fengping Chen, Jiexia Lu, Biaolin Zheng, Nan Yi, Chunxiao Xie, Feiran Chen, Dafu Wei, Haixing Jiang and Shanyu QinBackground: Artesunate (ART) has been recognized to induce ferroptosis in various tumor phenotypes, including neuroendocrine tumors. We aimed to investigate the effects of ART on insulinoma and the underlying mechanisms by focusing on the process of ferroptosis. Methods: The CCK8 and colony formation assays were conducted to assess the effectiveness of ART. Lipid peroxidation, glutathione, and intracellular iron content were determined to validate the process of ferroptosis, while ferrostatin-1 (Fer-1) was employed as the inhibitor of ferroptosis. Subcutaneous tumor models were established and treated with ART. The ferroptosis-associated proteins were determined by western blot and immunohistochemistry assays. Pathological structures of the liver were examined by hematoxylin-eosin staining. Results: ART suppressed the growth of insulinoma both in vitro and in vivo . Insulinoma cells treated by ART revealed signs of ferroptosis, including increased lipid peroxidation, diminished glutathione levels, and ascending intracellular iron. Notably, ART-treated insulinoma cells exhibited a decline in the expressions of catalytic component solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4). These alterations were negated by Fer-1. Moreover, no hepatotoxicity was observed upon the therapeutic dose of ART. Conclusion: Artesunate might regulate ferroptosis of insulinoma cells through the SLC7A11/GPX4 pathway.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)