- Home
- A-Z Publications
- Current Pharmaceutical Design
- Previous Issues
- Volume 30, Issue 22, 2024
Current Pharmaceutical Design - Volume 30, Issue 22, 2024
Volume 30, Issue 22, 2024
-
-
Diagnosis of the Initial Stage of Hepatocellular Carcinoma: A Review
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide. There may be more than a million instances of hepatocellular carcinoma by 2025, making it a persistent concern for global health. The most common form of hepatocellular carcinoma accounts for more than 90% of cases. There is no known cure for hepatocellular carcinoma, which is usually detected late in life. Unlike most other common malignancies, such as lung, prostate, and breast cancers, where mortality rates are declining, rates of death are rising by around 2-3% every year. It is extremely difficult to diagnose hepatocellular carcinoma in its early stages. Alpha-fetoprotein serology studies and ultrasonography (US) monitoring were historically the primary methods for early detection of hepatocellular cancer. However, the sensitivity or specificity of ultrasonography/alpha-fetoprotein (US/AFP) is not high enough to detect hepatocellular carcinoma in its early stages. Alpha-fetoprotein, or AFP, is an amino acid that is normally produced by the liver or yolk sac of an embryonic baby. In adults, AFP levels are typically modest. Adults with high levels of AFP have been associated with several illnesses, the most well-known of which are certain types of cancer. It is still possible to diagnose hepatocellular carcinoma early because of current technological advancements. We address the advancements in the diagnosis of hepatocellular carcinoma in this article, with a focus on new imaging techniques and diagnostic markers for early-stage tumor identification.
-
-
-
Exploring Innovative Approaches in Type-2 Diabetes Management: A Comprehensive Review on Nano-carriers and Transdermal Drug Delivery
Authors: Nitasha Chauhan, Mohit Kumar, Karan Kumar, Shruti Chopra and Amit BhatiaDiabetes is a chronic metabolic disorder characterized by elevated blood sugar levels and encompasses various types like type 1, type 2, gestational, and prediabetes. This review delves into the intricacies of type-2 diabetes mellitus and its ideal management. Presently, a spectrum of herbal and synthetic drugs is employed for type-2 diabetes mellitus management. We gathered information about diabetes mellitus from articles published up to 2024 and listed in PubMed, Web of Science, Elsevier, Google Scholar, and similar databases. The keywords used in our search included “diabetes”, “herbal drugs”, “nano-carriers”, “transdermal drug delivery”, etc. By carefully analyzing the research on type-2 diabetes-mellitus, it was found that there is an increase in diabetes-based research, which can be demonstrated by contemplating the PubMed search engine results using transdermal delivery for type-2 diabetes-mellitus as a keyword. The oral consumption of these drugs is associated with numerous side effects, including obesity, pancreatic cancer, and hormonal imbalances. To surmount these challenges, the utilization of nano-carriers and transdermal drug delivery systems emerges as a promising avenue aiming to enhance the therapeutic efficacy of drugs. Nano-carriers represent a revolutionary approach, integrating cutting-edge technologies, inventive strategies, and methodologies to deliver active molecules in concentrations that are both safe and effective, thereby eliciting the desired pharmacological response. This review critically examines the constraints associated with traditional oral administration of anti-diabetic drugs and underscores the manifold initiatives undertaken to revolutionize drug delivery. This review focuses on the limitations associated with the conventional oral administration of anti-diabetic drugs and the many initiatives made so far for the effective and safe delivery of drugs using innovative constituents and techniques.
-
-
-
MicroRNAs as Key Regulators in RA and SLE: Insights into Biological Functions
Authors: Xiao-Xiao Li, Chan-Na Zhao, Hai-Fen Wei, Sheng Li, Jian Tang, Yan-Yu Zhu, Xue-Er Cheng, Qian-Qian Shi, Peng Wang and Hai-Feng PanMicroRNAs (miRNAs) are non-coding RNA molecules that bind to mRNAs to regulate gene expression. Since changes in miRNA expression levels have been found in a variety of autoimmune illnesses, miRNAs are important in autoimmune diseases. MiRNAs serve not only as pathogenic factors and biomarkers for autoimmune diseases but also as important targets for disease therapeutics. Although miRNA-based treatments are still in the research stage, in-depth investigations into the biological functions of miRNAs have significantly enhanced our understanding of their mechanisms in autoimmune diseases. The purpose of this review is to summarize the biological functions of miRNAs, their roles in rheumatoid arthritis and systemic lupus erythematosus, therapeutic strategies, and challenges.
-
-
-
3′-Daidzein Sulfonate Sodium Protects against Glutamate-induced Neuronal Injuries by Regulating NMDA Receptors
Authors: Ruixue Feng, Li Luo, Zun Han, Yue Qi, Hai Xiao, Cheng Huang, Weijie Peng, Ruizhen Liu and Zhihua HuangBackground: It was previously found that 3'-Daidzein Sulfonate Sodium (DSS) exhibits protective effects on cerebral ischemia/reperfusion injury (CI/RI). Aim: This study aimed to explore the underlying molecular mechanisms involved in the neuroprotective effects of DSS against ischemic stroke. Methods: In this study, rats with transient middle cerebral artery occlusion (tMCAO) were used as an in vivo model, whereas PC12 cells treated with glutamate alone and rat primary cortical neurons treated with the combination of glutamate and glycine were used as in vitro models. Cell viability and lactate dehydrogenase (LDH) release were used to evaluate cell injury. Cell apoptosis was determined by flow cytometry. Quantitative polymerase chain reaction (qPCR), Western blotting, and immunofluorescent staining methods were used to determine the mRNA expressions and protein levels and location. Results: It was found that DSS significantly suppressed the impaired viability of PC12 cells induced by glutamate. DSS also increased cell viability while reducing the LDH release and apoptosis in primary cortical neurons injured by glutamate and glycine. In addition, DSS decreased GluN2B subunit expression while enhancing the expressions of GluN2A subunit and PSD95 in tMCAO rats’ brains. Conclusion: This study demonstrated that DSS protects against excitotoxic damage in neurons induced by CI/RI through regulating the expression of NMDA receptors and PSD95. Our findings provide experimental evidence for the potential clinical administration of DSS in ischemic stroke.
-
-
-
Examining the Mechanism of Treatment for Primary Dysmenorrhea with Wenjing Huoxue Decoction based on Transcriptomics, Metabolomics, and Network Pharmacology
Authors: Weisen Fan, Dandan Wang, Liwei Yan and Zheng YuanBackground: Wenjing Huoxue Decoction (WJHXD) is a traditional treatment for primary dysmenorrhea (PD) that can quickly relieve various symptoms caused by PD. Previous clinical studies have shown that WJHXD has better long-term efficacy than ibuprofen in the treatment of PD and can reverse the disorder of T cell subsets. Objective: To investigate the effect of WJHXD on serum-related factors in the treatment of PD, including the identification of key targets, pathways, and active ingredients. Methods: In order to study the effects of the WJHXD intervention in Parkinson's Disease (PD) rats, we used transcriptomics and metabolomics methods to examine the differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs). We also utilized network pharmacology to predict the target and effective route of WJHXD in treating PD. Finally, we employed molecular docking (MD) technology to confirm the placement of important targets and metabolites. Results: WJHXD has been found to be effective in prolonging the onset time and decreasing the number of writhing episodes in PD rats after oxytocin injection. It has also been observed to reduce the levels of PGF2, COX-2, AVP, and PGE2 in the serum of PD rats to different degrees. Transcriptomics analysis has revealed that the core targets of WJHXD include KRT1, KRT16, CCL5, F2, NOS2, RAC2, and others, while the core pathways are Calcium signaling and cAMP signaling. The Estrogen signaling pathway was found to be downregulated in PD rats compared to normal uterine tissue, but WJHXD was able to up-regulate the pathway. A combined transcriptomics and metabolomics analysis suggested that WJHXD may be involved in eight metabolism-related pathways, with the most reliable ones being mucin-type O-glycan biosynthesis and glycolysis or gluconeogenesis. MD has shown that Hydroxyisocaproic acid may bind to important targets such as SLC6A4, PTGER3, IGFBP3, and IGF2. Conclusion: In WJHXD, the most targeted herbs were Corydalis rhizoma, licorice, and Myrrha. The most targeted active ingredients include quercetin, 3'-Hydroxy-4'-O-methylglabridin, shinpterocarpin, and isorhamnetin. Potential targets include PTGS2, NOS2, AR, SCN5A, and GAS6. Analysis revealed 72 highly reliable relationships between group A and B DEGs and DEMs, with 23 positive correlations and 49 negative correlations among them. A combined analysis of transcriptomics, metabolomics, and network pharmacology was used to identify possible targets, pathways, and active ingredients of WJHXD in PD treatment, and the correlation between DEGs and DEMs was investigated. However, further research is required to confirm the relationship between active ingredients, targets, and metabolites.
-
Volumes & issues
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)