Skip to content
2000
Volume 30, Issue 31
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Biodegradable polymers, encompassing both natural and synthetic polymers, have demonstrated efficacy as carriers for synthetic drugs, natural bioactive molecules, and inorganic metals. This is due to their ability to control the release of these substances. As a result, various advanced materials, such as nanoparticle-loaded hydrogels, nanofibrous scaffolds, and nanocomposites, have been developed. These materials have shown promise in enhancing processes, such as cell proliferation, vascular angiogenesis, hair growth, and wound healing management. Natural polymers, including hyaluronic acid, collagen, chitosan, gelatin, and alginate, as well as synthetic polymers like polylactic acid, polyglycolic acid, polylactic co-glycolic acid, and PCA, have significant potential for promoting wound healing. This study examines the advancements in biodegradable polymers for wound healing, specifically focusing on each polymer and its distinctive formulations. It also discusses the experiments conducted using different cell lines, as well as the studies that explore the numerous uses of these polymers in wound healing. The discussion also included the exploration of modifications or combinations of several polymers, as well as surface changes, in order to produce synergistic effects and address the limitations of individual polymers. The goal was to expedite the healing process of different chronic wounds. Due to this, there have been notable advancements in the technological use of polymeric mixes, including biodegradable polymer-based scaffolds, which have accelerated the process of wound healing.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128295935240425101509
2024-07-08
2024-11-16
Loading full text...

Full text loading...

References

  1. LazarusG.S. CooperD.M. KnightonD.R. MargolisD.J. PercoraroR.E. RodeheaverG. RobsonM.C. Definitions and guidelines for assessment of wounds and evaluation of healing.Wound Repair Regen.19942316517010.1046/j.1524‑475X.1994.20305.x17156107
    [Google Scholar]
  2. HuangC. MurphyG.F. AkaishiS. OgawaR. Keloids and hypertrophic scars: Update and future directions.Plast. Reconstr. Surg. Glob. Open201314e2510.1097/GOX.0b013e31829c459725289219
    [Google Scholar]
  3. AvishaiE. YeghiazaryanK. GolubnitschajaO. Impaired wound healing: Facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine.EPMA J.201781233310.1007/s13167‑017‑0081‑y28620441
    [Google Scholar]
  4. NethiS.K. DasS. PatraC.R. MukherjeeS. Recent advances in inorganic nanomaterials for wound-healing applications.Biomater. Sci.2019772652267410.1039/C9BM00423H31094374
    [Google Scholar]
  5. SenC.K. Human wounds and its burden: An updated compendium of estimates.Adv. Wound Care201982394810.1089/wound.2019.094630809421
    [Google Scholar]
  6. NussbaumS.R. CarterM.J. FifeC.E. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds.Value Health2018211273210.1016/j.jval.2017.07.007
    [Google Scholar]
  7. GuptaN. GuptaS.K. ShuklaV.K. SinghS.P. An Indian community-based epidemiological study of wounds.J. Wound Care200413832332510.12968/jowc.2004.13.8.2665715469216
    [Google Scholar]
  8. DoraiA.A. Wound care with traditional, complementary and alternative medicine.Indian J. Plast. Surg.201245241842410.4103/0970‑0358.10133123162243
    [Google Scholar]
  9. YaghoobiR. KazerouniA. kazerouniO. Evidence for clinical use of honey in wound healing as an anti-bacterial, anti-inflammatory anti-oxidant and anti-viral agent: A review.Jundishapur J. Nat. Pharm. Prod.20138310010410.17795/jjnpp‑948724624197
    [Google Scholar]
  10. OkurME KarantasID ŞenyiğitZ Üstündağ OkurN SiafakaPI Recent trends on wound management: New therapeutic choices based on polymeric carriers.Asian. J. Pharmac. Sci.2020156661684
    [Google Scholar]
  11. JayanthD. KumarP.S. NayakG.C. KumarJ.S. PalS.K. RajasekarR. A review on biodegradable polymeric materials striving towards the attainment of green environment.J. Polym. Environ.201826283886510.1007/s10924‑017‑0985‑6
    [Google Scholar]
  12. YinG.Z. YangX.M. Biodegradable polymers: A cure for the planet, but a long way to go.J. Polym. Res.20202723810.1007/s10965‑020‑2004‑1
    [Google Scholar]
  13. HassanD. FasikuV.O. MaduS.J. MuazuJ. Biodegradable antibiotics in wound healing.Antib. Mat. Healthc.20209311010.1016/B978‑0‑12‑820054‑4.00006‑9
    [Google Scholar]
  14. IqbalN. KhanA.S. AsifA. YarM. HaycockJ.W. RehmanI.U. Recent concepts in biodegradable polymers for tissue engineering paradigms: A critical review.Int. Mater. Rev.20196429112610.1080/09506608.2018.1460943
    [Google Scholar]
  15. Rahmani Del BakhshayeshA. AnnabiN. KhalilovR. AkbarzadehA. SamieiM. AlizadehE. Alizadeh-GhodsiM. DavaranS. MontaseriA. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering.Artif. Cells Nanomed. Biotechnol.201846469170510.1080/21691401.2017.134977828697631
    [Google Scholar]
  16. KirillovaA. YeazelT.R. AsheghaliD. PetersenS.R. DortS. GallK. BeckerM.L. Fabrication of biomedical scaffolds using biodegradable polymers.Chem. Rev.202112118112381130410.1021/acs.chemrev.0c0120033856196
    [Google Scholar]
  17. Bachs-HerreraA. YousefzadeO. del ValleL.J. PuiggaliJ. Melt electrospinning of polymers: Blends, nanocomposites, additives and applications.Appl. Sci.2021114180810.3390/app11041808
    [Google Scholar]
  18. YousefzadeO. KatsaravaR. PuiggalíJ. Biomimetic hybrid systems for tissue engineering.Biomimetics2020544910.3390/biomimetics504004933050136
    [Google Scholar]
  19. DoppalapudiS. JainA. KhanW. DombA.J. Biodegradable polymers: An overview.Polym. Adv. Technol.201425542743510.1002/pat.3305
    [Google Scholar]
  20. GeorgeA. ShahP.A. ShrivastavP.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review.Int. J. Pharm.201956124426410.1016/j.ijpharm.2019.03.01130851391
    [Google Scholar]
  21. AstiA. GioglioL. Natural and synthetic biodegradable polymers: Different scaffolds for cell expansion and tissue formation.Int. J. Artif. Organs201437318720510.5301/ijao.500030724744164
    [Google Scholar]
  22. SongR. MurphyM. LiC. TingK. SooC. ZhengZ. Current development of biodegradable polymeric materials for biomedical applications.Drug Des. Devel. Ther.2018123117314510.2147/DDDT.S16544030288019
    [Google Scholar]
  23. KhanR. KhanM. Use of collagen as a biomaterial: An update.J. Indian Soc. Periodontol.201317453954210.4103/0972‑124X.11833324174741
    [Google Scholar]
  24. LiY. LiuY. LiR. BaiH. ZhuZ. ZhuL. ZhuC. CheZ. LiuH. WangJ. HuangL. Collagen-based biomaterials for bone tissue engineering.Mater. Des.202121011004910.1016/j.matdes.2021.110049
    [Google Scholar]
  25. Avila RodríguezM.I. Rodríguez BarrosoL.G. SánchezM.L. Collagen: A review on its sources and potential cosmetic applications.J. Cosmet. Dermatol.2018171202610.1111/jocd.1245029144022
    [Google Scholar]
  26. LiuX. ZhengC. LuoX. WangX. JiangH. Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications.Mater. Sci. Eng. C201999991509152210.1016/j.msec.2019.02.07030889687
    [Google Scholar]
  27. Gómez-GuillénM.C. GiménezB. López-CaballeroM.E. MonteroM.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review.Food Hydrocoll.20112581813182710.1016/j.foodhyd.2011.02.007
    [Google Scholar]
  28. TangsadthakunC. KanokpanontS. SanchavanakitN. BanaprasertT. DamrongsakkulS. Properties of collagen/chitosan scaffolds for skin tissue engineering.J Met Mater Miner.20171613744
    [Google Scholar]
  29. NamK. KimuraT. KishidaA. Physical and biological properties of collagen-phospholipid polymer hybrid gels.Biomaterials200728203153316210.1016/j.biomaterials.2007.03.00117391753
    [Google Scholar]
  30. DongC. LvY. Application of collagen scaffold in tissue engineering: Recent advances and new perspectives.Polymers2016824210.3390/polym802004230979136
    [Google Scholar]
  31. HarshaL. BrundhaM.P. Role of collagen in wound healing.Drug Invent Today.20201315557
    [Google Scholar]
  32. Li Z, Qian C, Zheng X, Qi X, Bi J, Wang H, Cao J. Collagen/chitosan/genipin hydrogel loaded with phycocyanin nanoparticles and ND-336 for diabetic wound healing. Int J Biol Macromol 2024; 266: 131220.10.1016/J.IJBIOMAC.2024.131220
  33. TortS. AcartürkF. BeşikciA. Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing.Int. J. Pharm.20175291-264265310.1016/j.ijpharm.2017.07.02728705624
    [Google Scholar]
  34. MahmoudA.A. SalamaA.H. Norfloxacin-loaded collagen/chitosan scaffolds for skin reconstruction: Preparation, evaluation and in vivo wound healing assessment.Eur. J. Pharm. Sci.20168315516510.1016/j.ejps.2015.12.02626733072
    [Google Scholar]
  35. ChenD.W. HsuY.H. LiaoJ.Y. LiuS.J. ChenJ.K. UengS.W.N. Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes.Int. J. Pharm.20124301-233534110.1016/j.ijpharm.2012.04.01022521880
    [Google Scholar]
  36. ToosiS Naderi-MeshkinH KalaliniaF PeivandiMT PGA-incorporated collagen: Toward a biodegradable composite scaffold for bone-tissue engineering.J. Biomed. Mater. Res. Part A.2016104820202028
    [Google Scholar]
  37. GautamS. ChouC.F. DindaA.K. PotdarP.D. MishraN.C. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.Mater. Sci. Eng. C20143440240910.1016/j.msec.2013.09.04324268275
    [Google Scholar]
  38. PeiY. YangJ. LiuP. XuM. ZhangX. ZhangL. Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films.Carbohydr. Polym.20139221752176010.1016/j.carbpol.2012.11.02923399216
    [Google Scholar]
  39. ZhouG. LiuS. MaY. XuW. MengW. LinX. WangW. WangS. ZhangJ. Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation.Int. J. Nanomed2017127577758810.2147/IJN.S14667929075116
    [Google Scholar]
  40. ZulkifliF.H. Jahir HussainF.S. Abdull RasadM.S.B. Mohd YusoffM. In vitro degradation study of novel HEC/PVA/collagen nanofibrous scaffold for skin tissue engineering applications.Polym. Degrad. Stab.201411047348110.1016/j.polymdegradstab.2014.10.017
    [Google Scholar]
  41. RavichandranR. VenugopalJ.R. SundarrajanS. MukherjeeS. RamakrishnaS. Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage.Biomaterials201233384685510.1016/j.biomaterials.2011.10.03022048006
    [Google Scholar]
  42. RathG. HussainT. ChauhanG. GargT. GoyalA.K. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications.J. Drug Target.201624652052910.3109/1061186X.2015.109592226487102
    [Google Scholar]
  43. KandhasamyS. PerumalS. MadhanB. UmamaheswariN. BandayJ.A. PerumalP.T. SanthanakrishnanV.P. Synthesis and fabrication of collagen-coated ostholamide electrospun nanofiber scaffold for wound healing.ACS Appl. Mater. Interfaces20179108556856810.1021/acsami.6b1648828221758
    [Google Scholar]
  44. Sadeghi-AvalshahrA. NokhastehS. MolaviA.M. Khorsand-GhayeniM. Mahdavi-ShahriM. Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers.Regen. Biomater.20174530931410.1093/rb/rbx02629026645
    [Google Scholar]
  45. SanapalliB.K.R. YeleV. SinghM.K. ThumbooruS.N. ParvathaneniM. KarriV.V.S.R. Human beta defensin-2 loaded PLGA nanoparticles impregnated in collagen-chitosan composite scaffold for the management of diabetic wounds.Biomed. Pharmacother.2023161May11454010.1016/j.biopha.2023.11454036934557
    [Google Scholar]
  46. ChatterjeeN.S. SukumaranH.G. DaraP.K. GanesanB. AshrafM. AnandanR. MathewS. NagarajaraoR.C. Nano-encapsulation of curcumin in fish collagen grafted succinyl chitosan hydrogel accelerates wound healing process in experimental rats.Food Hydrocolloids for Health20222December10006110.1016/j.fhfh.2022.100061
    [Google Scholar]
  47. DengA. YangY. DuS. YangX. PangS. WangX. YangS. Preparation of a recombinant collagen-peptide (RHC)-conjugated chitosan thermosensitive hydrogel for wound healing.Mater. Sci. Eng. C202111911155510.1016/j.msec.2020.11155533321619
    [Google Scholar]
  48. ZhangZ. LiZ. LiY. WangY. YaoM. ZhangK. ChenZ. YueH. ShiJ. GuanF. MaS. Sodium alginate/collagen hydrogel loaded with human umbilical cord mesenchymal stem cells promotes wound healing and skin remodeling.Cell Tissue Res.2021383280982110.1007/s00441‑020‑03321‑733159581
    [Google Scholar]
  49. DingC. TianM. FengR. DangY. ZhangM. Novel self-healing hydrogel with injectable, pH-responsive, strain-sensitive, promoting wound-healing, and hemostatic properties based on collagen and chitosan.ACS Biomater. Sci. Eng.2020673855386710.1021/acsbiomaterials.0c0058833463340
    [Google Scholar]
  50. YangM. HeS. SuZ. YangZ. LiangX. WuY. Thermosensitive injectable chitosan/collagen/β-glycerophosphate composite hydrogels for enhancing wound healing by encapsulating mesenchymal stem cell spheroids.ACS Omega2020533210152102310.1021/acsomega.0c0258032875238
    [Google Scholar]
  51. ChandikaP. OhG.W. HeoS.Y. KimS.C. KimT.H. KimM.S. JungW.K. Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications.Mater. Sci. Eng. C202112111187110.1016/j.msec.2021.11187133579504
    [Google Scholar]
  52. GhorbaniM. Nezhad-MokhtariP. RamazaniS. Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing.Int. J. Biol. Macromol.202015392193010.1016/j.ijbiomac.2020.03.03632151718
    [Google Scholar]
  53. HouJ ChenL ZhouM Polyamide/collagen scaffolds with topical sustained release of n-acetylcysteine for promoting wound healing.Int. J. Nanomed2020151349
    [Google Scholar]
  54. RamanathanG. Seleenmary SobhanadhasL.S. Sekar JeyakumarG.F. DeviV. SivagnanamU.T. FardimP. Fabrication of biohybrid cellulose acetate-collagen bilayer matrices as nanofibrous spongy dressing material for wound-healing application.Biomacromolecules20202162512252410.1021/acs.biomac.0c0051632343892
    [Google Scholar]
  55. KoganG. ŠoltésL. SternR. GemeinerP. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications.Biotechnol. Lett.2006291172510.1007/s10529‑006‑9219‑z17091377
    [Google Scholar]
  56. LuoY. KirkerK.R. PrestwichG.D. Cross-linked hyaluronic acid hydrogel films: New biomaterials for drug delivery.J. Control. Release200069116918410.1016/S0168‑3659(00)00300‑X11018555
    [Google Scholar]
  57. PriceR.D. MyersS. LeighI.M. NavsariaH.A. The role of hyaluronic acid in wound healing: Assessment of clinical evidence.Am. J. Clin. Dermatol.20056639340210.2165/00128071‑200506060‑0000616343027
    [Google Scholar]
  58. KawanoY. PatruleaV. SubletE. BorchardG. IyodaT. KageyamaR. MoritaA. SeinoS. YoshidaH. JordanO. HanawaT. Wound healing promotion by hyaluronic acid: Effect of molecular weight on gene expression and in vivo wound closure.Pharmaceuticals202114430110.3390/ph1404030133800588
    [Google Scholar]
  59. LitwiniukM. KrejnerA. SpeyrerM.S. GautoA.R. GrzelaT. Hyaluronic acid in inflammation and tissue regeneration.Wounds2016283788826978861
    [Google Scholar]
  60. LinZ. WuT. WangW. LiB. WangM. ChenL. XiaH. ZhangT. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronic acid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound.Int. J. Biol. Macromol.201914033034210.1016/j.ijbiomac.2019.08.08731421174
    [Google Scholar]
  61. ChandaA. AdhikariJ. GhoshA. ChowdhuryS.R. ThomasS. DattaP. SahaP. Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications.Int. J. Biol. Macromol.201811677478510.1016/j.ijbiomac.2018.05.09929777811
    [Google Scholar]
  62. ZhuJ. LiF. WangX. YuJ. WuD. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing.ACS Appl. Mater. Interfaces20181016133041331610.1021/acsami.7b1892729607644
    [Google Scholar]
  63. MakvandiP. AliG.W. Della SalaF. Abdel-FattahW.I. BorzacchielloA. Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing.Carbohydr. Polym.201922311502310.1016/j.carbpol.2019.11502331427021
    [Google Scholar]
  64. YingH. ZhouJ. WangM. SuD. MaQ. LvG. ChenJ. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing.Mater. Sci. Eng. C201910148749810.1016/j.msec.2019.03.09331029343
    [Google Scholar]
  65. SanadR.A.B. Abdel-BarH.M. Chitosan–hyaluronic acid composite sponge scaffold enriched with Andrographolide-loaded lipid nanoparticles for enhanced wound healing.Carbohydr. Polym.201717344145010.1016/j.carbpol.2017.05.09828732886
    [Google Scholar]
  66. ZhangS. HouJ. YuanQ. XinP. ChengH. GuZ. WuJ. Arginine derivatives assist dopamine-hyaluronic acid hybrid hydrogels to have enhanced antioxidant activity for wound healing.Chem. Eng. J.202039212377510.1016/j.cej.2019.123775
    [Google Scholar]
  67. Karimi DehkordiN. MinaiyanM. TalebiA. AkbariV. TaheriA. Nanocrystalline cellulose–hyaluronic acid composite enriched with GM-CSF loaded chitosan nanoparticles for enhanced wound healing.Biomed. Mater.201914303500310.1088/1748‑605X/ab026c30690433
    [Google Scholar]
  68. WuS. DengL. HsiaH. XuK. HeY. HuangQ. PengY. ZhouZ. PengC. Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing.J. Biomater. Appl.201731101380139010.1177/088532821770252628376672
    [Google Scholar]
  69. GokceE.H. Tuncay TanrıverdiS. ErogluI. TsapisN. GokceG. TekmenI. FattalE. OzerO. Wound healing effects of collagen-laminin dermal matrix impregnated with resveratrol loaded hyaluronic acid-DPPC microparticles in diabetic rats.Eur. J. Pharm. Biopharm.2017119172710.1016/j.ejpb.2017.04.02728461085
    [Google Scholar]
  70. SharmaM. SahuK. SinghS.P. JainB. Wound healing activity of curcumin conjugated to hyaluronic acid: In vitro and in vivo evaluation.Artif. Cells Nanomed. Biotechnol.20184651009101710.1080/21691401.2017.135873128754055
    [Google Scholar]
  71. RazaH. AshrafA. ShamimR. ManzoorS. SohailY. KhanM.I. RazaN. ShakeelN. GillK.A. El-MarghanyA. AftabS. Synthesis and characterization of Hyaluronic Acid (HA) modified polymeric composite for effective treatment of wound healing by transdermal drug delivery system (TDDS).Sci. Rep.20231311342510.1038/s41598‑023‑40593‑937591923
    [Google Scholar]
  72. ChangR. ZhaoD. ZhangC. LiuK. HeY. GuanF. YaoM. Nanocomposite multifunctional hyaluronic acid hydrogel with photothermal antibacterial and antioxidant properties for infected wound healing.Int. J. Biol. Macromol.2023226January87088410.1016/j.ijbiomac.2022.12.11636526064
    [Google Scholar]
  73. MinhasMU KhanS HussainZ Curcumin-laden hyaluronic acid co Pullulan-based biomaterials as a potential platform to synergistically enhance the diabetic wound repair.Biomed. Pharmacoth.202117013
    [Google Scholar]
  74. MenuA. Hyaluronic acid: Redefining its role.Cells2020971743
    [Google Scholar]
  75. ChoiJ.S. Heang OhS. KimY.M. LimJ.Y. Hyaluronic acid/alginate hydrogel containing hepatocyte growth factor and promotion of vocal fold wound healing.Tissue Eng. Regen. Med.202017565165810.1007/s13770‑020‑00280‑632676953
    [Google Scholar]
  76. HusseinY. El-FakharanyE.M. KamounE.A. LoutfyS.A. AminR. TahaT.H. SalimS.A. AmerM. Electrospun PVA/hyaluronic acid/L-arginine nanofibers for wound healing applications: Nanofibers optimization and in vitro bioevaluation.Int. J. Biol. Macromol.202016466767610.1016/j.ijbiomac.2020.07.12632682043
    [Google Scholar]
  77. HussainZ. PandeyM. ChoudhuryH. YingP.C. XianT.M. KaurT. JiaG.W. GorainB. Hyaluronic acid functionalized nanoparticles for simultaneous delivery of curcumin and resveratrol for management of chronic diabetic wounds: Fabrication, characterization, stability and in vitro release kinetics.J. Drug Deliv. Sci. Technol.2020575710174710.1016/j.jddst.2020.101747
    [Google Scholar]
  78. HadisiZ. FarokhiM. Bakhsheshi-RadH.R. JahanshahiM. HasanpourS. PaganE. Dolatshahi-PirouzA. ZhangY.S. KunduS.C. AkbariM. Hyaluronic acid (ha)-based silk fibroin/zinc oxide core–shell electrospun dressing for burn wound management.Macromol. Biosci.2020204190032810.1002/mabi.20190032832077252
    [Google Scholar]
  79. ZhuJ. JiangG. HongW. ZhangY. XuB. SongG. LiuT. HongC. RuanL. Rapid gelation of oxidized hyaluronic acid and succinyl chitosan for integration with insulin-loaded micelles and epidermal growth factor on diabetic wound healing.Mater. Sci. Eng. C202011711127310.1016/j.msec.2020.11127332919637
    [Google Scholar]
  80. AhmedS. Chitosan & its derivatives: A review in recent innovations.Int. J. Pharm. Sci. Res.201521430
    [Google Scholar]
  81. AcostaN. JiménezC. BorauV. HerasA. Extraction and characterization of chitin from crustaceans.Biomass Bioenergy19935214515310.1016/0961‑9534(93)90096‑M
    [Google Scholar]
  82. SinghR. ShitizK. SinghA. Chitin and chitosan: Biopolymers for wound management.Int. Wound J.20171461276128910.1111/iwj.1279728799228
    [Google Scholar]
  83. BanoI. ArshadM. YasinT. GhauriM.A. YounusM. Chitosan: A potential biopolymer for wound management.Int. J. Biol. Macromol.201710238038310.1016/j.ijbiomac.2017.04.04728412341
    [Google Scholar]
  84. Costa-PintoA.R. ReisR.L. NevesN.M. Scaffolds based bone tissue engineering: The role of chitosan.liebert2011175331347Available from: https://home.liebertpub.com/teb
    [Google Scholar]
  85. AhmedS. IkramS. Chitosan based scaffolds and their applications in wound healing.Achiev. Life. Sci.2016101273710.1016/j.als.2016.04.001
    [Google Scholar]
  86. AhmedS. AhmadM. Chitosan based dressings for wound care.Immunochem. Immunopathol.2015121410.4172/2469‑9756.1000106
    [Google Scholar]
  87. HeP. DavisS.S. IllumL. In vitro evaluation of the mucoadhesive properties of chitosan microspheres.Int. J. Pharm.19981661758810.1016/S0378‑5173(98)00027‑1
    [Google Scholar]
  88. SmithJ. WoodE. DornishM. Effect of chitosan on epithelial cell tight junctions.Pharm. Res.2004211434910.1023/B:PHAM.0000012150.60180.e314984256
    [Google Scholar]
  89. DYZ. STL. PWL. Chitosan-based composite materials for prospective hemostatic applications.Mar. Drugs2018168
    [Google Scholar]
  90. AktugS.L. DurduS. KalkanS. CavusogluK. In vitro biological and antimicrobial properties of chitosan-based bioceramic coatings on zirconium.Sci. Rep.2021111510410.1038/s41598‑021‑94502‑z
    [Google Scholar]
  91. SudarshanNR HooverDG KnorrD Antibacterial action of chitosan.Food. Biotechnol.200963257272
    [Google Scholar]
  92. OkamotoY. KawakamiK. MiyatakeK. MorimotoM. ShigemasaY. MinamiS. Analgesic effects of chitin and chitosan.Carbohydr. Polym.200249324925210.1016/S0144‑8617(01)00316‑2
    [Google Scholar]
  93. Elieh-Ali-KomiD. HamblinM.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials.Int. J. Adv. Res.20164341142727819009
    [Google Scholar]
  94. NinanN MuthiahM ParkI-K WongTW ThomasS GrohensY Natural polymer/inorganic material based hybrid scaffolds for skin wound healing.Polym. Rev.2015553453490
    [Google Scholar]
  95. SpindolaH. FernandesJ. De SousaV. TavariaF. PintadoM. MalcataX. CarvalhoJ.E. Anti-inflammatory effect of chitosan oligomers.N. Biotechnol.200925S910.1016/j.nbt.2009.06.025
    [Google Scholar]
  96. BoatengJ.S. MatthewsK.H. StevensH.N.E. EcclestonG.M. Wound healing dressings and drug delivery systems: A review.J. Pharm. Sci.20089782892292310.1002/jps.2121017963217
    [Google Scholar]
  97. CroisierF. JérômeC. Chitosan-based biomaterials for tissue engineering.Eur. Polym. J.201349478079210.1016/j.eurpolymj.2012.12.009
    [Google Scholar]
  98. Ud-DinS. BayatA. Non-invasive objective devices for monitoring the inflammatory, proliferative and remodelling phases of cutaneous wound healing and skin scarring.Exp. Dermatol.201625857958510.1111/exd.1302727060469
    [Google Scholar]
  99. OkamotoY. YanoR. MiyatakeK. TomohiroI. ShigemasaY. MinamiS. Effects of chitin and chitosan on blood coagulation.Carbohydr. Polym.200353333734210.1016/S0144‑8617(03)00076‑6
    [Google Scholar]
  100. LiC.W. WangQ. LiJ. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway.Int. J. Nanomed201611373386
    [Google Scholar]
  101. MasoodN. AhmedR. TariqM. AhmedZ. MasoudM.S. AliI. AsgharR. AndleebA. HasanA. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits.Int. J. Pharm.2019559233610.1016/j.ijpharm.2019.01.01930668991
    [Google Scholar]
  102. BaghaieS. KhorasaniM.T. ZarrabiA. MoshtaghianJ. Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material.J. Biomater. Sci. Polym. Ed.201728182220224110.1080/09205063.2017.139038328988526
    [Google Scholar]
  103. LuZ. GaoJ. HeQ. WuJ. LiangD. YangH. ChenR. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing.Carbohydr. Polym.201715646046910.1016/j.carbpol.2016.09.05127842847
    [Google Scholar]
  104. BajpaiS.K. ChandN. AhujaS. RoyM.K. Curcumin/cellulose micro crystals/chitosan films: Water absorption behavior and in vitro cytotoxicity.Int. J. Biol. Macromol.20157523924710.1016/j.ijbiomac.2015.01.03825643996
    [Google Scholar]
  105. BajpaiS.K. AhujaS. ChandN. BajpaiM. Nano cellulose dispersed chitosan film with Ag NPs/curcumin: An in vivo study on Albino Rats for wound dressing.Int. J. Biol. Macromol.2017104Pt A1012101910.1016/j.ijbiomac.2017.06.09628666832
    [Google Scholar]
  106. KarriV.V.S.R. KuppusamyG. TalluriS.V. MannemalaS.S. KolliparaR. WadhwaniA.D. MulukutlaS. RajuK.R.S. MalayandiR. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing.Int. J. Biol. Macromol.201693Pt B1519152910.1016/j.ijbiomac.2016.05.03827180291
    [Google Scholar]
  107. ShuklaR. KashawS.K. JainA.P. LodhiS. Fabrication of Apigenin loaded gellan gum–chitosan hydrogels (GGCH-HGs) for effective diabetic wound healing.Int. J. Biol. Macromol.2016911110111910.1016/j.ijbiomac.2016.06.07527344952
    [Google Scholar]
  108. PoornimaB. KorrapatiP.S. Fabrication of chitosan-polycaprolactone composite nanofibrous scaffold for simultaneous delivery of ferulic acid and resveratrol.Carbohydr. Polym.20171571741174910.1016/j.carbpol.2016.11.05627987890
    [Google Scholar]
  109. BerceC. MuresanM.S. SoritauO. PetrushevB. TefasL. RigoI. UngureanuG. CatoiC. IrimieA. TomuleasaC. Cutaneous wound healing using polymeric surgical dressings based on chitosan, sodium hyaluronate and resveratrol. A preclinical experimental study.Colloids Surf. B Biointerfaces201816315516610.1016/j.colsurfb.2017.12.04129291501
    [Google Scholar]
  110. PatelS. SrivastavaS. SinghM.R. SinghD. Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing.Int. J. Biol. Macromol.2018107Pt B1888189710.1016/j.ijbiomac.2017.10.05629037874
    [Google Scholar]
  111. SugumarS. MukherjeeA. ChandrasekaranN. Eucalyptus oil nanoemulsion-impregnated chitosan film: Antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro.Int. J. Nanomed201510Suppl 1Suppl. 1677526491308
    [Google Scholar]
  112. Díez-PascualA.M. Díez-VicenteA.L. Wound healing bionanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles.Biomacromolecules20151692631264410.1021/acs.biomac.5b0044726302315
    [Google Scholar]
  113. CharernsriwilaiwatN. RojanarataT. NgawhirunpatT. SukmaM. OpanasopitP. Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts.Int. J. Pharm.20134521-233334310.1016/j.ijpharm.2013.05.01223680732
    [Google Scholar]
  114. BonferoniM.C. SandriG. DelleraE. RossiS. FerrariF. MoriM. CaramellaC. Ionic polymeric micelles based on chitosan and fatty acids and intended for wound healing. Comparison of linoleic and oleic acid.Eur. J. Pharm. Biopharm.201487110110610.1016/j.ejpb.2013.12.01824384070
    [Google Scholar]
  115. AlavarseA.C. de Oliveira SilvaF.W. ColqueJ.T. da SilvaV.M. PrietoT. VenancioE.C. BonventJ.J. Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing.Mater. Sci. Eng. C20177727128110.1016/j.msec.2017.03.19928532030
    [Google Scholar]
  116. ChenH. XingX. TanH. JiaY. ZhouT. ChenY. LingZ. HuX. Covalently antibacterial alginatechitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing.Mater. Sci. Eng. C201770Pt 128729510.1016/j.msec.2016.08.08627770893
    [Google Scholar]
  117. SinhaM. BanikR.M. HaldarC. MaitiP. Development of ciprofloxacin hydrochloride loaded poly(ethylene glycol)/chitosan scaffold as wound dressing.J. Porous Mater.201320479980710.1007/s10934‑012‑9655‑1
    [Google Scholar]
  118. KakkarP. VermaS. ManjubalaI. MadhanB. Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering.Mater. Sci. Eng. C20144534334710.1016/j.msec.2014.09.02125491838
    [Google Scholar]
  119. XuW. WangZ. LiuY. WangL. JiangZ. LiT. ZhangW. LiangY. Carboxymethyl chitosan/gelatin/hyaluronic acid blended-membranes as epithelia transplanting scaffold for corneal wound healing.Carbohydr. Polym.201819224025010.1016/j.carbpol.2018.03.03329691018
    [Google Scholar]
  120. HanF. DongY. SuZ. YinR. SongA. LiS. Preparation, characteristics and assessment of a novel gelatin–chitosan sponge scaffold as skin tissue engineering material.Int. J. Pharm.20144761-212413310.1016/j.ijpharm.2014.09.03625275938
    [Google Scholar]
  121. AnishaB.S. SankarD. MohandasA. ChennazhiK.P. NairS.V. JayakumarR. Chitosan–hyaluronan/nano chondroitin sulfate ternary composite sponges for medical use.Carbohydr. Polym.20139221470147610.1016/j.carbpol.2012.10.05823399178
    [Google Scholar]
  122. ChengF. GaoJ. WangL. HuX. Composite chitosan/poly(ethylene oxide) electrospun nanofibrous mats as novel wound dressing matrixes for the controlled release of drugs.J. Appl. Polym. Sci.201513224app.4206010.1002/app.42060
    [Google Scholar]
  123. KumarP.T.S. RajN.M. PraveenG. ChennazhiK.P. NairS.V. JayakumarR. In vitro and in vivo evaluation of microporous chitosan hydrogel/nanofibrin composite bandage for skin tissue regeneration.Tissue Eng. Part A2013193-438039210.1089/ten.tea.2012.037622934717
    [Google Scholar]
  124. RasoolA. AtaS. IslamA. Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application.Carbohydr. Polym.201920342342910.1016/j.carbpol.2018.09.08330318231
    [Google Scholar]
  125. MouraL.I.F. DiasA.M.A. LealE.C. CarvalhoL. de SousaH.C. CarvalhoE. Chitosan-based dressings loaded with neurotensin-an efficient strategy to improve early diabetic wound healing.Acta Biomater.201410284385710.1016/j.actbio.2013.09.04024121197
    [Google Scholar]
  126. LvX. LiuY. SongS. TongC. ShiX. ZhaoY. ZhangJ. HouM. Influence of chitosan oligosaccharide on the gelling and wound healing properties of injectable hydrogels based on carboxymethyl chitosan/alginate polyelectrolyte complexes.Carbohydr. Polym.201920531232110.1016/j.carbpol.2018.10.06730446110
    [Google Scholar]
  127. YanT. ChengF. WeiX. HuangY. HeJ. Biodegradable collagen sponge reinforced with chitosan/calcium pyrophosphate nanoflowers for rapid hemostasis.Carbohydr. Polym.201717027128010.1016/j.carbpol.2017.04.08028521997
    [Google Scholar]
  128. Shakiba-MaraniR. EhtesabiH. A flexible and hemostatic chitosan, polyvinyl alcohol, carbon dot nanocomposite sponge for wound dressing application.Int. J. Biol. Macromol.202322483183910.1016/j.ijbiomac.2022.10.16936283554
    [Google Scholar]
  129. EhtesabiH. NasriR. Carbon dot-based materials for wound healing applications.Adv. Nat. Sci. Nanosci. Nanotechnol.202112202500610.1088/2043‑6262/abffc9
    [Google Scholar]
  130. ZhangJ. ChenK. DingC. SunS. ZhengY. DingQ. HongB. LiuW. Fabrication of chitosan/PVP/dihydroquercetin nanocomposite film for in vitro and in vivo evaluation of wound healing.Int. J. Biol. Macromol.2022206May59160410.1016/j.ijbiomac.2022.02.11035217084
    [Google Scholar]
  131. ChenL. Fabrication and characterization of Rhizochitosan and its incorporation with platelet concentrates to promote wound healing.Carbohydr Polym.202126811823910.1016/j.carbpol.2021.118239
    [Google Scholar]
  132. DingH. LiB. LiuZ. LiuG. PuS. FengY. JiaD. ZhouY. Nonswelling injectable chitosan hydrogel via UV crosslinking induced hydrophobic effect for minimally invasive tissue engineering.Carbohydr. Polym.2021252Jan11714310.1016/j.carbpol.2020.11714333183602
    [Google Scholar]
  133. AmirianJ. ZengY. ShekhM.I. SharmaG. StadlerF.J. SongJ. DuB. ZhuY. In-situ crosslinked hydrogel based on amidated pectin/oxidized chitosan as potential wound dressing for skin repairing.Carbohydr. Polym.2021251Jan11700510.1016/j.carbpol.2020.11700533142572
    [Google Scholar]
  134. QingX. HeG. LiuZ. YinY. CaiW. FanL. FardimP. Preparation and properties of polyvinyl alcohol/N–succinyl chitosan/lincomycin composite antibacterial hydrogels for wound dressing.Carbohydr. Polym.202126111787510.1016/j.carbpol.2021.11787533766362
    [Google Scholar]
  135. ChandikaP KimM KhanF KimY HeoS OhG Wound healing properties of triple cross-linked poly (vinyl alcohol)/methacrylate kappa-carrageenan/chitooligosaccharide hydrogel.Carbohydr. Polym.2021269118272
    [Google Scholar]
  136. El-AassarM.R. IbrahimO.M. FoudaM.M.G. FakhryH. AjaremJ. MaodaaS.N. AllamA.A. HafezE.E. Wound dressing of chitosan-based-crosslinked gelatin/polyvinyl pyrrolidone embedded silver nanoparticles, for targeting multidrug resistance microbes.Carbohydr. Polym.202125511748410.1016/j.carbpol.2020.11748433436244
    [Google Scholar]
  137. ZhangM QiaoX HanW JiangT LiuF ZhaoX. Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing.Carbohydr. Polym.202126611810010.1016/j.carbpol.2021.118100
    [Google Scholar]
  138. Mohamady HusseinM.A. GulerE. RayamanE. CamM.E. SahinA. GrinholcM. Sezgin MansurogluD. SahinY.M. GunduzO. MuhammedM. El-SherbinyI.M. MegahedM. Dual-drug delivery of Ag-chitosan nanoparticles and phenytoin via core-shell PVA/PCL electrospun nanofibers.Carbohydr. Polym.202127011837310.1016/j.carbpol.2021.11837334364617
    [Google Scholar]
  139. ZhangM YangM WooMW LiY HanW DangX High-mechanical strength carboxymethyl chitosan-based hydrogel film for antibacterial wound dressing.202125611759010.1016/j.carbpol.2020.117590
    [Google Scholar]
  140. FahimiradS. AbtahiH. SateiP. Ghaznavi-RadE. MoslehiM. GanjiA. Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles.Carbohydr. Polym.202125911764010.1016/j.carbpol.2021.11764033673981
    [Google Scholar]
  141. AderibigbeB. BuyanaB. Alginate in wound dressings.Pharmaceutics20181024210.3390/pharmaceutics1002004229614804
    [Google Scholar]
  142. SinH-J. Latest trends in wound care.Korean Nurse.19983741929
    [Google Scholar]
  143. VaraprasadK JayaramuduT KanikireddyV ToroC SadikuER Alginate-based composite materials for wound dressing application: A mini review.Carbohydr. Polym.202123611602510.1016/j.carbpol.2020.116025
    [Google Scholar]
  144. TariverdianT. NavaeiT. MilanP.B. SamadikuchaksaraeiA. MozafariM. Functionalized polymers for tissue engineering and regenerative medicines.Adv. Funct. Polym. Biomed.Applic.201932335710.1016/B978‑0‑12‑816349‑8.00016‑3
    [Google Scholar]
  145. GokarneshanN. Application of natural polymers and herbal extracts in wound management. Adv. Text. Wound. Care.201954156110.1016/B978‑0‑08‑102192‑7.00019‑9
    [Google Scholar]
  146. ZhouQ. KangH. BielecM. WuX. ChengQ. WeiW. DaiH. Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing.Carbohydr. Polym.201819729230410.1016/j.carbpol.2018.05.07830007617
    [Google Scholar]
  147. ShiM. ZhangH. SongT. LiuX. GaoY. ZhouJ. LiY. Sustainable dual release of antibiotic and growth factor from ph-responsive uniform alginate composite microparticles to enhance wound healing.ACS Appl. Mater. Interfaces20191125227302274410.1021/acsami.9b0475031141337
    [Google Scholar]
  148. HuY. ZhangZ. LiY. DingX. LiD. ShenC. XuF.J. Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications.Macromol. Rapid Commun.20183920180006910.1002/marc.20180006929855096
    [Google Scholar]
  149. CaoC. YangN. ZhaoY. YangD. HuY. YangD. SongX. WangW. DongX. Biodegradable hydrogel with thermo-response and hemostatic effect for photothermal enhanced anti-infective therapy.Nano Today20213910116510.1016/j.nantod.2021.101165
    [Google Scholar]
  150. ZhengY. LiangY. ZhangD. SunX. LiangL. LiJ. LiuY.N. Gelatin-based hydrogels blended with gellan as an injectable wound dressing.ACS Omega2018354766477510.1021/acsomega.8b0030830023901
    [Google Scholar]
  151. DongY. LiX. RodriguesM. LiX. KwonS.H. KosaricN. KhongS. GaoY. WangW. GurtnerG.C. Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing.Adv. Funct. Mater.20172724160661910.1002/adfm.201606619
    [Google Scholar]
  152. EtxabideA. VairoC. Santos-VizcainoE. GuerreroP. PedrazJ.L. IgartuaM. de la CabaK. HernandezR.M. Ultra thin hydrofilms based on lactose-crosslinked fish gelatin for wound healing applications.Int. J. Pharm.20175301-245546710.1016/j.ijpharm.2017.08.00128789885
    [Google Scholar]
  153. ThiP.L. LeeY. TranD.L. ThiT.T.H. KangJ.I. ParkK.M. ParkK.D. In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy.Acta Biomater.202010314215210.1016/j.actbio.2019.12.00931846801
    [Google Scholar]
  154. YeH. ChengJ. YuK. In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity.Int. J. Biol. Macromol.201912163364210.1016/j.ijbiomac.2018.10.05630326224
    [Google Scholar]
  155. Tra ThanhN. Ho HieuM. Tran Minh PhuongN. Do Bui ThuanT. Nguyen Thi ThuH. ThaiV.P. Do MinhT. Nguyen DaiH. VoV.T. Nguyen ThiH. Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application.Mater. Sci. Eng. C20189131832910.1016/j.msec.2018.05.03930033261
    [Google Scholar]
  156. RatherH.A. ThakoreR. SinghR. JhalaD. SinghS. VasitaR. Antioxidative study of cerium oxide nanoparticle functionalised PCL-gelatin electrospun fibers for wound healing application.Bioact. Mater.20183220121110.1016/j.bioactmat.2017.09.00629744458
    [Google Scholar]
  157. NikpasandA. ParviziM.R. Evaluation of the effect of titatnium dioxide nanoparticles/gelatin composite on infected skin wound healing; An animal model study.Bull. Emerg. Trauma20197436637210.29252/beat‑07040531857999
    [Google Scholar]
  158. PhamL. DangL.H. TruongM.D. NguyenT.H. LeL. LeV.T. NamN.D. BachL.G. NguyenV.T. TranN.Q. A dual synergistic of curcumin and gelatin on thermal-responsive hydrogel based on Chitosan-P123 in wound healing application.Biomed. Pharmacother.201911710918310.1016/j.biopha.2019.10918331261029
    [Google Scholar]
  159. DaiM. ZhengX. XuX. KongX. LiX. GuoG. LuoF. ZhaoX. WeiY.Q. QianZ. Chitosan-alginate sponge: Preparation and application in curcumin delivery for dermal wound healing in rat.J. Biomed. Biotechnol.200920091810.1155/2009/59512619918372
    [Google Scholar]
  160. TaheriP. JahanmardiR. KooshaM. AbdiS. Physical, mechanical and wound healing properties of chitosan/gelatin blend films containing tannic acid and/or bacterial nanocellulose.Int. J. Biol. Macromol.202015442143210.1016/j.ijbiomac.2020.03.11432184139
    [Google Scholar]
  161. Bakhsheshi-RadH.R. IsmailA.F. AzizM. AkbariM. HadisiZ. DaroonparvarM. ChenX.B. Antibacterial activity and in vivo wound healing evaluation of polycaprolactone-gelatin methacryloyl-cephalexin electrospun nanofibrous.Mater. Lett.201925612661810.1016/j.matlet.2019.126618
    [Google Scholar]
  162. ShamlooA. SarmadiM. AghababaieZ. VossoughiM. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres.Int. J. Pharm.20185371-227828910.1016/j.ijpharm.2017.12.04529288809
    [Google Scholar]
  163. CahúT.B. SilvaR.A. SilvaR.P.F. SilvaM.M. ArrudaI.R.S. SilvaJ.F. CostaR.M.P.B. SantosS.D. NaderH.B. BezerraR.S. Evaluation of chitosan-based films containing gelatin, chondroitin 4-sulfate and ZnO for wound healing.Appl. Biochem. Biotechnol.2017183376577710.1007/s12010‑017‑2462‑z28349375
    [Google Scholar]
  164. YuH. GongW. MeiJ. QinL. PiaoZ. YouD. GuW. JiaZ. The efficacy of a paeoniflorin-sodium alginate-gelatin skin scaffold for the treatment of diabetic wound: An in vivo study in a rat model.Biomed. Pharmacother.2022151July11316510.1016/j.biopha.2022.11316535609370
    [Google Scholar]
  165. AkbariR. 3D-printing of alginate/gelatin scaffold loading tannic acid @ ZIF-8 for wound healing: In vitro and in vivo studies.Int. J. Biol. Macromol.2024265Pt 1130744
    [Google Scholar]
  166. OhG KimS KimT JungW Characterization of an oxidized alginate-gelatin hydrogel incorporating a COS-salicylic acid conjugate for wound healing.Carbohydr Polym202125211714510.1016/j.carbpol.2020.117145
    [Google Scholar]
  167. RahmanM.A. IslamM.S. HaqueP. KhanM.N. TakafujiM. BegumM. ChowdhuryG.W. KhanM. RahmanM.M. Calcium ion mediated rapid wound healing by nano-ZnO doped calcium phosphate-chitosan-alginate biocomposites.Materialia20201310083910.1016/j.mtla.2020.100839
    [Google Scholar]
  168. BahadoranM. ShamlooA. NokooraniY.D. Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing.Sci. Rep.2020101734210.1038/s41598‑020‑64480‑932355267
    [Google Scholar]
  169. ChenG. HeL. ZhangP. ZhangJ. MeiX. WangD. ZhangY. RenX. ChenZ. Encapsulation of green tea polyphenol nanospheres in PVA/alginate hydrogel for promoting wound healing of diabetic rats by regulating PI3K/AKT pathway.Mater. Sci. Eng. C202011011068610.1016/j.msec.2020.11068632204114
    [Google Scholar]
  170. ShafeiS. KhanmohammadiM. HeidariR. GhanbariH. Taghdiri NooshabadiV. FarzamfarS. AkbariqomiM. SanikhaniN.S. AbsalanM. TavoosidanaG. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study.J. Biomed. Mater. Res. A2020108354555610.1002/jbm.a.3683531702867
    [Google Scholar]
  171. AfjoulH. ShamlooA. KamaliA. Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study.Mater. Sci. Eng. C202011311095710.1016/j.msec.2020.11095732487379
    [Google Scholar]
  172. Bakhsheshi-RadH.R. HadisiZ. IsmailA.F. AzizM. AkbariM. BertoF. ChenX.B. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance.Polym. Test.20208210629810.1016/j.polymertesting.2019.106298
    [Google Scholar]
  173. ZhangX. LiY. MaZ. HeD. LiH. Modulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing.Bioact. Mater.20216113692370410.1016/j.bioactmat.2021.03.03833898873
    [Google Scholar]
  174. PerumalG. PappuruS. ChakrabortyD. Maya NandkumarA. ChandD.K. DobleM. Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications.Mater. Sci. Eng. C2017761196120410.1016/j.msec.2017.03.20028482486
    [Google Scholar]
  175. AlibolandiM. MohammadiM. TaghdisiS.M. AbnousK. RamezaniM. Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing.Int. J. Pharm.2017532146647710.1016/j.ijpharm.2017.09.04228927842
    [Google Scholar]
  176. AlippilakkotteS. KumarS. SreejithL. Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications.Colloids Surf. A Physicochem. Eng. Asp.201752977178210.1016/j.colsurfa.2017.06.066
    [Google Scholar]
  177. BardaniaH. MahmoudiR. BagheriH. SalehpourZ. FouaniM.H. DarabianB. KhoramroozS.S. MousavizadehA. KowsariM. MoosavifardS.E. ChristiansenG. JaveshghaniD. AlipourM. AkramiM. Facile preparation of a novel biogenic silver-loaded Nanofilm with intrinsic anti-bacterial and oxidant scavenging activities for wound healing.Sci. Rep.2020101612910.1038/s41598‑020‑63032‑532273549
    [Google Scholar]
  178. PanJ. WuR. DaiX. YinY. PanG. MengM. ShiW. YanY. A hierarchical porous bowl-like PLA@MSNs-COOH composite for pH-dominated long-term controlled release of doxorubicin and integrated nanoparticle for potential second treatment.Biomacromolecules20151641131114510.1021/bm501786t25714485
    [Google Scholar]
  179. Xu Xlin. Li XJ. ZhuangX. WangW. Solution blowing of chitosan/PLA/PEG hydrogel nanofibers for wound dressing.Fibers Polym.201617205211
    [Google Scholar]
  180. BiH FengT LiB HanY In vitro and in vivo comparison study of electrospun PLA and PLA/PVA/SA fiber membranes for wound healing.Polymers2020124839
    [Google Scholar]
  181. FoongCY HamzahMSA RazakSIA SaidinS NayanNHM Influence of poly(lactic acid) layer on the physical and antibacterial properties of dry bacterial cellulose sheet for potential acute wound healing materials.Fibers. Polym.201819263271
    [Google Scholar]
  182. AugustineR. ZahidA.A. HasanA. WangM. WebsterT.J. Ctgf loaded electrospun dual porous core-shell membrane for diabetic wound healing.Int. J. Nanomed2019148573858810.2147/IJN.S22404731802870
    [Google Scholar]
  183. WangR. ZhouB. XuD. XuH. LiangL. FengX. OuyangP. ChiB. Antimicrobial and biocompatible ε-polylysine–γ-poly(glutamic acid)–based hydrogel system for wound healing.J. Bioact. Compat. Polym.201631324225910.1177/0883911515610019
    [Google Scholar]
  184. YinM. WangX. YuZ. WangY. WangX. DengM. ZhaoD. JiS. JiaN. ZhangW. γ-PGA hydrogel loaded with cell-free fat extract promotes the healing of diabetic wounds.J. Mater. Chem. B Mater. Biol. Med.20208368395840410.1039/D0TB01190H32966542
    [Google Scholar]
  185. WangY. DouC. HeG. BanL. HuangL. LiZ. GongJ. ZhangJ. YuP. Biomedical potential of ultrafine Ag nanoparticles coated on poly (gamma-glutamic acid) hydrogel with special reference to wound healing.Nanomaterials20188532410.3390/nano805032429757942
    [Google Scholar]
  186. ZhuangH. HongY. GaoJ. ChenS. MaY. WangS. A poly(γ-glutamic acid)-based hydrogel loaded with superoxide dismutase for wound healing.J. Appl. Polym. Sci.201513223app.4203310.1002/app.42033
    [Google Scholar]
  187. ShiL. YangN. ZhangH. ChenL. TaoL. WeiY. LiuH. LuoY. A novel poly(γ-glutamic acid)/silk-sericin hydrogel for wound dressing: Synthesis, characterization and biological evaluation.Mater. Sci. Eng. C20154853354010.1016/j.msec.2014.12.04725579954
    [Google Scholar]
  188. LiuW.C. WangH.Y. LeeT.H. ChungR.J. Gamma-poly glutamate/gelatin composite hydrogels crosslinked by proanthocyanidins for wound healing.Mater. Sci. Eng. C201910163063910.1016/j.msec.2019.04.01831029356
    [Google Scholar]
  189. UddinZ. FangT.Y. SiaoJ.Y. TsengW.C. Wound healing attributes of polyelectrolyte multilayers prepared with multi-l-arginyl-poly-l-aspartate pairing with hyaluronic acid and γ-polyglutamic acid.Macromol. Biosci.2020208200013210.1002/mabi.20200013232567226
    [Google Scholar]
  190. LinY.H. LinJ.H. HongY.S. Development of chitosan/poly-γ-glutamic acid/pluronic/curcumin nanoparticles in chitosan dressings for wound regeneration.J. Biomed. Mater. Res. B Appl. Biomater.20171051819010.1002/jbm.b.3339426426455
    [Google Scholar]
  191. BuckE. MaisuriaV. TufenkjiN. CerrutiM. Antibacterial properties of plga electrospun scaffolds containing ciprofloxacin incorporated by blending or physisorption.ACS Appl. Bio Mater.20181362763510.1021/acsabm.8b0011234996194
    [Google Scholar]
  192. ChoipangC. ChuysinuanP. SuwantongO. EkabutrP. SupapholP. Hydrogel wound dressings loaded with PLGA/ciprofloxacin hydrochloride nanoparticles for use on pressure ulcers.J. Drug Deliv. Sci. Technol.20184710611410.1016/j.jddst.2018.06.025
    [Google Scholar]
  193. TangY. ChenL. ZhaoK. WuZ. WangY. TanQ. Fabrication of PLGA/HA (core)-collagen/amoxicillin (shell) nanofiber membranes through coaxial electrospinning for guided tissue regeneration.Compos. Sci. Technol.201612510010710.1016/j.compscitech.2016.02.005
    [Google Scholar]
  194. DhalC. MishraR. In vitro and in vivo evaluation of gentamicin sulphate-loaded PLGA nanoparticle-based film for the treatment of surgical site infection.Drug Deliv. Transl. Res.20201041032104310.1007/s13346‑020‑00730‑732100268
    [Google Scholar]
  195. HasanN. CaoJ. LeeJ. HlaingS.P. OshiM.A. NaeemM. KiM.H. LeeB.L. JungY. YooJ.W. Bacteria-targeted clindamycin loaded polymeric nanoparticles: Effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing.Pharmaceutics201911523610.3390/pharmaceutics1105023631096709
    [Google Scholar]
  196. ChenM.M. CaoH. LiuY.Y. LiuY. SongF.F. ChenJ.D. ZhangQ.Q. YangW.Z. Sequential delivery of chlorhexidine acetate and bFGF from PLGA-glycol chitosan core-shell microspheres.Colloids Surf. B Biointerfaces201715118919510.1016/j.colsurfb.2016.05.04528012407
    [Google Scholar]
  197. LandauS. SzklannyA.A. YeoG.C. ShandalovY. KosobrodovaE. WeissA.S. LevenbergS. Tropoelastin coated PLLA-PLGA scaffolds promote vascular network formation.Biomaterials2017122728210.1016/j.biomaterials.2017.01.01528110114
    [Google Scholar]
  198. BairagiU. MittalP. SinghJ. MishraB. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing.Drug Dev. Ind. Pharm.201844111783179610.1080/03639045.2018.149644829973105
    [Google Scholar]
  199. Garcia-OrueI. GainzaG. Garcia-GarciaP. GutierrezF.B. AguirreJ.J. HernandezR.M. DelgadoA. IgartuaM. Composite nanofibrous membranes of PLGA/Aloe vera containing lipid nanoparticles for wound dressing applications.Int. J. Pharm.201955632032910.1016/j.ijpharm.2018.12.01030553008
    [Google Scholar]
  200. SunX. ChengL. ZhuW. HuC. JinR. SunB. ShiY. ZhangY. CuiW. Use of ginsenoside Rg3-loaded electrospun PLGA fibrous membranes as wound cover induces healing and inhibits hypertrophic scar formation of the skin.Colloids Surf. B Biointerfaces2014115617010.1016/j.colsurfb.2013.11.03024333554
    [Google Scholar]
  201. LeeC.H. ChangS.H. ChenW.J. HungK.C. LinY.H. LiuS.J. HsiehM.J. PangJ.H.S. JuangJ.H. Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes.J. Colloid Interface Sci.2015439889710.1016/j.jcis.2014.10.02825463179
    [Google Scholar]
  202. XuK. AnN. ZhangH. ZhangQ. ZhangK. HuX. WuY. WuF. XiaoJ. ZhangH. PengR. LiH. JiaC. Sustained-release of PDGF from PLGA microsphere embedded thermo-sensitive hydrogel promoting wound healing by inhibiting autophagy.J. Drug Deliv. Sci. Technol.20205510140510.1016/j.jddst.2019.101405
    [Google Scholar]
  203. DeshmukhK. Basheer AhamedM. DeshmukhR.R. Khadheer PashaS.K. BhagatP.R. ChidambaramK. Biopolymer composites with high dielectric performance: Interface engineering.In: Biopolymer Composites in Electronics.Elsevier B.V.201727128
    [Google Scholar]
  204. AugustineR. DominicE.A. RejuI. KaimalB. KalarikkalN. ThomasS. Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing.RSC Advances20144472477710.1039/c4ra02450h
    [Google Scholar]
  205. ZhangY. ChangM. BaoF. XingM. WangE. XuQ. HuanZ. GuoF. ChangJ. Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing.Nanoscale201911136315633310.1039/C8NR09818B30882821
    [Google Scholar]
  206. HajilouH. FarahpourM.R. HamishehkarH. Polycaprolactone nanofiber coated with chitosan and Gamma oryzanol functionalized as a novel wound dressing for healing infected wounds.Int. J. Biol. Macromol.20201642358236910.1016/j.ijbiomac.2020.08.07932791277
    [Google Scholar]
  207. HuangY. DanN. DanW. ZhaoW. Reinforcement of polycaprolactone/chitosan with nanoclay and controlled release of curcumin for wound dressing.ACS Omega2019427222922230110.1021/acsomega.9b0221731909312
    [Google Scholar]
  208. YangS. LiX. LiuP. ZhangM. WangC. ZhangB. Multifunctional chitosan/polycaprolactone nanofiber scaffolds with varied dualdrug release for wound-healing applications.ACS Biomater. Sci. Eng.2020684666467610.1021/acsbiomaterials.0c0067433455179
    [Google Scholar]
  209. Adeli-SardouM. YaghoobiM.M. Torkzadeh-MahaniM. DodelM. Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration.Int. J. Biol. Macromol.201912447849110.1016/j.ijbiomac.2018.11.23730500508
    [Google Scholar]
  210. KhoshnevisanK. MalekiH. SamadianH. DoostanM. KhorramizadehM.R. Antibacterial and antioxidant assessment of cellulose acetate/polycaprolactone nanofibrous mats impregnated with propolis.Int. J. Biol. Macromol.20191401260126810.1016/j.ijbiomac.2019.08.20731472212
    [Google Scholar]
  211. PavliňákováV. FohlerováZ. PavliňákD. KhunováV. VojtováL. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications.Mater. Sci. Eng. C2018919410210.1016/j.msec.2018.05.03330033327
    [Google Scholar]
  212. BaghirovaL Kaya TilkiE ÖztürkAA Evaluation of cell proliferation and wound healing effects of vitamin A palmitate-loaded PLGA/chitosan-coated plga nanoparticles: Preparation, characterization, release, and release kinetics.ACS Omega.20228226582668
    [Google Scholar]
  213. CetinN. MenevseE. CelikZ.E. CeylanC. RamaS.T. GultekinY. TekinT. SahinA. Evaluation of burn wound healing activity of thermosensitive gel and PLGA nanoparticle formulation of quercetin in Wistar albino rats.J. Drug Deliv. Sci. Technol.202275September10362010.1016/j.jddst.2022.103620
    [Google Scholar]
  214. MaiB. JiaM. LiuS. ShengZ. LiM. GaoY. WangX. LiuQ. WangP. Smart hydrogel-based DVDMS/bFGF nanohybrids for antibacterial phototherapy with multiple damaging sites and accelerated wound healing.ACS Appl. Mater. Interfaces2020129101561016910.1021/acsami.0c0029832027477
    [Google Scholar]
  215. YuM. HuangJ. ZhuT. LuJ. LiuJ. LiX. YanX. LiuF. Liraglutide-loaded PLGA/gelatin electrospun nanofibrous mats promote angiogenesis to accelerate diabetic wound healing via the modulation of miR-29b-3p.Biomater. Sci.20208154225423810.1039/D0BM00442A32578587
    [Google Scholar]
  216. LiaoH.T. LaiY.T. KuoC.Y. ChenJ.P. A bioactive multi-functional heparin-grafted aligned poly(lactide-co-glycolide)/curcumin nanofiber membrane to accelerate diabetic wound healing.Mater. Sci. Eng. C202112011168910.1016/j.msec.2020.11168933545851
    [Google Scholar]
  217. LeeJ. KwakD. KimH. KimJ. HlaingS.P. HasanN. CaoJ. YooJ.W. Nitric oxide-releasing s-nitrosoglutathione-conjugated poly(Lactic-co-glycolic acid) nanoparticles for the treatment of MRSA-infected cutaneous wounds.Pharmaceutics202012761810.3390/pharmaceutics1207061832630779
    [Google Scholar]
  218. TangK.C. YangK.C. LinC.W. ChenY.K. LuT.Y. ChenH.Y. ChengN.C. YuJ. Human adipose-derived stem cell secreted extracellular matrix incorporated into electrospun poly(lactic-co-glycolic acid) nanofibrous dressing for enhancing wound healing.Polymers20191110160910.3390/polym1110160931623334
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128295935240425101509
Loading
/content/journals/cpd/10.2174/0113816128295935240425101509
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test