Skip to content
2000
Volume 30, Issue 31
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

In recent years, the field of nanotechnology has brought about significant advancements that have transformed the landscape of disease diagnosis, prevention, and treatment, particularly in the realm of medical science. Among the various approaches to nanoparticle synthesis, the green synthesis method has garnered increasing attention. Silver nanoparticles (AgNPs) have emerged as particularly noteworthy nanomaterials within the spectrum of metallic nanoparticles employed for biomedical applications. AgNPs possess several key attributes that make them highly valuable in the biomedical field. They are biocompatible, cost-effective, and environmentally friendly, rendering them suitable for various bioengineering and biomedical applications. Notably, AgNPs have found a prominent role in the domain of cancer diagnosis. Research investigations have provided evidence of AgNPs' anticancer activity, which involves mechanisms such as DNA damage, cell cycle arrest, induction of apoptosis, and the regulation of specific cytokine genes. The synthesis of AgNPs primarily involves the reduction of silver ions by reducing agents. Interestingly, natural products and living organisms have proven to be effective sources for the generation of precursor materials used in AgNP synthesis. This comprehensive review aims to summarize the key aspects of AgNPs, including their characterization, properties, and recent advancements in the field of biogenic AgNP synthesis. Furthermore, the review highlights the potential applications of these nanoparticles in combating cancer.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128291705240428060456
2024-05-09
2024-11-16
Loading full text...

Full text loading...

References

  1. TorreL SiegelR JemalA. American Cancer Society.Global Cancer Facts & Figures.2015164
    [Google Scholar]
  2. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  3. VickersA. Alternative cancer cures: “Unproven” or “disproven”?CA Cancer J. Clin.200454211011810.3322/canjclin.54.2.11015061600
    [Google Scholar]
  4. HussainM.S. AfzalO. GuptaG. AltamimiA.S.A. AlmalkiW.H. AlzareaS.I. KazmiI. FuloriaN.K. SekarM. MeenakshiD.U. ThangaveluL. SharmaA. Long non-coding RNAs in lung cancer: Unraveling the molecular modulators of MAPK signaling.Pathol. Res. Pract.202324915473810.1016/j.prp.2023.15473837595448
    [Google Scholar]
  5. MirR.H. Mohi-ud-dinR. WaniT.U. DarM.O. ShahA.J. LoneB. PoojaC. MasoodiM.H. Indole: A privileged heterocyclic moiety in the management of cancer.Curr. Org. Chem.202125672473610.2174/1385272825666210208142108
    [Google Scholar]
  6. WaniT.U. Mohi-ud-dinR. MirR.H. ItooA.M. MirK.B. FazliA.A. PottooF.H. Exosomes harnessed as nanocarriers for cancer therapy-current status and potential for future clinical applications.Curr. Mol. Med.202121970772310.2174/18755666MTA53OTMcx32933459
    [Google Scholar]
  7. GowdaB.H.J. AhmedM.G. AlshehriS.A. WahabS. VoraL.K. ThakurS.R.R. KesharwaniP. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics.Environ. Res.2023237Pt 111689410.1016/j.envres.2023.11689437586450
    [Google Scholar]
  8. HaniU. GowdaJ.B.H. SiddiquaA. WahabS. BegumM.Y. SathishbabuP. UsmaniS. AhmadM.P. Herbal approach for treatment of cancer using curcumin as an anticancer agent: A review on novel drug delivery systems.J. Mol. Liq.202339012303710.1016/j.molliq.2023.123037
    [Google Scholar]
  9. DarM.O. MirR.H. MohiuddinR. MasoodiM.H. SofiF.A. Metal complexes of xanthine and its derivatives: Synthesis and biological activity.J. Inorg. Biochem.202324611229010.1016/j.jinorgbio.2023.11229037327591
    [Google Scholar]
  10. MirPA Mohi-Ud-DinR BandayN MaqboolM RazaSN FarooqS AfzalS MirRH Anticancer potential of thymoquinone: A novel bioactive natural compound from Nigella sativa L.Anti-Cancer Agents Med Chem20222220340115
    [Google Scholar]
  11. MirPA UppalJ NoorA DarMO WaliAF OvaisS MirRH Recent advances of dihydropyrimidinone derivatives in cancer research.Dihydropyrimidinones Potent Anticancer Agents20231537110.1016/B978‑0‑443‑19094‑0.00006‑0
    [Google Scholar]
  12. Mohi-ud-dinR. MirR.H. SabreenS. JanR. PottooF.H. SinghI.P. Recent insights into therapeutic potential of plant-derived flavonoids against cancer.Anticancer. Agents Med. Chem.202222203343336910.2174/187152062266622042109405535593353
    [Google Scholar]
  13. Mohi-ud-dinR. MirR.H. BandayN. SabreenS. ShahA.J. JanR. WaniT.U. FarooqS. BhatZ.A. Resveratrol: A potential drug candidate with multispectrum therapeutic application.Stud Nat Prod Chem2022739913710.1016/B978‑0‑323‑91097‑2.00009‑1
    [Google Scholar]
  14. KhanM.S. GowdaB.H.J. NasirN. WahabS. PichikaM.R. SahebkarA. KesharwaniP. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer.Int. J. Pharm.202364312327610.1016/j.ijpharm.2023.12327637516217
    [Google Scholar]
  15. WaniS.U. AliM. MasoodiM.H. KhanN.A. ZargarM.I. HassanR. MirS.A. GautamS.P. GangadharappaH.V. OsmaniR.A. A review on nanoparticles categorization, characterization and applications in drug delivery systems.Vib. Spectrosc.202212110340710.1016/j.vibspec.2022.103407
    [Google Scholar]
  16. Mohi-ud-dinR. MirR.H. WaniT.U. AlsharifK.F. AlamW. AlbrakatiA. SasoL. KhanH. The regulation of endoplasmic reticulum stress in cancer: Special focuses on luteolin patents.Molecules2022278247110.3390/molecules2708247135458669
    [Google Scholar]
  17. YanA. ChenZ. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism.Int. J. Mol. Sci.2019205100310.3390/ijms2005100330813508
    [Google Scholar]
  18. HussainM.S. SharmaP. DhanjalD.S. KhuranaN. VyasM. SharmaN. MehtaM. TambuwalaM.M. SatijaS. SohalS.S. OliverB.G.G. SharmaH.S. Nanotechnology based advanced therapeutic strategies for targeting interleukins in chronic respiratory diseases.Chem. Biol. Interact.202134810963710.1016/j.cbi.2021.10963734506765
    [Google Scholar]
  19. Mohi-ud-dinR. MirR.H. WaniT.U. ShahA.J. Mohi-Ud-DinI. DarM.A. PottooF.H. Novel drug delivery system for curcumin: Implementation to improve therapeutic efficacy against neurological disorders.Comb. Chem. High Throughput Screen.202225460761510.2174/138620732466621070511405834225614
    [Google Scholar]
  20. HussainM.S. AltamimiA.S.A. AfzalM. AlmalkiW.H. KazmiI. AlzareaS.I. GuptaG. ShahwanM. KukretiN. WongL.S. KumarasamyV. SubramaniyanV. Kaempferol: Paving the path for advanced treatments in aging-related diseases.Exp. Gerontol.202418811238910.1016/j.exger.2024.11238938432575
    [Google Scholar]
  21. MohantoS. NarayanaS. MeraiK.P. KumarJ.A. BhuniaA. HaniU. FateaseA.A. GowdaB.H.J. NagS. AhmedM.G. PaulK. VoraL.K. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review.Int. J. Biol. Macromol.2023253Pt 512714310.1016/j.ijbiomac.2023.12714337793512
    [Google Scholar]
  22. LiX. CuiR. LiuW. SunL. YuB. FanY. FengQ. CuiF. WatariF. The use of nanoscaled fibers or tubes to improve biocompatibility and bioactivity of biomedical materials.J. Nanomater.2013201311610.1155/2013/728130
    [Google Scholar]
  23. KatariaT. HussainS. KaurG. DebA. Emerging nanoparticles in the diagnosis of atherosclerosis.Int. J. Pharm. Sci. Rev. Res.2021702465710.47583/ijpsrr.2021.v70i02.008
    [Google Scholar]
  24. HaniU. GowdaB.H.J. HaiderN. RameshK.V.R.N.S. PaulK. AshiqueS. AhmedM.G. NarayanaS. MohantoS. KesharwaniP. Nanoparticle-based approaches for treatment of hematological malignancies: A comprehensive review.AAPS PharmSciTech202324823310.1208/s12249‑023‑02670‑037973643
    [Google Scholar]
  25. ZengL. GowdaB.H.J. AhmedM.G. AbourehabM.A.S. ChenZ.S. ZhangC. LiJ. KesharwaniP. Advancements in nanoparticle-based treatment approaches for skin cancer therapy.Mol. Cancer20232211010.1186/s12943‑022‑01708‑436635761
    [Google Scholar]
  26. AshiqueS. KumarS. HussainA. MishraN. GargA. GowdaB.H.J. FaridA. GuptaG. DuaK. HesaryT.F. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer.J. Health Popul. Nutr.20234217410.1186/s41043‑023‑00423‑037501216
    [Google Scholar]
  27. RatanZ.A. HaidereM.F. NurunnabiM. ShahriarS.M. AhammadA.J.S. ShimY.Y. ReaneyM.J.T. ChoJ.Y. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects.Cancers202012485510.3390/cancers1204085532244822
    [Google Scholar]
  28. LeeS. JunB.H. Silver nanoparticles: Synthesis and application for nanomedicine.Int. J. Mol. Sci.201920486510.3390/ijms2004086530781560
    [Google Scholar]
  29. GowdaB.H.J. AhmedM.G. AlmoyadM.A.A. WahabS. AlmalkiW.H. KesharwaniP. Nanosponges as an emerging platform for cancer treatment and diagnosis.Adv. Funct. Mater.2024347230707410.1002/adfm.202307074
    [Google Scholar]
  30. AhmadiS. The importance of silver nanoparticles in human life.Adv. Appl. NanoBio-Technol2020115910.47277/AANBT/1(1)9
    [Google Scholar]
  31. ShentonW. DouglasT. YoungM. StubbsG. MannS. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus.Adv. Mater.199911325325610.1002/(SICI)1521‑4095(199903)11:3<253::AID‑ADMA253>3.0.CO;2‑7
    [Google Scholar]
  32. MedvedevaN.V. IpatovaO.M. IvanovY.D. DrozhzhinA.I. ArchakovA.I. Nanobiotechnology and nanomedicine. Biochemistry (Moscow).Supplement Series B: Biomed Chem.20071114124
    [Google Scholar]
  33. ZhangD. MaX. GuY. HuangH. ZhangG. Green synthesis of metallic nanoparticles and their potential applications to treat cancer.Front Chem.2020879910.3389/fchem.2020.0079933195027
    [Google Scholar]
  34. Mohi-ud-dinR. MirR.H. WaniT.U. ShahA.J. BandayN. PottooF.H. Berberine in the treatment of neurodegenerative diseases and nanotechnology enabled targeted delivery.Comb. Chem. High Throughput Screen.202225461663310.2174/138620732466621080412253934348611
    [Google Scholar]
  35. TangS. MaoC. LiuY. KellyD.Q. BanerjeeS.K. Protein-mediated nanocrystal assembly for flash memory fabrication.IEEE Trans. Electron Dev.200754343343810.1109/TED.2006.890234
    [Google Scholar]
  36. StepanovA.L. GolubevA.N. NikitinS.I. OsinY.N. A review on the fabrication and properties of platinum nanoparticles.Rev. Adv. Mater. Sci.2014382160175
    [Google Scholar]
  37. WangL. ChenX. ZhanJ. ChaiY. YangC. XuL. ZhuangW. JingB. Synthesis of gold nano- and microplates in hexagonal liquid crystals.J. Phys. Chem. B200510983189319410.1021/jp044915216851339
    [Google Scholar]
  38. YouH. YangS. DingB. YangH. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications.Chem. Soc. Rev.20134272880290410.1039/C2CS35319A23152097
    [Google Scholar]
  39. SinghP. KimY.J. ZhangD. YangD.C. Biological synthesis of nanoparticles from plants and microorganisms.Trends Biotechnol.201634758859910.1016/j.tibtech.2016.02.00626944794
    [Google Scholar]
  40. GurunathanS. ParkJ.H. HanJ.W. KimJ.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy.Int. J. Nanomedicine2015104203422210.2147/IJN.S8395326170659
    [Google Scholar]
  41. GouyauJ. DuvalR.E. BoudierA. LamourouxE. Investigation of nanoparticle metallic core antibacterial activity: Gold and silver nanoparticles against Escherichia coli and Staphylococcus aureus.Int. J. Mol. Sci.2021224190510.3390/ijms2204190533672995
    [Google Scholar]
  42. HassanR. Mohi-ud-dinR. DarM.O. ShahA.J. MirP.A. ShaikhM. PottooF.H. Bioactive heterocyclic compounds as potential therapeutics in the treatment of gliomas: A review.Anticancer. Agents Med. Chem.202222355156510.2174/187152062166621090111295434488596
    [Google Scholar]
  43. ChernousovaS. EppleM. Silver as antibacterial agent: Ion, nanoparticle, and metal.Angew. Chem. Int. Ed.20135261636165310.1002/anie.20120592323255416
    [Google Scholar]
  44. LiC. ZhangY. WangM. ZhangY. ChenG. LiL. WuD. WangQ. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window.Biomaterials201435139340010.1016/j.biomaterials.2013.10.01024135267
    [Google Scholar]
  45. SondiI. SondiS.B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria.J. Colloid Interface Sci.2004275117718210.1016/j.jcis.2004.02.01215158396
    [Google Scholar]
  46. LiL. HuJ. YangW. AlivisatosA.P. Band gap variation of size-and shape-controlled colloidal CdSe quantum rods.Nano Lett.20011734935110.1021/nl015559r
    [Google Scholar]
  47. SharmaV.K. YngardR.A. LinY. Silver nanoparticles: Green synthesis and their antimicrobial activities.Adv. Colloid Interface Sci.20091451-2839610.1016/j.cis.2008.09.00218945421
    [Google Scholar]
  48. KhanM.S. GowdaJ.B.H. AlmalkiW.H. SinghT. SahebkarA. KesharwaniP. Unravelling the potential of mitochondria-targeted liposomes for enhanced cancer treatment.Drug Discov. Today202429110381910.1016/j.drudis.2023.10381937940034
    [Google Scholar]
  49. GurunathanS. KalishwaralalK. VaidyanathanR. VenkataramanD. PandianS.R.K. MuniyandiJ. HariharanN. EomS.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli.Colloids Surf. B Biointerfaces200974132833510.1016/j.colsurfb.2009.07.04819716685
    [Google Scholar]
  50. LinP.C. LinS. WangP.C. SridharR. Techniques for physicochemical characterization of nanomaterials.Biotechnol. Adv.201432471172610.1016/j.biotechadv.2013.11.00624252561
    [Google Scholar]
  51. PleusR. Nanotechnologies-guidance on physicochemical characterization of engineered nanoscale materials for toxicologic assessment.Geneva, SwitzerlandISO2012
    [Google Scholar]
  52. JoD.H. KimJ.H. LeeT.G. KimJ.H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases.Nanomedicine20151171603161110.1016/j.nano.2015.04.01525989200
    [Google Scholar]
  53. StaquiciniF.I. OzawaM.G. MoyaC.A. DriessenW.H.P. BarbuE.M. NishimoriH. SoghomonyanS. FloresL.G.II LiangX. PaolilloV. AlauddinM.M. BasilionJ.P. FurnariF.B. BoglerO. LangF.F. AldapeK.D. FullerG.N. HöökM. GelovaniJ.G. SidmanR.L. CaveneeW.K. PasqualiniR. ArapW. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma.J. Clin. Invest.2011121116117310.1172/JCI4479821183793
    [Google Scholar]
  54. DuanX. LiY. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking.Small201399-101521153210.1002/smll.20120139023019091
    [Google Scholar]
  55. AlbaneseA. TangP.S. ChanW.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems.Annu. Rev. Biomed. Eng.201214111610.1146/annurev‑bioeng‑071811‑15012422524388
    [Google Scholar]
  56. PanáčekA. KolářM. VečeřováR. PrucekR. SoukupováJ. KryštofV. HamalP. ZbořilR. KvítekL. Antifungal activity of silver nanoparticles against Candida spp.Biomaterials200930316333634010.1016/j.biomaterials.2009.07.06519698988
    [Google Scholar]
  57. ZodrowK. BrunetL. MahendraS. LiD. ZhangA. LiQ. AlvarezP.J.J. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal.Water Res.200943371572310.1016/j.watres.2008.11.01419046755
    [Google Scholar]
  58. WongKK CheungSO HuangL NiuJ TaoC HoCM CheCM TamPK Further evidence of the anti-inflammatory effects of silver nanoparticles.ChemMedChem: Chem Enabl Drug Discov.20094711293510.1002/cmdc.200900049
    [Google Scholar]
  59. GurunathanS. LeeK.J. KalishwaralalK. SheikpranbabuS. VaidyanathanR. EomS.H. Antiangiogenic properties of silver nanoparticles.Biomaterials200930316341635010.1016/j.biomaterials.2009.08.00819698986
    [Google Scholar]
  60. SriramM.I. KanthS.B. KalishwaralalK. GurunathanS. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model.Int. J. Nanomed2010575376221042421
    [Google Scholar]
  61. WangM. ThanouM. Targeting nanoparticles to cancer.Pharmacol. Res.2010622909910.1016/j.phrs.2010.03.00520380880
    [Google Scholar]
  62. MirR.H. SabreenS. Mohi-ud-dinR. WaniTU JaleelA JanR BandayN MaqboolM Mohi-ud-dinI MirBI AhmedG Isoflavones of soy: Chemistry and health benefits. Edible Plants in Health and DiseasesCultural, Practical and Economic Value2022130332410.1007/978‑981‑16‑4880‑9_13
    [Google Scholar]
  63. NaganthranA. VerasoundarapandianG. KhalidF.E. MasarudinM.J. ZulkharnainA. NawawiN.M. KarimM. AbdullahC.C.A. AhmadS.A. Synthesis, characterization and biomedical application of silver nanoparticles.Materials202215242710.3390/ma1502042735057145
    [Google Scholar]
  64. YoonK.Y. ByeonH.J. ParkJ.H. HwangJ. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles.Sci. Total Environ.20073732-357257510.1016/j.scitotenv.2006.11.00717173953
    [Google Scholar]
  65. AzizN. FarazM. SherwaniM.A. FatmaT. PrasadR. Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis.Front Chem.201976510.3389/fchem.2019.0006530800654
    [Google Scholar]
  66. SukirthaR. PriyankaK.M. AntonyJ.J. KamalakkannanS. ThangamR. GunasekaranP. KrishnanM. AchiramanS. Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model.Process Biochem.201247227327910.1016/j.procbio.2011.11.003
    [Google Scholar]
  67. FarcauB.S. PotaraM. SimonT. JuhemA. BaldeckP. AstileanS. Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells.Mol. Pharm.201411239139910.1021/mp400300m24304361
    [Google Scholar]
  68. MirR.H. MirP.A. Mohi-ud-dinR. SabreenS. MaqboolM. ShahA.J. ShenmarK. RazaS.N. PottooF.H. A comprehensive review on journey of pyrrole scaffold against multiple therapeutic targets.Anticancer. Agents Med. Chem.202222193291330310.2174/187152062266622061314060735702764
    [Google Scholar]
  69. JohnstonH.J. HutchisonG. ChristensenF.M. PetersS. HankinS. StoneV. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity.Crit. Rev. Toxicol.201040432834610.3109/1040844090345307420128631
    [Google Scholar]
  70. Mohi-ud-DinR. MirR.H. MirP.A. BandayN. ShahA.J. SawhneyG. BhatM.M. BatihaG.E. PottooF.H. Dysfunction of ABC transporters at the surface of BBB: potential implications in intractable epilepsy and applications of nanotechnology enabled drug delivery.Curr. Drug Metab.202223973575610.2174/138920022366622081711500335980054
    [Google Scholar]
  71. RycengaM. CobleyC.M. ZengJ. LiW. MoranC.H. ZhangQ. QinD. XiaY. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications.Chem. Rev.201111163669371210.1021/cr100275d21395318
    [Google Scholar]
  72. Mohi-ud-dinR. MirR.H. SawhneyG. DarM.A. BhatZ.A. Possible pathways of hepatotoxicity caused by chemical agents.Curr. Drug Metab.2019201186787910.2174/138920022066619110512165331702487
    [Google Scholar]
  73. RenJ. TilleyR.D. Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes.J. Am. Chem. Soc.2007129113287329110.1021/ja067636w17311381
    [Google Scholar]
  74. MisraS.K. DybowskaA. BerhanuD. LuomaS.N. JonesV.E. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies.Sci. Total Environ.201243822523210.1016/j.scitotenv.2012.08.06623000548
    [Google Scholar]
  75. HuangT. XuX-H.N. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy.J. Mater. Chem.201020449867987610.1039/c0jm01990a22707855
    [Google Scholar]
  76. MahmoudM.A. SayedE.M.A. Different plasmon sensing behavior of silver and gold nanorods.J. Phys. Chem. Lett.2013491541154510.1021/jz400501526282312
    [Google Scholar]
  77. ZhangX.F. LiuZ.G. ShenW. GurunathanS. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches.Int. J. Mol. Sci.2016179153410.3390/ijms1709153427649147
    [Google Scholar]
  78. SastryM PatilV SainkarSR Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films.J. Phys Chem B19981028140410
    [Google Scholar]
  79. HuangX JainPK SayedE.IH SayedE.MA Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy.Nanomedicine2007256819310.2217/17435889.2.5.681
    [Google Scholar]
  80. LeungA.B. SuhK.I. AnsariR.R. Particle-size and velocity measurements in flowing conditions using dynamic light scattering.Appl. Opt.200645102186219010.1364/AO.45.00218616607982
    [Google Scholar]
  81. TomaszewskaE. SoliwodaK. KadziolaK. SzczesnaT.B. CelichowskiG. CichomskiM. SzmajaW. GrobelnyJ. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids.J. Nanomater.2013201311010.1155/2013/313081
    [Google Scholar]
  82. DasR. NathS.S. ChakdarD. GopeG. BhattacharjeeR.J. Preparation of silver nanoparticles and their characterization.J. Nanotechnol.2009516
    [Google Scholar]
  83. KreibigU VollmerM Optical properties of metal clusters.Springer Science & Business Media2013
    [Google Scholar]
  84. LinkS. SayedE.M.A. Optical properties and ultrafast dynamics of metallic nanocrystals.Annu. Rev. Phys. Chem.200354133136610.1146/annurev.physchem.54.011002.10375912626731
    [Google Scholar]
  85. NoginovM.A. ZhuG. BahouraM. AdegokeJ. SmallC. RitzoB.A. DrachevV.P. ShalaevV.M. The effect of gain and absorption on surface plasmons in metal nanoparticles.Appl. Phys. B200786345546010.1007/s00340‑006‑2401‑0
    [Google Scholar]
  86. NathS ChakdarD. Synthesis of CdS and ZnS quantum dots and their applications in electronics. Nanotrends2007
    [Google Scholar]
  87. TalebA. PetitC. PileniM.P. Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles.J. Phys. Chem. B1998102122214222010.1021/jp972807s
    [Google Scholar]
  88. HeR. QianX. YinJ. ZhuZ. Preparation of polychrome silver nanoparticles in different solvents.J. Mater. Chem.200212123783378610.1039/b205214h
    [Google Scholar]
  89. HengleinA. Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition.J. Phys. Chem.199397215457547110.1021/j100123a004
    [Google Scholar]
  90. SastryM. MayyaK.S. BandyopadhyayK. pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles.Colloids Surf. A Physicochem. Eng. Asp.19971271-322122810.1016/S0927‑7757(97)00087‑3
    [Google Scholar]
  91. WasedaY MatsubaraE ShinodaK. X-ray diffraction crystallography: Introduction, examples and solved problems.Springer Science & Business Media2011
    [Google Scholar]
  92. IvanisevicI. Physical stability studies of miscible amorphous solid dispersions.J. Pharm. Sci.20109994005401210.1002/jps.2224720533553
    [Google Scholar]
  93. CabralM. PedrosaF. MargaridoF. NogueiraC.A. End-of-life Zn-MnO2 batteries: Electrode materials characterization.Environ. Technol.201334101283129510.1080/09593330.2012.74562124191461
    [Google Scholar]
  94. DeyA. MukhopadhyayA.K. GangadharanS. SinhaM.K. BasuD. BandyopadhyayN.R. Nanoindentation study of microplasma sprayed hydroxyapatite coating.Ceram. Int.20093562295230410.1016/j.ceramint.2009.01.002
    [Google Scholar]
  95. AnaniasD. PazA.F.A. CarlosL.D. RochaJ. Chiral microporous rare-earth silico-germanates: Synthesis, structure and photoluminescence properties.Microporous Mesoporous Mater.2013166505810.1016/j.micromeso.2012.04.032
    [Google Scholar]
  96. SinghD.K. PandeyD.K. YadavR.R. SinghD. A study of ZnO nanoparticles and ZnO-EG nanofluid.J. Exp. Nanosci.20138573174110.1080/17458080.2011.602369
    [Google Scholar]
  97. MacalusoRT Introduction to powder diffraction and its application to nanoscale and heterogeneous materials.ACS Symposium Series20101010758610.1021/bk‑2009‑1010.ch006
    [Google Scholar]
  98. ZawrahMF ZayedHA EssawyRA NassarAH TahaMA Preparation by mechanical alloying, characterization and sintering of Cu-20 wt.% Al2O3 nanocomposites.Mater Design (1980-2015)20134648590
    [Google Scholar]
  99. YazdianN. KarimzadehF. EnayatiM.H. In situ fabrication of Al3V/Al2O3 nanocomposite through mechanochemical synthesis and evaluation of its mechanism.Adv. Powder Technol.201324110611210.1016/j.apt.2012.03.004
    [Google Scholar]
  100. WuH. HeL. GaoM. GaoS. LiaoX. ShiB. One-step in situ assembly of size-controlled silver nanoparticles on polyphenol-grafted collagen fiber with enhanced antibacterial properties.New J. Chem.201135122902290910.1039/c1nj20674e
    [Google Scholar]
  101. VaiaR.A. LiuW. X-ray powder diffraction of polymer/layered silicate nanocomposites: Model and practice.J. Polym. Sci., B, Polym. Phys.200240151590160010.1002/polb.10214
    [Google Scholar]
  102. RayS.S. OkamotoM. Polymer/layered silicate nanocomposites: A review from preparation to processing.Prog. Polym. Sci.200328111539164110.1016/j.progpolymsci.2003.08.002
    [Google Scholar]
  103. PavlidouS. PapaspyridesC.D. A review on polymer-layered silicate nanocomposites.Prog. Polym. Sci.200833121119119810.1016/j.progpolymsci.2008.07.008
    [Google Scholar]
  104. KouT. JinC. ZhangC. SunJ. ZhangZ. Nanoporous core-shell Cu@Cu2O nanocomposites with superior photocatalytic properties towards the degradation of methyl orange.RSC Advances2012233126361264310.1039/c2ra21821f
    [Google Scholar]
  105. KhanA. AsiriA.M. RubM.A. AzumN. KhanA.A.P. KhanS.B. RahmanM.M. KhanI. Synthesis, characterization of silver nanoparticle embedded polyaniline tungstophosphate-nanocomposite cation exchanger and its application for heavy metal selective membrane.Compos., Part B Eng.20134511486149210.1016/j.compositesb.2012.09.023
    [Google Scholar]
  106. DolatmoradiA. RayganS. AbdizadehH. Mechanochemical synthesis of W-Cu nanocomposites via in situ co-reduction of the oxides.Powder Technol.201323320821410.1016/j.powtec.2012.08.013
    [Google Scholar]
  107. AghiliS.E. EnayatiM.H. KarimzadehF. In situ synthesis of alumina reinforced (Fe, Cr) 3Al intermetallic matrix nanocomposite.Mater. Manuf. Process.201227121348135310.1080/10426914.2012.663141
    [Google Scholar]
  108. SapsfordK.E. TynerK.M. DairB.J. DeschampsJ.R. MedintzI.L. Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques.Anal. Chem.201183124453448810.1021/ac200853a21545140
    [Google Scholar]
  109. FlemingP.J. CorreiaJ.J. FlemingK.G. Revisiting macromolecular hydration with HullRadSAS.Eur. Biophys. J.2023524-521522410.1007/s00249‑022‑01627‑836602579
    [Google Scholar]
  110. DasR. AliE. Abd HamidS.B. Current applications of x-ray powder diffraction-A review.Rev. Adv. Mater. Sci.2014382
    [Google Scholar]
  111. CaminadeA. LaurentR. MajoralJ. Characterization of dendrimers.Adv. Drug Deliv. Rev.200557152130214610.1016/j.addr.2005.09.01116289434
    [Google Scholar]
  112. PrabhuN. KeerthiC. ShruthiS. SangeethaS.K. JeevithaS. A Review on green synthesis of silver nanoparticles, characterization techniques and its medical applications.European J. Biotechnol. Biosci.2019761022
    [Google Scholar]
  113. JoshiM BhattacharyyaA AliSW Characterization techniques for nanotechnology applications in textiles.Indian J. Fibre Textile Res.2008333304317
    [Google Scholar]
  114. CuevasJC ScheerE Molecular electronics: An introduction to theory and experiment.World Sci Ser Nanosci Nanotechnol20101584810.1142/7434
    [Google Scholar]
  115. ChapmanH.N. FrommeP. BartyA. WhiteT.A. KirianR.A. AquilaA. HunterM.S. SchulzJ. DePonteD.P. WeierstallU. DoakR.B. MaiaF.R.N.C. MartinA.V. SchlichtingI. LombL. CoppolaN. ShoemanR.L. EppS.W. HartmannR. RollesD. RudenkoA. FoucarL. KimmelN. WeidenspointnerG. HollP. LiangM. BarthelmessM. CalemanC. BoutetS. BoganM.J. KrzywinskiJ. BostedtC. BajtS. GumprechtL. RudekB. ErkB. SchmidtC. HömkeA. ReichC. PietschnerD. StrüderL. HauserG. GorkeH. UllrichJ. HerrmannS. SchallerG. SchopperF. SoltauH. KühnelK.U. MesserschmidtM. BozekJ.D. Hau-RiegeS.P. FrankM. HamptonC.Y. SierraR.G. StarodubD. WilliamsG.J. HajduJ. TimneanuN. SeibertM.M. AndreassonJ. RockerA. JönssonO. SvendaM. SternS. NassK. AndritschkeR. SchröterC.D. KrasniqiF. BottM. SchmidtK.E. WangX. GrotjohannI. HoltonJ.M. BarendsT.R.M. NeutzeR. MarchesiniS. FrommeR. SchorbS. RuppD. AdolphM. GorkhoverT. AnderssonI. HirsemannH. PotdevinG. GraafsmaH. NilssonB. SpenceJ.C.H. Femtosecond X-ray protein nanocrystallography.Nature20114707332737710.1038/nature0975021293373
    [Google Scholar]
  116. InagakiS. GhirlandoR. GrisshammerR. Biophysical characterization of membrane proteins in nanodiscs.Methods201359328730010.1016/j.ymeth.2012.11.00623219517
    [Google Scholar]
  117. JansH. LiuX. AustinL. MaesG. HuoQ. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies.Anal. Chem.200981229425943210.1021/ac901822w19803497
    [Google Scholar]
  118. KhlebtsovB.N. KhlebtsovN.G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method.Colloid J.201173111812710.1134/S1061933X11010078
    [Google Scholar]
  119. RamosZ.B.G. GarciaF.M.B. de OliveiraC.S. PasaA.A. SoldiV. BorsaliR. PasaC.T.B. Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles.Mater. Sci. Eng. C200929263864010.1016/j.msec.2008.10.040
    [Google Scholar]
  120. FissanH. RistigS. KaminskiH. AsbachC. EppleM. Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization.Anal. Methods20146187324733410.1039/C4AY01203H
    [Google Scholar]
  121. BerneB.J. PecoraR. Dynamic light scattering: with applications to chemistry, biology, and physics.Courier Corporation2000
    [Google Scholar]
  122. KoppelD.E. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants.J. Chem. Phys.197257114814482010.1063/1.1678153
    [Google Scholar]
  123. DieckmannY. CölfenH. HofmannH. FinkP.A. Particle size distribution measurements of manganese-doped ZnS nanoparticles.Anal. Chem.200981103889389510.1021/ac900043y19374425
    [Google Scholar]
  124. MurdockR.C. StolleB.L. SchrandA.M. SchlagerJ.J. HussainS.M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique.Toxicol. Sci.2008101223925310.1093/toxsci/kfm24017872897
    [Google Scholar]
  125. LangeH. Comparative test of methods to determine particle size and particle size distribution in the submicron range.Part. Part. Syst. Charact.199512314815710.1002/ppsc.19950120307
    [Google Scholar]
  126. GerwertK. Molecular reaction mechanisms of proteins monitored by time-resolved FTIR-spectroscopy.Biol Chem.19993807-89315
    [Google Scholar]
  127. JungC. Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy.J. Mol. Recognit.200013632535110.1002/1099‑1352(200011/12)13:6<325::AID‑JMR507>3.0.CO;2‑C11114067
    [Google Scholar]
  128. KimS. BarryB.A. Reaction-induced FT-IR spectroscopic studies of biological energy conversion in oxygenic photosynthesis and transport.J. Phys. Chem. B2001105194072408310.1021/jp0042516
    [Google Scholar]
  129. MänteleW.G. WollenweberA.M. NabedrykE. BretonJ. Infrared spectroelectrochemistry of bacteriochlorophylls and bacteriopheophytins: Implications for the binding of the pigments in the reaction center from photosynthetic bacteria.Proc. Natl. Acad. Sci.198885228468847210.1073/pnas.85.22.846816593991
    [Google Scholar]
  130. VogelR. SiebertF. Vibrational spectroscopy as a tool for probing protein function.Curr. Opin. Chem. Biol.20004551852310.1016/S1367‑5931(00)00125‑311006538
    [Google Scholar]
  131. WhartonC.W. Infrared spectroscopy of enzyme reaction intermediates.Nat. Prod. Rep.200017544745310.1039/b002066o11072892
    [Google Scholar]
  132. ZscherpC. BarthA. Reaction-induced infrared difference spectroscopy for the study of protein reaction mechanisms.Biochemistry20014071875188310.1021/bi002567y11329252
    [Google Scholar]
  133. ShangL. WangY. JiangJ. DongS. pH-dependent protein conformational changes in albumin: Gold nanoparticle bioconjugates: A spectroscopic study.Langmuir20072352714272110.1021/la062064e17249699
    [Google Scholar]
  134. PerevedentsevaE.V. SuF.Y. SuT.H. LinY.C. ChengC.L. KarmenyanA.V. PriezzhevA.V. LugovtsovA.E. Laser-optical investigation of the effect of diamond nanoparticles on the structure and functional properties of proteins.Quantum Electron.20104012108910.1070/QE2010v040n12ABEH014507
    [Google Scholar]
  135. Mohi-ud-dinR. ChawlaA. SharmaP. MirP.A. PotooF.H. ReinerŽ. ReinerI. AteşşahinD.A. Sharifi-RadJ. MirR.H. CalinaD. Repurposing approved non-oncology drugs for cancer therapy: A comprehensive review of mechanisms, efficacy, and clinical prospects.Eur. J. Med. Res.202328134510.1186/s40001‑023‑01275‑437710280
    [Google Scholar]
  136. BaudotC. TanC.M. KongJ.C. FTIR spectroscopy as a tool for nano-material characterization.Infrared Phys. Technol.201053643443810.1016/j.infrared.2010.09.002
    [Google Scholar]
  137. BarthA. ZscherpC. What vibrations tell about proteins.Q. Rev. Biophys.200235436943010.1017/S003358350200381512621861
    [Google Scholar]
  138. KumarS. BarthA. Following enzyme activity with infrared spectroscopy.Sensors20101042626263710.3390/s10040262622319264
    [Google Scholar]
  139. GoormaghtighE. RaussensV. RuysschaertJ.M. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes.Biochim. Biophys. Acta Rev. Biomembr.19991422210518510.1016/S0304‑4157(99)00004‑010393271
    [Google Scholar]
  140. HindA.R. BhargavaS.K. McKinnonA. At the solid/liquid interface: FTIR/ATR — the tool of choice.Adv. Colloid Interface Sci.2001931-39111410.1016/S0001‑8686(00)00079‑811591110
    [Google Scholar]
  141. KazarianS.G. ChanK.L.A. Applications of ATR-FTIR spectroscopic imaging to biomedical samples.Biochim. Biophys. Acta Biomembr.20061758785886710.1016/j.bbamem.2006.02.01116566893
    [Google Scholar]
  142. LiuH. WebsterT.J. Nanomedicine for implants: A review of studies and necessary experimental tools.Biomaterials200728235436910.1016/j.biomaterials.2006.08.04921898921
    [Google Scholar]
  143. AcostaE.J. GonzalezS.O. SimanekE.E. Synthesis, characterization, and application of melamine-based dendrimers supported on silica gel.J. Polym. Sci. A Polym. Chem.200543116817710.1002/pola.20493
    [Google Scholar]
  144. DemathieuC. ChehimiM.M. LipskierJ.F. CaminadeA.M. MajoralJ.P. Characterization of dendrimers by X-ray photoelectron spectroscopy.Appl. Spectrosc.199953101277128110.1366/0003702991945524
    [Google Scholar]
  145. MannaA. ImaeT. AoiK. OkadaM. YogoT. Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: Comparison of size between silver and gold particles.Chem. Mater.20011351674168110.1021/cm000416b
    [Google Scholar]
  146. DesimoniE. BrunettiB. X-ray photoelectron spectroscopic characterization of chemically modified electrodes used as chemical sensors and biosensors: A review.Materials20153270117
    [Google Scholar]
  147. GautamS.P. GuptaA.K. AgrawalS. SurekaS. Spectroscopic characterization of dendrimers.Int. J. Pharm. Pharm. Sci.2012427780
    [Google Scholar]
  148. PawleyJB The development of field-emission scanning electron microscopy for imaging biological surfaces.Scanning-New York and Baden Baden Then Mahwah19971932436
    [Google Scholar]
  149. WangZ.L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies.J. Phys. Chem. B200010461153117510.1021/jp993593c
    [Google Scholar]
  150. YaoH KimuraK Field emission scanning electron microscopy for structural characterization of 3D gold nanoparticle superlattices.Modern Res. Educational Topics Microscopy.2007256876
    [Google Scholar]
  151. HallJB DobrovolskaiaMA PatriAK McNeilSE Characterization of nanoparticles for therapeutics.Nanomedicine20072678980310.2217/17435889.2.6.789
    [Google Scholar]
  152. RatnerBD HoffmanAS SchoenFJ LemonsJE Biomaterials science: An introduction to materials in medicine.Elsevier2004
    [Google Scholar]
  153. CarterC.B. WilliamsD.B. Transmission electron microscopy: Diffraction, imaging, and spectrometry.Springer201610.1007/978‑3‑319‑26651‑0
    [Google Scholar]
  154. HinterdorferP. ParajoG.M.F. DufrêneY.F. Single-molecule imaging of cell surfaces using near-field nanoscopy.Acc. Chem. Res.201245332733610.1021/ar200116721992025
    [Google Scholar]
  155. KohA.L. HuW. WilsonR.J. WangS.X. SinclairR. TEM analyses of synthetic anti-ferromagnetic (SAF) nanoparticles fabricated using different release layers.Ultramicroscopy2008108111490149410.1016/j.ultramic.2008.03.01218672328
    [Google Scholar]
  156. MavrocordatosD. PronkW. BollerM. Analysis of environmental particles by atomic force microscopy, scanning and transmission electron microscopy.Water Sci. Technol.2004501291810.2166/wst.2004.069015685998
    [Google Scholar]
  157. PicasL. MilhietP.E. BorrellH.J. Atomic force microscopy: A versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale.Chem. Phys. Lipids2012165884586010.1016/j.chemphyslip.2012.10.00523194897
    [Google Scholar]
  158. SongJ. KimH. JangY. JangJ. Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles.ACS Appl. Mater. Interfaces2013522115631156810.1021/am402310u24156562
    [Google Scholar]
  159. ParotP. DufrêneY.F. HinterdorferP. Le GrimellecC. NavajasD. PellequerJ.L. ScheuringS. Past, present and future of atomic force microscopy in life sciences and medicine.J. Mol. Recognit.200720641843110.1002/jmr.85718080995
    [Google Scholar]
  160. YangL. WattsD.J. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles.Toxicol. Lett.2005158212213210.1016/j.toxlet.2005.03.00316039401
    [Google Scholar]
  161. TiedeK. BoxallA.B.A. TearS.P. LewisJ. DavidH. HassellövM. Detection and characterization of engineered nanoparticles in food and the environment.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.200825779582110.1080/0265203080200755318569000
    [Google Scholar]
  162. GmoshinskiI.V. KhotimchenkoS.A. PopovV.O. DzantievB.B. ZherdevA.V. DeminV.F. BuzulukovY.P. Nanomaterials and nanotechnologies: Methods of analysis and control.Russ. Chem. Rev.2013821487610.1070/RC2013v082n01ABEH004329
    [Google Scholar]
  163. SikoraA. RodakA. UnoldO. KlapetekP. The development of the spatially correlated adjustment wavelet filter for atomic force microscopy data.Ultramicroscopy201617114615210.1016/j.ultramic.2016.09.01227686275
    [Google Scholar]
  164. SönnichsenC. ReinhardB.M. LiphardtJ. AlivisatosA.P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles.Nat. Biotechnol.200523674174510.1038/nbt110015908940
    [Google Scholar]
  165. SannomiyaT HafnerC VorosJ In situ sensing of single binding events by localized surface plasmon resonance.Nano Lett.20088103450345510.1021/nl802317d
    [Google Scholar]
  166. LiC. WuC. ZhengJ. LaiJ. ZhangC. ZhaoY. LSPR sensing of molecular biothiols based on noncoupled gold nanorods.Langmuir201026119130913510.1021/la101285r20426452
    [Google Scholar]
  167. ShopovaS.I. RajmangalR. HollerS. ArnoldS. Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection.Appl. Phys. Lett.2011982424310410.1063/1.3599584
    [Google Scholar]
  168. ZijlstraP. PauloP.M.R. OrritM. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod.Nat. Nanotechnol.20127637938210.1038/nnano.2012.5122504707
    [Google Scholar]
  169. LisD. CecchetF. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: Towards an astonishing molecular sensitivity.Beilstein J. Nanotechnol.2014512275229210.3762/bjnano.5.23725551056
    [Google Scholar]
  170. TorresdeyG.J.L. TiemannK.J. DokkenK. PingitoreN.E. Recovery of gold (III) by alfalfa biomass and binding characterization using X-ray microfluoresence.Adv. Environ. Res.19993420U7U93
    [Google Scholar]
  171. ArmendarizV. HerreraI. videaP.J.R. YacamanJ.M. TroianiH. SantiagoP. TorresdeyG.J.L. Size controlled gold nanoparticle formation by Avena sativa biomass: Use of plants in nanobiotechnology.J. Nanopart. Res.20046437738210.1007/s11051‑004‑0741‑4
    [Google Scholar]
  172. SoniN. PrakashS. Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum.Am J Nanotechnol.201121112121
    [Google Scholar]
  173. TorresdeyG.J.L. TiemannK.J. GamezG. DokkenK. TehuacaneroS. YacamánJM. Gold nanoparticles obtained by bio-precipitation from gold (III) solutions.J. Nanopart. Res.19991339740410.1023/A:1010008915465
    [Google Scholar]
  174. DubeyS.P. LahtinenM. SillanpääM. Tansy fruit mediated greener synthesis of silver and gold nanoparticles.Process Biochem.20104571065107110.1016/j.procbio.2010.03.024
    [Google Scholar]
  175. SathishkumarM. SnehaK. WonS.W. ChoC.W. KimS. YunY.S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity.Colloids Surf. B Biointerfaces200973233233810.1016/j.colsurfb.2009.06.00519576733
    [Google Scholar]
  176. KumarV YadavSK Synthesis of different-sized silver nanoparticles by simply varying reaction conditions with leaf extracts of Bauhinia variegata L.IET Nanobiotechnol20126118
    [Google Scholar]
  177. CuiS. ZhangS. GeS. XiongL. SunQ. Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis.Ind. Crops Prod.20168334635210.1016/j.indcrop.2016.01.019
    [Google Scholar]
  178. SadeghiB. GholamhoseinpoorF. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature.Spectrochim. Acta A Mol. Biomol. Spectrosc.201513431031510.1016/j.saa.2014.06.04625022503
    [Google Scholar]
  179. MoonJ. HedmanH.P. KemellM. SuominenA. MäkiläE. KimH. TuominenA. PunkkinenR. A study of monitoring hydrogen using mesoporous TiO2 synthesized by anodization.Sens. Actuators B Chem.201318924625010.1016/j.snb.2013.05.070
    [Google Scholar]
  180. HuangX. JainP.K. SayedE.I.H. SayedE.M.A. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles.Photochem. Photobiol.200682241241710.1562/2005‑12‑14‑RA‑75416613493
    [Google Scholar]
  181. SultanM. SiddiqueM. KhanR. FallatahA.M. FatimaN. ShahzadiI. WaheedU. BilalM. AliA. AbbasiA.M. Ligustrum lucidum leaf extract-assisted green synthesis of silver nanoparticles and nano-adsorbents having potential in ultrasound-assisted adsorptive removal of methylene blue dye from wastewater and antimicrobial activity.Materials2022155163710.3390/ma1505163735268867
    [Google Scholar]
  182. NarayananK.B. SakthivelN. Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour.Mater. Charact.201061111232123810.1016/j.matchar.2010.08.003
    [Google Scholar]
  183. AgnihotriM. JoshiS. KumarA.R. ZinjardeS. KulkarniS. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589.Mater. Lett.200963151231123410.1016/j.matlet.2009.02.042
    [Google Scholar]
  184. PimprikarP.S. JoshiS.S. KumarA.R. ZinjardeS.S. KulkarniS.K. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589.Colloids Surf. B Biointerfaces200974130931610.1016/j.colsurfb.2009.07.04019700266
    [Google Scholar]
  185. SadhasivamS. ShanmugamP. YunK. Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms.Colloids Surf. B Biointerfaces201081135836210.1016/j.colsurfb.2010.07.03620705438
    [Google Scholar]
  186. KowshikM. DeshmukhN. VogelW. UrbanJ. KulkarniS.K. PaknikarK.M. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode.Biotechnol. Bioeng.200278558358810.1002/bit.1023312115128
    [Google Scholar]
  187. DarroudiM. AhmadM.B. ZamiriR. ZakA.K. AbdullahA.H. IbrahimN.A. Time-dependent effect in green synthesis of silver nanoparticles.Int. J. Nanomed2011667768110.2147/IJN.S1766921556342
    [Google Scholar]
  188. KuchibhatlaS.V.N.T. KarakotiA.S. BaerD.R. SamudralaS. EngelhardM.H. AmonetteJ.E. ThevuthasanS. SealS. Influence of aging and environment on nanoparticle chemistry: Implication to confinement effects in nanoceria.J. Phys. Chem. C201211626141081411410.1021/jp300725s23573300
    [Google Scholar]
  189. MudunkotuwaI.A. PettiboneJ.M. GrassianV.H. Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials.Environ. Sci. Technol.201246137001701010.1021/es203851d22280489
    [Google Scholar]
  190. BaerD.R. Surface characterization of nanoparticles: Critical needs and significant challenges.J. Surf. Anal.201117316316910.1384/jsa.17.16325342927
    [Google Scholar]
  191. AhmadN SharmaS Green synthesis of silver nanoparticles using extracts of Ananas comosus. Green Sustain Chem201224141147
    [Google Scholar]
  192. PrasadT.N.V.K.V. KambalaV.S.R. NaiduR. Phyconanotechnology: Synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation.J. Appl. Phycol.201325117718210.1007/s10811‑012‑9851‑z
    [Google Scholar]
  193. RaiA. SinghA. AhmadA. SastryM. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles.Langmuir200622273674110.1021/la052055q16401125
    [Google Scholar]
  194. SongJ.Y. JangH.K. KimB.S. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts.Process Biochem.200944101133113810.1016/j.procbio.2009.06.005
    [Google Scholar]
  195. PanP. HuC. YangW. LiY. DongL. ZhuL. TongD. QingR. FanY. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils.Bioresour. Technol.2010101124593459910.1016/j.biortech.2010.01.07020153636
    [Google Scholar]
  196. KaviyaS. SanthanalakshmiJ. ViswanathanB. MuthumaryJ. SrinivasanK. Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity.Spectrochim. Acta A Mol. Biomol. Spectrosc.201179359459810.1016/j.saa.2011.03.04021536485
    [Google Scholar]
  197. SongJ.Y. KwonE.Y. KimB.S. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract.Bioprocess Biosyst. Eng.201033115916410.1007/s00449‑009‑0373‑219701776
    [Google Scholar]
  198. GerickeM. PinchesA. Microbial production of gold nanoparticles.Gold Bull.2006391222810.1007/BF03215529
    [Google Scholar]
  199. GerickeM. PinchesA. Biological synthesis of metal nanoparticles.Hydrometallurgy2006831-413214010.1016/j.hydromet.2006.03.019
    [Google Scholar]
  200. FossJ.F. BohlD.G. HicksT.J. The pulse width modulated - constant temperature anemometer.Meas. Sci. Technol.19967101388139510.1088/0957‑0233/7/10/009
    [Google Scholar]
  201. ThirumuruganA. AswithaP. KiruthikaC. NagarajanS. ChristyA.N. Green synthesis of platinum nanoparticles using Azadirachta indica - An eco-friendly approach.Mater. Lett.201617017517810.1016/j.matlet.2016.02.026
    [Google Scholar]
  202. JameelMS AzizAA DheyabMA Green synthesis: Proposed mechanism and factors influencing the synthesis of platinum nanoparticles.Green Proc Synth20209138698
    [Google Scholar]
  203. WynsbergheV.M. FlejeoJ. SakhiH. OlleroM. SahaliD. IzzedineH. HeniqueC. Nephrotoxicity of anti-angiogenic therapies.Diagnostics202111464010.3390/diagnostics1104064033916159
    [Google Scholar]
  204. KhalilA.T. OvaisM. UllahI. AliM. ShinwariZ.K. HassanD. MaazaM. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential.Artif. Cells Nanomed. Biotechnol.201846483885210.1080/21691401.2017.134592828687045
    [Google Scholar]
  205. ShanmuganathanR. KaruppusamyI. SaravananM. MuthukumarH. PonnuchamyK. RamkumarV.S. PugazhendhiA. Synthesis of silver nanoparticles and their biomedical applications-A comprehensive review.Curr. Pharm. Des.201925242650266010.2174/138161282566619070818550631298154
    [Google Scholar]
  206. ArvizoR.R. BhattacharyyaS. KudgusR.A. GiriK. BhattacharyaR. MukherjeeP. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future.Chem. Soc. Rev.20124172943297010.1039/c2cs15355f22388295
    [Google Scholar]
  207. OvaisM. KhalilA.T. RazaA. KhanM.A. AhmadI. IslamN.U. SaravananM. UbaidM.F. AliM. ShinwariZ.K. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics.Nanomedicine201611233157317710.2217/nnm‑2016‑027927809668
    [Google Scholar]
  208. SperlingRA ParakWJ Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles.Philosophic Trans Royal Soc A: Math, Phys Eng Sci.20103681915133383
    [Google Scholar]
  209. ErathodiyilN. YingJ.Y. Functionalization of inorganic nanoparticles for bioimaging applications.Acc. Chem. Res.2011441092593510.1021/ar200032721648430
    [Google Scholar]
  210. LewisOscar F Algal nanoparticles: Synthesis and biotechnological potentials.Algae-organ Imminent Biotechnol2016715782
    [Google Scholar]
  211. BenelliG. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: A review.Parasitol. Res.20161151233410.1007/s00436‑015‑4800‑926541154
    [Google Scholar]
  212. HusenA. SiddiqiK.S. Phytosynthesis of nanoparticles: Concept, controversy and application.Nanoscale Res. Lett.20149122910.1186/1556‑276X‑9‑22924910577
    [Google Scholar]
  213. WeiL. LuJ. XuH. PatelA. ChenZ.S. ChenG. Silver nanoparticles: Synthesis, properties, and therapeutic applications.Drug Discov. Today201520559560110.1016/j.drudis.2014.11.01425543008
    [Google Scholar]
  214. LewisOscarF. MubarakAliD. NithyaC. PriyankaR. GopinathV. AlharbiN.S. ThajuddinN. One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa.Biofouling201531437939110.1080/08927014.2015.104868626057498
    [Google Scholar]
  215. ChariN. FelixL. DavoodbashaM. AliS.A. NooruddinT. In vitro and in vivo antibiofilm effect of copper nanoparticles against aquaculture pathogens.Biocatal. Agric. Biotechnol.20171033634110.1016/j.bcab.2017.04.013
    [Google Scholar]
  216. MubarakAliD. ArunkumarJ. PoojaP. SubramanianG. ThajuddinN. AlharbiN.S. Synthesis and characterization of biocompatibility of tenorite nanoparticles and potential property against biofilm formation.Saudi Pharm. J.201523442142810.1016/j.jsps.2014.11.00727134545
    [Google Scholar]
  217. ShanmuganathanR. MubarakAliD. PrabakarD. MuthukumarH. ThajuddinN. KumarS.S. PugazhendhiA. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: Green approach.Environ. Sci. Pollut. Res. Int.20182511103621037010.1007/s11356‑017‑9367‑928600792
    [Google Scholar]
  218. MubarakAliD. ThajuddinN. JeganathanK. GunasekaranM. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens.Colloids Surf. B Biointerfaces201185236036510.1016/j.colsurfb.2011.03.00921466948
    [Google Scholar]
  219. OjhaA.K. RoutJ. BeheraS. NayakP.L. Green synthesis and characterization of zero valent silver nanoparticles from the leaf extract of Datura metel.Int. J. Pharm. Res. Allied Sci.201323135
    [Google Scholar]
  220. HussainS.M. HessK.L. GearhartJ.M. GeissK.T. SchlagerJ.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells.Toxicol. In Vitro200519797598310.1016/j.tiv.2005.06.03416125895
    [Google Scholar]
  221. LiuW. WuY. WangC. LiH.C. WangT. LiaoC.Y. CuiL. ZhouQ.F. YanB. JiangG.B. Impact of silver nanoparticles on human cells: Effect of particle size.Nanotoxicology20104331933010.3109/17435390.2010.48374520795913
    [Google Scholar]
  222. HsinY.H. ChenC.F. HuangS. ShihT.S. LaiP.S. ChuehP.J. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells.Toxicol. Lett.2008179313013910.1016/j.toxlet.2008.04.01518547751
    [Google Scholar]
  223. BragaV.T. GraffM.R. WojdylaK. WrzesinskaR.A. BrewerJ.R. ErdmannH. KjeldsenF. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics.ACS Nano2014832161217510.1021/nn405074424512182
    [Google Scholar]
  224. HussainM.S. GuptaG. AfzalM. AlqahtaniS.M. SamuelV.P. AlmalkiH.W. KazmiI. AlzareaS.I. SaleemS. DurejaH. SinghS.K. DuaK. ThangaveluL. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review.Pathol. Res. Pract.202325215490810.1016/j.prp.2023.15490837950931
    [Google Scholar]
  225. CarlsonC. HussainS.M. SchrandA.M.K. StolleB.L.K. HessK.L. JonesR.L. SchlagerJ.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species.J. Phys. Chem. B200811243136081361910.1021/jp712087m18831567
    [Google Scholar]
  226. FoldbjergR. OlesenP. HougaardM. DangD.A. HoffmannH.J. AutrupH. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes.Toxicol. Lett.2009190215616210.1016/j.toxlet.2009.07.00919607894
    [Google Scholar]
  227. FoldbjergR. IrvingE.S. HayashiY. SutherlandD.S. ThorsenK. AutrupH. BeerC. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver.Toxicol. Sci.2012130114515710.1093/toxsci/kfs22522831968
    [Google Scholar]
  228. KimS. ChoiJ.E. ChoiJ. ChungK.H. ParkK. YiJ. RyuD.Y. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells.Toxicol. In Vitro20092361076108410.1016/j.tiv.2009.06.00119508889
    [Google Scholar]
  229. AvalosA. HazaA.I. MateoD. MoralesP. Interactions of manufactured silver nanoparticles of different sizes with normal human dermal fibroblasts.Int. Wound J.201613110110910.1111/iwj.1224424612846
    [Google Scholar]
  230. PiaoM.J. KangK.A. LeeI.K. KimH.S. KimS. ChoiJ.Y. ChoiJ. HyunJ.W. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis.Toxicol. Lett.201120119210010.1016/j.toxlet.2010.12.01021182908
    [Google Scholar]
  231. EomH.J. ChoiJ. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells.Environ. Sci. Technol.201044218337834210.1021/es102066820932003
    [Google Scholar]
  232. NishanthR.P. JyotsnaR.G. SchlagerJ.J. HussainS.M. ReddannaP. Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: Role of ROS-NFκB signaling pathway.Nanotoxicology20115450251610.3109/17435390.2010.54160421417802
    [Google Scholar]
  233. HussainM.S. GuptaG. SamuelV.P. AlmalkiW.H. KazmiI. AlzareaS.I. SaleemS. KhanR. AltwaijryN. PatelS. PatelA. SinghS.K. DuaK. Immunopathology of herpes simplex virus-associated neuroinflammation: Unveiling the mysteries.Rev. Med. Virol.2024341e249110.1002/rmv.249137985599
    [Google Scholar]
  234. AshaRani PV Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells.Genome Integr.2012314
    [Google Scholar]
  235. AsareN. InstanesC. SandbergW.J. RefsnesM. SchwarzeP. KruszewskiM. BrunborgG. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells.Toxicology20122911-3657210.1016/j.tox.2011.10.02222085606
    [Google Scholar]
  236. KwokK.W.H. AuffanM. BadireddyA.R. NelsonC.M. WiesnerM.R. ChilkotiA. LiuJ. MarinakosS.M. HintonD.E. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): Effect of coating materials.Aquat. Toxicol.2012120-121596610.1016/j.aquatox.2012.04.01222634717
    [Google Scholar]
  237. HussainM.S. GuptaG. GoyalA. ThapaR. almalkiW.H. KazmiI. AlzareaS.I. FuloriaS. MeenakshiD.U. JakhmolaV. PandeyM. SinghS.K. DuaK. From nature to therapy: Luteolin’s potential as an immune system modulator in inflammatory disorders.J. Biochem. Mol. Toxicol.20233711e2348210.1002/jbt.2348237530602
    [Google Scholar]
  238. AhamedM. KarnsM. GoodsonM. RoweJ. HussainS.M. SchlagerJ.J. HongY. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells.Toxicol. Appl. Pharmacol.2008233340441010.1016/j.taap.2008.09.01518930072
    [Google Scholar]
  239. ChichovaM. ShkodrovaM. VasilevaP. KirilovaK. StoimenovaD.D. Influence of silver nanoparticles on the activity of rat liver mitochondrial ATPase.J. Nanopart. Res.2014162224310.1007/s11051‑014‑2243‑3
    [Google Scholar]
  240. De MatteisV. MalvindiM.A. GaleoneA. BrunettiV. De LucaE. KoteS. KshirsagarP. SabellaS. BardiG. PompaP.P. Negligible particle-specific toxicity mechanism of silver nanoparticles: The role of Ag+ ion release in the cytosol.Nanomedicine201511373173910.1016/j.nano.2014.11.00225546848
    [Google Scholar]
  241. NairL.S. LaurencinC.T. Silver nanoparticles: Synthesis and therapeutic applications.J. Biomed. Nanotechnol.20073430131610.1166/jbn.2007.041
    [Google Scholar]
  242. PanáčekA. KvítekL. PrucekR. KolářM. VečeřováR. PizúrováN. SharmaV.K. NevěčnáT. ZbořilR. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity.J. Phys. Chem. B200611033162481625310.1021/jp063826h16913750
    [Google Scholar]
  243. SunY XiaY Shape-controlled synthesis of gold and silver nanoparticles.Science2002298560121769
    [Google Scholar]
  244. KruisF.E. FissanH. RellinghausB. Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles.Mater. Sci. Eng. B200069-7032933410.1016/S0921‑5107(99)00298‑6
    [Google Scholar]
  245. TienD.C. LiaoC.Y. HuangJ.C. TsengK.H. LungJ.K. TsungT.T. KaoW.S. TsaiT.H. ChengT.W. YuB.S. LinH.M. Novel technique for preparing a nano-silver water suspension by the arc-discharge method.Rev. Adv. Mater. Sci.2008188752758
    [Google Scholar]
  246. ShameliK. ZargarM DarroudiM AbdollahiY RustaiyanA ZargarM. AbdollahiY. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity.Int. J. Nanomed2010587588710.2147/IJN.S1363221116328
    [Google Scholar]
  247. NourA.E.K.M.M. EftaihaA. WarthanA.A. AmmarR.A.A. Synthesis and applications of silver nanoparticles.Arab. J. Chem.20103313514010.1016/j.arabjc.2010.04.008
    [Google Scholar]
  248. TaoA SinsermsuksakulP YangP Polyhedral silver nanocrystals with distinct scattering signatures.Angew Chem Int Ed Engl.2006452845974601
    [Google Scholar]
  249. WileyB. SunY. MayersB. XiaY. Shape-controlled synthesis of metal nanostructures: The case of silver.Chemistry200511245446310.1002/chem.20040092715565727
    [Google Scholar]
  250. MirR.H. MirP.A. UppalJ. ChawlaA. PatelM. BardakciF. AdnanM. Mohi-ud-dinR. Evolution of natural product scaffolds as potential proteasome inhibitors in developing cancer therapeutics.Metabolites202313450910.3390/metabo1304050937110167
    [Google Scholar]
  251. LiW.R. XieX.B. ShiQ.S. ZengH.Y. OU-YangY.S. ChenY.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli.Appl. Microbiol. Biotechnol.20108541115112210.1007/s00253‑009‑2159‑519669753
    [Google Scholar]
  252. DeepakV. UmamaheshwaranP.S. GuhanK. NanthiniR.A. KrithigaB. JaithoonN.M.H. GurunathanS. Synthesis of gold and silver nanoparticles using purified URAK.Colloids Surf. B Biointerfaces201186235335810.1016/j.colsurfb.2011.04.01921592748
    [Google Scholar]
  253. MallickK. WitcombM.J. ScurrellM.S. Polymer stabilized silver nanoparticles: A photochemical synthesis route.J. Mater. Sci.200439144459446310.1023/B:JMSC.0000034138.80116.50
    [Google Scholar]
  254. MalikM.A. O’BrienP. RevaprasaduN. A simple route to the synthesis of core/shell nanoparticles of chalcogenides.Chem. Mater.20021452004201010.1021/cm011154w
    [Google Scholar]
  255. MafunéF. KohnoJ. TakedaY. KondowT. SawabeH. Formation and size control of silver nanoparticles by laser ablation in aqueous solution.J. Phys. Chem. B2000104399111911710.1021/jp001336y
    [Google Scholar]
  256. ZhuJ.J. LiaoX.H. ZhaoX.N. ChenH.Y. Preparation of silver nanorods by electrochemical methods.Mater. Lett.2001492919510.1016/S0167‑577X(00)00349‑9
    [Google Scholar]
  257. MashkaniH.S.M. RamezaniM. Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition.Mater. Lett.201413025926210.1016/j.matlet.2014.05.133
    [Google Scholar]
  258. GurunathanS. HanJ.W. KimE. ParkJ.H. KimJ.H. Reduction of graphene oxide by resveratrol: A novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule.Int. J. Nanomed2015102951296910.2147/IJN.S7987925931821
    [Google Scholar]
  259. AnastasP. EghbaliN. Green chemistry: Principles and practice.Chem. Soc. Rev.201039130131210.1039/B918763B20023854
    [Google Scholar]
  260. RafiqueM. SadafI. RafiqueM.S. TahirM.B. A review on green synthesis of silver nanoparticles and their applications.Artif. Cells Nanomed. Biotechnol.20174571272129110.1080/21691401.2016.124179227825269
    [Google Scholar]
  261. AliM. KimB. BelfieldK.D. NormanD. BrennanM. AliG.S. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract-A comprehensive study.Mater. Sci. Eng. C20165835936510.1016/j.msec.2015.08.04526478321
    [Google Scholar]
  262. Mohi-ud-dinR MirRH PottooFH SawhneyG MasoodiMH BhatZA Nanophytomedicine ethical issues, regulatory aspects, and challenges.Nanophytomedicine: Concept to clinic.Springer20201739210.1007/978‑981‑15‑4909‑0_10
    [Google Scholar]
  263. KalimuthuK. BabuS.R. VenkataramanD. BilalM. GurunathanS. Biosynthesis of silver nanocrystals by Bacillus licheniformis.Colloids Surf. B Biointerfaces200865115015310.1016/j.colsurfb.2008.02.01818406112
    [Google Scholar]
  264. KalishwaralalK. DeepakV. RamkumarpandianS. NellaiahH. SangiliyandiG. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis.Mater. Lett.200862294411441310.1016/j.matlet.2008.06.051
    [Google Scholar]
  265. NairB. PradeepT. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains.Cryst. Growth Des.20022429329810.1021/cg0255164
    [Google Scholar]
  266. KalishwaralalK. DeepakV. PandianR.K.S. KottaisamyM. BarathManiKanthS. KartikeyanB. GurunathanS. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei.Colloids Surf. B Biointerfaces201077225726210.1016/j.colsurfb.2010.02.00720197229
    [Google Scholar]
  267. ShankarS.S. AhmadA. SastryM. Geranium leaf assisted biosynthesis of silver nanoparticles.Biotechnol. Prog.20031961627163110.1021/bp034070w14656132
    [Google Scholar]
  268. GurunathanS. HanJ.W. DayemA.A. EppakayalaV. ParkJ.H. ChoS.G. LeeK.J. KimJ.H. Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7).J. Ind. Eng. Chem.20131951600160510.1016/j.jiec.2013.01.029
    [Google Scholar]
  269. GurunathanS. JeongJ.K. HanJ.W. ZhangX.F. ParkJ.H. KimJ.H. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells.Nanoscale Res. Lett.20151013510.1186/s11671‑015‑0747‑025852332
    [Google Scholar]
  270. GurunathanS. Biologically synthesized silver nanoparticles enhances antibiotic activity against Gram-negative bacteria.J. Ind. Eng. Chem.20152921722610.1016/j.jiec.2015.04.005
    [Google Scholar]
  271. ShankarS. RhimJ.W. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films.Carbohydr. Polym.201513035336310.1016/j.carbpol.2015.05.01826076636
    [Google Scholar]
  272. GurunathanS. HanJ.W. KwonD.N. KimJ.H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria.Nanoscale Res. Lett.20149137310.1186/1556‑276X‑9‑37325136281
    [Google Scholar]
  273. ThakkarK.N. MhatreS.S. ParikhR.Y. Biological synthesis of metallic nanoparticles.Nanomedicine20106225726210.1016/j.nano.2009.07.00219616126
    [Google Scholar]
  274. PalS. TakY.K. SongJ.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli.Appl. Environ. Microbiol.20077361712172010.1128/AEM.02218‑0617261510
    [Google Scholar]
  275. PyatenkoA. YamaguchiM. SuzukiM. Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions.J. Phys. Chem. C2007111227910791710.1021/jp071080x
    [Google Scholar]
  276. KhodashenasB. GhorbaniH.R. Synthesis of silver nanoparticles with different shapes.Arab. J. Chem.20191281823183810.1016/j.arabjc.2014.12.014
    [Google Scholar]
  277. SharmaD. KanchiS. BisettyK. Biogenic synthesis of nanoparticles: A review.Arab. J. Chem.20191283576360010.1016/j.arabjc.2015.11.002
    [Google Scholar]
  278. NasrollahzadehM AtarodM SajjadiM SajadiSM IssaabadiZ Plant-mediated green synthesis of nanostructures: Mechanisms, characterization, and applications.In Interface Science TechnologyElsevier20192819932210.1016/B978‑0‑12‑813586‑0.00006‑7
    [Google Scholar]
  279. ThakurP.K. VermaV. A review on green synthesis, characterization and anticancer application of metallic nanoparticles.Appl. Biochem. Biotechnol.202119372357237810.1007/s12010‑021‑03598‑634114200
    [Google Scholar]
  280. GowdaB.H.J. AhmedM.G. ChinnamS. PaulK. AshrafuzzamanM. ChavaliM. GahtoriR. PanditS. KesariK.K. GuptaP.K. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery.J. Drug Deliv. Sci. Technol.20227110330510.1016/j.jddst.2022.103305
    [Google Scholar]
  281. AudaM.M. ShareefH.A. MohammedB.L. Green synthesis of silver nanoparticles using the extract of Rheum ribes and evaluating their antifungal activity against some of Candida sp.Tikrit J. Pure Science2022262535910.25130/tjps.v26i2.119
    [Google Scholar]
  282. Deepa AmeenF. IslamA.M. DhankerR. Green synthesis of silver nanoparticles from vegetable waste of pea Pisum sativum and bottle gourd Lagenaria siceraria: Characterization and antibacterial properties.Front. Environ. Sci.20221094155410.3389/fenvs.2022.941554
    [Google Scholar]
  283. MondalA. MondalA. SenK. DebnathP. MondalN.K. Synthesis, characterization and optimization of chicken bile-mediated silver nanoparticles: A mechanistic insight into antibacterial and antibiofilm activity.Environ. Sci. Pollut. Res. Int.2022306165251653810.1007/s11356‑022‑23401‑136190628
    [Google Scholar]
  284. KoładkaW.K. MalinaD. SuderA. PlutaK. WzorekZ. Bio-based synthesis of silver nanoparticles from waste agricultural biomass and its antimicrobial activity.Processes202210238910.3390/pr10020389
    [Google Scholar]
  285. FadliRM NuruddinA YuliartoB Green synthesis of silver/silver chloride nanoparticles using shallot peel extract as reducing agent. J Phys: Conf Ser Bali Indonesia 2024; 2705(1): 012011.
    [Google Scholar]
  286. MohamedS.A. Eco-friendly green biosynthesis of silver nanoparticles (Or-AgNPs) using orange peel (Citrus sinensis) waste and evaluation of their antibacterial and cytotoxic activities.Nano Hybrids Compos202236576810.4028/p‑9pjwgi
    [Google Scholar]
  287. PatelS. PatelN. Tectona grandis seed mediated green synthesis of silver nanoparticles and their antibacterial activity.Trends Sci2023205510410.48048/tis.2023.5104
    [Google Scholar]
  288. AhamadI. AzizN. ZakiA. FatmaT. Synthesis and characterization of silver nanoparticles using Anabaena variabilis as a potential antimicrobial agent.J. Appl. Phycol.202133282984110.1007/s10811‑020‑02323‑w
    [Google Scholar]
  289. ChakrabortyN. GhoshS. SamantaM. DasB. ChattopadhyayK.K. Silver nanoparticle decorated perforated graphene: An efficient and low-cost catalyst for hydrogen evolution reaction.ECS J. Solid State Sci. Technol.2023121010100110.1149/2162‑8777/acfbb5
    [Google Scholar]
  290. SepeurS. Nanotechnology: Technical basics and applications.Vincentz Network GmbH & Co KG2008
    [Google Scholar]
  291. MeyersM.A. MishraA. BensonD.J. Mechanical properties of nanocrystalline materials.Prog. Mater. Sci.200651442755610.1016/j.pmatsci.2005.08.003
    [Google Scholar]
  292. MukherjeeP. AhmadA. MandalD. SenapatiS. SainkarS.R. KhanM.I. ParishchaR. AjaykumarP.V. AlamM. KumarR. SastryM. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis.Nano Lett.200111051551910.1021/nl0155274
    [Google Scholar]
  293. MittalA.K. ChistiY. BanerjeeU.C. Synthesis of metallic nanoparticles using plant extracts.Biotechnol. Adv.201331234635610.1016/j.biotechadv.2013.01.00323318667
    [Google Scholar]
  294. SintubinL. VerstraeteW. BoonN. Biologically produced nanosilver: Current state and future perspectives.Biotechnol. Bioeng.2012109102422243610.1002/bit.2457022674445
    [Google Scholar]
  295. PrabhuS. PouloseE.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects.Int. Nano Lett.2012213210.1186/2228‑5326‑2‑32
    [Google Scholar]
  296. KarthikL. KumarG. KirthiA.V. RahumanA.A. RaoB.K.V. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application.Bioprocess Biosyst. Eng.201437226126710.1007/s00449‑013‑0994‑323771163
    [Google Scholar]
  297. VaidyanathanR. GopalramS. KalishwaralalK. DeepakV. PandianS.R.K. GurunathanS. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity.Colloids Surf. B Biointerfaces201075133534110.1016/j.colsurfb.2009.09.00619796922
    [Google Scholar]
  298. GolinskaP. WypijM. IngleA.P. GuptaI. DahmH. RaiM. Biogenic synthesis of metal nanoparticles from actinomycetes: Biomedical applications and cytotoxicity.Appl. Microbiol. Biotechnol.201498198083809710.1007/s00253‑014‑5953‑725158833
    [Google Scholar]
  299. van HullebuschE.D. ZandvoortM.H. LensP.N.L. Metal immobilisation by biofilms: Mechanisms and analytical tools.Rev. Environ. Sci. Biotechnol.20032193310.1023/B:RESB.0000022995.48330.55
    [Google Scholar]
  300. LinZ. ZhouC. WuJ. ZhouJ. WangL. A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09.Spectrochim. Acta A Mol. Biomol. Spectrosc.20056161195120010.1016/j.saa.2004.06.04115741121
    [Google Scholar]
  301. SintubinL. De WindtW. DickJ. MastJ. van der HaD. VerstraeteW. BoonN. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles.Appl. Microbiol. Biotechnol.200984474174910.1007/s00253‑009‑2032‑619488750
    [Google Scholar]
  302. NandaA. SaravananM. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE.Nanomedicine20095445245610.1016/j.nano.2009.01.01219523420
    [Google Scholar]
  303. SamadiN. GolkaranD. EslamifarA. JamalifarH. FazeliM.R. MohseniF.A. Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste.J. Biomed. Nanotechnol.20095324725310.1166/jbn.2009.102920055006
    [Google Scholar]
  304. ShahverdiA.R. MinaeianS. ShahverdiH.R. JamalifarH. NohiA.A. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach.Process Biochem.200742591992310.1016/j.procbio.2007.02.005
    [Google Scholar]
  305. KharissovaO.V. DiasH.V.R. KharisovB.I. PérezB.O. PérezV.M.J. The greener synthesis of nanoparticles.Trends Biotechnol.201331424024810.1016/j.tibtech.2013.01.00323434153
    [Google Scholar]
  306. MohanpuriaP. RanaN.K. YadavS.K. Biosynthesis of nanoparticles: Technological concepts and future applications.J. Nanopart. Res.200810350751710.1007/s11051‑007‑9275‑x
    [Google Scholar]
  307. DhillonG.S. BrarS.K. KaurS. VermaM. Green approach for nanoparticle biosynthesis by fungi: Current trends and applications.Crit. Rev. Biotechnol.2012321497310.3109/07388551.2010.55056821696293
    [Google Scholar]
  308. SastryM. AhmadA. KhanM.I. KumarR. Biosynthesis of metal nanoparticles using fungi and actinomycete.Curr. Sci.2003852162170
    [Google Scholar]
  309. MandalD. BolanderM.E. MukhopadhyayD. SarkarG. MukherjeeP. The use of microorganisms for the formation of metal nanoparticles and their application.Appl. Microbiol. Biotechnol.200669548549210.1007/s00253‑005‑0179‑316317546
    [Google Scholar]
  310. KuppusamyP. IchwanS.J.A. ZikriA.P.N.H. SuriyahW.H. SoundharrajanI. GovindanN. ManiamG.P. YusoffM.M. In vitro anticancer activity of Au, Ag nanoparticles synthesized using Commelina nudiflora L. aqueous extract against HCT-116 colon cancer cells.Biol. Trace Elem. Res.2016173229730510.1007/s12011‑016‑0666‑726961292
    [Google Scholar]
  311. RamasamyM. LeeJ.H. LeeJ. Direct one-pot synthesis of cinnamaldehyde immobilized on gold nanoparticles and their antibiofilm properties.Colloids Surf. B Biointerfaces201716063964810.1016/j.colsurfb.2017.10.01829031224
    [Google Scholar]
  312. HanmoungjaiP. PyleD.L. NiranjanK. Biotechnology: International research in process, E. Technology, C. Enzyme-assisted water-extraction of oil and protein from rice bran.Environ. Clean Technol.200277771776
    [Google Scholar]
  313. MukunthanK.S. BalajiS. Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles.International J. Green Nanotechnol201242717910.1080/19430892.2012.676900
    [Google Scholar]
  314. SathishkumarP. VennilaK. JayakumarR. YusoffA.R.M. HadibarataT. PalvannanT. Phyto-synthesis of silver nanoparticles using Alternanthera tenella leaf extract: An effective inhibitor for the migration of human breast adenocarcinoma (MCF-7) cells.Bioprocess Biosyst. Eng.201639465165910.1007/s00449‑016‑1546‑426801668
    [Google Scholar]
  315. VijayaraghavanK. NaliniS.P.K. PrakashN.U. MadhankumarD. Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum.Mater. Lett.201275333510.1016/j.matlet.2012.01.083
    [Google Scholar]
  316. JasujaN.D. GuptaD.K. RezaM. JoshiS.C. Green synthesis of AgNPs stabilized with biowaste and their antimicrobial activities.Braz. J. Microbiol.20144541325133210.1590/S1517‑8382201400040002425763037
    [Google Scholar]
  317. MuniyappanN. NagarajanN.S. Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities.Process Biochem.20144961054106110.1016/j.procbio.2014.03.015
    [Google Scholar]
  318. MariselvamR. RanjitsinghA.J.A. NanthiniU.R.A. KalirajanK. PadmalathaC. SelvakumarM.P. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity.Spectrochim. Acta A Mol. Biomol. Spectrosc.201412953754110.1016/j.saa.2014.03.06624762541
    [Google Scholar]
  319. RamtekeC ChakrabartiT SarangiBK PandeyRA Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity.J Chem20132013
    [Google Scholar]
  320. ArokiyarajS. ArasuV.M. VincentS. OhY-K. KimK.H. ChoiK-C. ChoiS.H. PrakashN.U. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L. and its antibacterial and cytotoxic effects: An in vitro study.Int. J. Nanomedicine2014937938810.2147/IJN.S5354624426782
    [Google Scholar]
  321. SundrarajanM. GowriS. Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract.Chalcogenide Lett.201188447451
    [Google Scholar]
  322. HusainS. SardarM. FatmaT. Screening of cyanobacterial extracts for synthesis of silver nanoparticles.World J. Microbiol. Biotechnol.20153181279128310.1007/s11274‑015‑1869‑325971548
    [Google Scholar]
  323. ZinicovscaiaI. ChiriacT. CepoiL. RudiL. CulicovO. FrontasyevaM. RudicV. Selenium uptake and assessment of the biochemical changes in Arthrospira (Spirulina) platensis biomass during the synthesis of selenium nanoparticles.Can. J. Microbiol.2017631273410.1139/cjm‑2016‑033927841947
    [Google Scholar]
  324. HamoudaR.A. HusseinM.H. ElmagdA.R.A. BawazirS.S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica.Sci. Rep.2019911307110.1038/s41598‑019‑49444‑y31506473
    [Google Scholar]
  325. PatelV. BertholdD. PuranikP. GantarM. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity.Biotechnol. Rep.2015511211910.1016/j.btre.2014.12.00128626689
    [Google Scholar]
  326. ParialD. PalR. Green synthesis of gold nanoparticles using cyanobacteria and their characterization.Indian J. Appl. Res.201141697210.15373/2249555X/JAN2014/22
    [Google Scholar]
  327. BuhariR. RohaniM.M. AbdullahM.E. Dynamic load coefficient of tyre forces from truck axles.Appl. Mech. Mater.2013405-4081900191110.4028/www.scientific.net/AMM.405‑408.1900
    [Google Scholar]
  328. LengkeM.F. FleetM.E. SouthamG. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex.Langmuir20072352694269910.1021/la061312417309217
    [Google Scholar]
  329. MiraA.K. YousefA.S. AbdullahA. Biosynthesis of silver nanoparticles by Cyanobacterium gloeocapsa sp.IJERSTE2015496073
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128291705240428060456
Loading
/content/journals/cpd/10.2174/0113816128291705240428060456
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test