- Home
- A-Z Publications
- Current Pharmaceutical Design
- Previous Issues
- Volume 28, Issue 35, 2022
Current Pharmaceutical Design - Volume 28, Issue 35, 2022
Volume 28, Issue 35, 2022
-
-
Tools in the Era of Multidrug Resistance in Bacteria: Applications for New Antimicrobial Peptides Discovery
Antimicrobial peptides (AMPs) are small molecules belonging to innate immunity that act against bacteria, fungi, and viruses. With the spread of bacterial strains resistant to current antibiotics, the scientific community is deeply committed to the identification and study of new molecules with putative antimicrobial activity. In this context, AMPs represent a promising alternative to overcome this problem. To date, several databases have been built up to provide information on the AMPs identified so far and their physico-chemical properties. Moreover, several tools have been developed and are available online that allow to highlight sequences with putative antimicrobial activity and predict their biological activity. These tools can also predict the secondary and tertiary structures of putative AMPs, thus allowing molecular docking studies to evaluate potential interactions with proteins/ligands. In this paper, we focused our attention on online available AMPs databases and computational tools for biological activity and tertiary structure prediction, highlighting some papers in which the computational approach was successfully used. As the identification of peptides starts from the analysis of a large amount of data, we show that bioinformatics predictions are the best starting point for the identification of new sequences of interest that can be subsequently produced and tested.
-
-
-
Antiviral Activity of Bee Products
More LessHoney bees provide many products exerting a wide range of benefits to humans. Honey, propolis, royal jelly, beeswax, bee venom, bee pollen and bee bread have been used as natural medicines since ancient times because of their therapeutic effects. These products have demonstrated healing properties against wounds, diabetes, gastrointestinal diseases, cancer, asthma, neurological diseases, bacterial and viral infections. The antibacterial and antibiofilm activity of honey bee products is widely studied, and a huge body of evidence supports it. On the other hand, their antiviral effect has not been extensively studied. However, recent research has demonstrated their potential against various viral infections including SARS-CoV-2. Hence, honey bee products could be alternatives to treat viral diseases, especially when there is no effective treatment available. This narrative review aims to present up-to-date data (including ongoing clinical trials) regarding the antiviral activity of honey bee products, aiming to elucidate how honey bee product supplementation contributes to antiviral treatment.
-
-
-
Current Issues and Perspectives in Antimicrobials use in Dental Practice
The complexity of the use of antimicrobials for dental use (such as antibiotics) is directly related not only to the mode of onset of an oral infection (linked to numerous factors of local causality and comorbidity) but also to the predisposing risk for the general health of the patient with putative serious consequences related to the neck district. The abuse and misuse of antibiotics may lead to resistance to certain bacterial strains. In this regard, the evaluation of the risk/benefit of their use (especially in pregnant women) can be divided into two phases: risk analysis and subsequently risk management for the benefit of the patient for the oral pathology to be prevented or treated, respectively. This study seeks to focus on the issues and management of patients with certain antimicrobials during dental practice, placing special emphasis on new classes of antibiotics.
-
-
-
Acarbose Potentially Binds to the Type I Peptide Deformylase Catalytic Site and Inhibits Bacterial Growth: An In Silico and In Vitro Study
Authors: Atul K. Singh, Kumari Sunita Prajapati and Shashank KumarBackground: In bacteria, peptide deformylase (PDF), a metalloenzyme, removes N-formyl methionine from a nascent protein, which is a critical step in the protein maturation process. The enzyme is ubiquitously present in bacteria and possesses therapeutic target potential. Acarbose, an FDA-approved antidiabetic drug, is an alpha-glucosidase inhibitor of microbial origin. Clinical studies indicate that acarbose administration in humans can alter gut microbiota. As per the best of our knowledge, the antibacterial potential of acarbose has not been reported. Objective: The present study aimed to check the binding ability of acarbose to the catalytic site of E. coli PDF and assess its in vitro antibacterial activity. Methods: Molecular docking, molecular dynamic (MD) simulation, and MM-PBSA experiments were performed to study the binding potential of the catalytic site, and a disc diffusion assay was also employed to assess the antibacterial potential of acarbose. Results: Acarbose was found to form a hydrogen bond and interact with the metal ion present at the catalytic site. The test compound showed a better docking score in comparison to the standard inhibitor of PDF. MD simulation results showed energetically stable acarbose-PDF complex formation in terms of RMSD, RMSF, Rg, SASA, and hydrogen bond formation throughout the simulation period compared to the actinonin-PDF complex. Furthermore, MM-PBSA calculations showed better binding free energy (ΔG) of acarbose PDF than the actinonin-PDF complex. Moreover, acarbose showed in vitro antibacterial activity. Conclusion: Acarbose forms conformational and thermodynamically stable interaction with the E. coli peptide deformylase catalytic site. Results of the present work necessitate in-depth antimicrobial potential studies on the effect of acarbose on drug resistance and nonresistant bacteria.
-
-
-
COVID-19 Challenge: A Quest for Effective Vaccine Strategies Against Circulating and Emerging SARS-CoV-2 Variants
Authors: Ruchika Yogesh, Noopur Srivastava and Syed Nasir Abbas BukhariIntroduction: SARS-CoV-2 belongs to the coronavirus family, a large family of viruses infecting avian and mammalian hosts. Accumulated mutations over time in the genome of SARS-CoV-2 have given rise to different variants differing in type and sequence. Variants that did not affect transmissibility, infectivity, and severity have gone unnoticed, and mutations that made the virus unfit for survival were eventually deleted from the gene pool. An emerging variant in the host population needs to be monitored closely for its infection consequences. In addition, the variants of concern (VOC) need to be focused on developing effective disease-fighting regimes. As viral epidemics are better fought using effective vaccines, several vaccines have been developed and used since December 2020. The central point of the present study is the continuous variation in the genome of SARS-CoV-2, instigating the researchers to refine their modus operandi to fight against COVID-19. Methods: Prominent medical and literature databases were searched using relevant keywords to gather study results, reports, and other data helpful in writing this narrative review. Results: This article successfully collates information about the structure and life cycle of SARS-CoV-2, followed by types and nomenclature of mutations in SARS-CoV-2. Variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron) are current VOCs due to their widespread transmission capability and probable immune evasion. Furthermore, this review article presents information about the major vaccines available and those under development. Based on the original and new strains of SARS-CoV-2, 19 vaccines have been granted emergency use or conditional marketing approvals, 141 are under clinical development, and 194 are in preclinical development stages worldwide. Conclusion: Continuous variation in the genome of SARS-CoV-2, presenting new VOCs frequently, has posed a compelling need to amend and evolve current and future vaccine development strategies to overpower the ever-evolving virus.
-
-
-
Trimethylamine N-Oxide Generated by the Gut Microbiota: Potential Atherosclerosis Treatment Strategies
Authors: Botao Zhu, Hao Ren, Feng Xie, Yuze An, Yichuan Wang and Yurong TanCardiovascular diseases (CVD) have become a disease burden that plagues the world, and a large proportion of the world's mortality currently stems from atherosclerotic CVD. In addition to traditional therapies, we need to find more therapeutic targets and strategies in scientific research to address this challenge. In recent years, as research on gut microbiota has continued, there has been a clearer understanding of the role that metabolites from gut microbes play during atherosclerosis (AS). A growing body of research suggests that trimethylamine oxide (TMAO) is an independent risk factor for CVD and that gut microbe-dependent TMAO plays a critical role in AS. Therefore, interventions targeting TMAO have the potential to become a new therapeutic strategy for AS. This review provides a brief overview of the relationship between TMAO and atherosclerosis. More importantly, several potential atherosclerosis treatment strategies targeting TMAO and its metabolic pathways have been revealed by recent studies and will be the focus of this review. This review summarizes possible therapeutic strategies in terms of change of diet, adjustment of gut microbiota, suppression of liver enzyme activity, and improvement of renal function, in the hope of providing new insights for developing efficient and cost-effective treatment and prevention for AS.
-
-
-
The Effect of Ginger (Zingiber officinale) on Improving Blood Lipids and Body Weight; A Systematic Review and Multivariate Meta-analysis of Clinical Trials
Authors: Mohammad Asghari-Jafarabadi and Leila KhaliliBackground: Beneficial effects of ginger consumption on metabolic biomarkers has been reported previously. The current research aimed to investigate the effects of ginger supplementation on lipid profile and body weight using a meta-analysis of randomized, controlled trials. Methods: Online databases PubMed, Embase, Web of Science, and Science Direct were searched until December 2021 to identify eligible articles. Twenty-six trials were included. Results: The results showed that ginger consumption could significantly improve lipid profile including total triglyceride (-12.54 (-20.01 to -5.08)), cholesterol (-6.53 (-10.76 to -2.31)), LDL (-5.14 (-8.79 to -1.50)), and HDL (1.13 (0.35 to 1.91)). Moreover, ginger supplementation could significantly decrease body mass index (BMI) (-0.49 (-0.79 to -0.18)). However, the small number of sample studies that investigated reductions in body weight (-0.52 (-1.48 to 0.43)) were not statistically significant. Sub-group analysis of treatment dose and duration showed that in most of the analyzed lipid profiles, both ≤1500 and >1500 mg/d for both of ≤8 and >8 weeks could be effective; however, in the case of weight control dose of >1500 mg/d for more than 8 weeks was more effective. Besides, the results of multivariate meta-analysis revealed the effect of the intervention on all lipid profiles simultaneously. Conclusion: The present meta-analysis and review revealed that ginger supplementation can improve lipid profile and body weight if used at the appropriate dose and duration. More studies are needed to fully evaluate the effect of ginger supplements' different doses and duration on lipid profile and BMI.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)