Skip to content
2000
Volume 32, Issue 11
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Pleural mesothelioma is a rare neoplastic disease with aggressive features. Patient survival is poor due to the lack of early symptoms and the absence of effective therapeutic strategies. The development of pleural mesothelioma is mainly associated to asbestos exposure and related chronic inflammation. From a molecular-based perspective, this disease is a heterogeneous tumor lacking actionable alterations. The median overall survival of patients affected by this tumor does not exceed 16 months from diagnosis. Molecular and biochemical approaches have shown that this disease is characterized by resistance to drug-induced apoptosis associated with the activation of cell survival pathways and expression of anti-apoptotic proteins. Thus, there is an urgent need to develop efficient and safe therapeutic strategies. Here, we review the pharmacological options available for the treatment of this disease with specific reference to the antitumor agents used in systemic therapies. In addition, novel pharmacological approaches, such as drug delivery tools, to improve pleural mesothelioma treatment are discussed.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673268206240405084558
2024-04-16
2025-05-30
Loading full text...

Full text loading...

References

  1. AbbottD.M. BortolottoC. BenvenutiS. LanciaA. FilippiA.R. StellaG.M. Malignant Pleural Mesothelioma: Genetic and microenviromental heterogeneity as an unexpected reading frame and therapeutic challenge.Cancers2020125118610.3390/cancers1205118632392897
    [Google Scholar]
  2. RøeO.D. StellaG.M. Malignant pleural mesothelioma: history, controversy and future of a manmade epidemic.Eur. Respir. Rev.20152413511513110.1183/09059180.0000701425726562
    [Google Scholar]
  3. van ZandwijkN. ClarkeC. HendersonD. MuskA.W. FongK. NowakA. LoneraganR. McCaughanB. BoyerM. FeigenM. CurrowD. SchofieldP. Nick PavlakisB.I. McLeanJ. MarshallH. LeongS. KeenaV. PenmanA. Guidelines for the diagnosis and treatment of malignant pleural mesothelioma.J. Thorac. Dis.201356E254E30710.3978/j.issn.2072‑1439.2013.11.2824416529
    [Google Scholar]
  4. MeyerhoffR.R. YangC.F.J. SpeicherP.J. GulackB.C. HartwigM.G. D’AmicoT.A. HarpoleD.H. BerryM.F. Impact of mesothelioma histologic subtype on outcomes in the Surveillance, Epidemiology, and End Results database.J. Surg. Res.20151961233210.1016/j.jss.2015.01.04325791825
    [Google Scholar]
  5. AttanoosR.L. ChurgA. Galateau-SalleF. GibbsA.R. RoggliV.L. Malignant mesothelioma and its non-asbestos causes.Arch. Pathol. Lab. Med.2018142675376010.5858/arpa.2017‑0365‑RA29480760
    [Google Scholar]
  6. GalaniV. VarouktsiA. PapadatosS.S. MitselouA. SainisI. ConstantopoulosS. DalavangaY. The role of apoptosis defects in malignant mesothelioma pathogenesis with an impact on prognosis and treatment.Cancer Chemother. Pharmacol.201984224125310.1007/s00280‑019‑03878‑331119375
    [Google Scholar]
  7. BroeckxG. PauwelsP. Malignant peritoneal mesothelioma: A review.Transl. Lung Cancer Res.20187553754210.21037/tlcr.2018.10.0430450291
    [Google Scholar]
  8. AndujarP. LacourtA. BrochardP. PaironJ.C. JaurandM.C. JeanD. Five years update on relationships between malignant pleural mesothelioma and exposure to asbestos and other elongated mineral particles.J. Toxicol. Environ. Health B Crit. Rev.2016195-615117210.1080/10937404.2016.119336127705546
    [Google Scholar]
  9. McCambridgeA.J. NapolitanoA. MansfieldA.S. FennellD.A. SekidoY. NowakA.K. ReungwetwattanaT. MaoW. PassH.I. CarboneM. YangH. PeikertT. Progress in the management of malignant pleural mesothelioma in 2017.J. Thorac. Oncol.201813560662310.1016/j.jtho.2018.02.02129524617
    [Google Scholar]
  10. HjerpeA. OwnS.A. DobraK. Integrative approach to cytologic and molecular diagnosis of malignant pleural mesothelioma.Transl. Lung Cancer Res.20209393494310.21037/tlcr‑2019‑pps‑1032676359
    [Google Scholar]
  11. KirschnerM.B. PulfordE. HodaM.A. RozsasA. GriggsK. ChengY.Y. EdelmanJ.J.B. KaoS.C. HylandR. DongY. LászlóV. KlikovitsT. VallelyM.P. GruschM. HegedusB. DomeB. KlepetkoW. van ZandwijkN. KlebeS. ReidG. Fibulin-3 levels in malignant pleural mesothelioma are associated with prognosis but not diagnosis.Br. J. Cancer2015113696396910.1038/bjc.2015.28626263483
    [Google Scholar]
  12. RrapajE. TrisoliniE. BerteroL. SalvoM. IndellicatoR. AndornoS. Garcia-ManteigaJ.M. RenaO. BoldoriniR.L. Expression analysis of HMGB 1 in histological samples of malignant pleural mesothelioma.Histopathology20187261039105010.1111/his.1347029356044
    [Google Scholar]
  13. BirnieK.A. PrêleC.M. MuskA.W.B. de KlerkN. LeeY.C.G. FitzgeraldD. AllcockR.J.N. ThompsonP.J. CreaneyJ. BadrianB. MutsaersS.E. MicroRNA signatures in malignant pleural mesothelioma effusions.Dis. Markers201920191910.1155/2019/862861231481984
    [Google Scholar]
  14. BuenoR. StawiskiE.W. GoldsteinL.D. DurinckS. De RienzoA. ModrusanZ. GnadF. NguyenT.T. JaiswalB.S. ChirieacL.R. SciaranghellaD. DaoN. GustafsonC.E. MunirK.J. HackneyJ.A. ChaudhuriA. GuptaR. GuilloryJ. ToyK. HaC. ChenY.J. StinsonJ. ChaudhuriS. ZhangN. WuT.D. SugarbakerD.J. de SauvageF.J. RichardsW.G. SeshagiriS. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations.Nat. Genet.201648440741610.1038/ng.352026928227
    [Google Scholar]
  15. BlumY. MeillerC. QuetelL. ElarouciN. AyadiM. TashtanbaevaD. ArmenoultL. MontagneF. TranchantR. RenierA. de KoningL. CopinM.C. HofmanP. HofmanV. PorteH. Le Pimpec-BarthesF. Zucman-RossiJ. JaurandM.C. de ReynièsA. JeanD. Dissecting heterogeneity in malignant pleural mesothelioma through histo-molecular gradients for clinical applications.Nat. Commun.2019101133310.1038/s41467‑019‑09307‑630902996
    [Google Scholar]
  16. SekidoY. Molecular pathogenesis of malignant mesothelioma.Carcinogenesis20133471413141910.1093/carcin/bgt16623677068
    [Google Scholar]
  17. ScherpereelA. WallynF. AlbeldaS.M. MunckC. Novel therapies for malignant pleural mesothelioma.Lancet Oncol.2018193e161e17210.1016/S1470‑2045(18)30100‑129508763
    [Google Scholar]
  18. TakuwaT. HasegawaS. Current surgical strategies for malignant pleural mesothelioma.Surg. Today201646888789410.1007/s00595‑015‑1275‑326590581
    [Google Scholar]
  19. BronteG. IncorvaiaL. RizzoS. PassigliaF. GalvanoA. RizzoF. RolfoC. FanaleD. ListìA. NatoliC. BazanV. RussoA. The resistance related to targeted therapy in malignant pleural mesothelioma: Why has not the target been hit yet?Crit. Rev. Oncol. Hematol.2016107203210.1016/j.critrevonc.2016.08.01127823648
    [Google Scholar]
  20. BorczukA.C. PeiJ. TaubR.N. LevyB. NahumO. ChenJ. ChenK. TestaJ.R. Genome-wide analysis of abdominal and pleural malignant mesothelioma with DNA arrays reveals both common and distinct regions of copy number alteration.Cancer Biol. Ther.201617332833510.1080/15384047.2016.114585026853494
    [Google Scholar]
  21. GuoG. ChmieleckiJ. GoparajuC. HeguyA. DolgalevI. CarboneM. SeepoS. MeyersonM. PassH.I. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma.Cancer Res.201575226426910.1158/0008‑5472.CAN‑14‑100825488749
    [Google Scholar]
  22. de ReynièsA. JaurandM.C. RenierA. CouchyG. HysiI. ElarouciN. Galateau-SalléF. CopinM.C. HofmanP. CazesA. AndujarP. ImbeaudS. PetelF. PaironJ.C. Le Pimpec-BarthesF. Zucman-RossiJ. JeanD. Molecular classification of malignant pleural mesothelioma: identification of a poor prognosis subgroup linked to the epithelial-to-mesenchymal transition.Clin. Cancer Res.20142051323133410.1158/1078‑0432.CCR‑13‑242924443521
    [Google Scholar]
  23. JeanD. DaubriacJ. Le Pimpec-BarthesF. Galateau-SalleF. JaurandM.C. Molecular changes in mesothelioma with an impact on prognosis and treatment.Arch. Pathol. Lab. Med.2012136327729310.5858/arpa.2011‑0215‑RA22372904
    [Google Scholar]
  24. NasuM. EmiM. PastorinoS. TanjiM. PowersA. LukH. BaumannF. ZhangY. GazdarA. KanodiaS. TiirikainenM. FloresE. GaudinoG. BecichM.J. PassH.I. YangH. CarboneM. High Incidence of Somatic BAP1 alterations in sporadic malignant mesothelioma.J. Thorac. Oncol.201510456557610.1097/JTO.000000000000047125658628
    [Google Scholar]
  25. EletrZ.M. WilkinsonK.D. Regulation of proteolysis by human deubiquitinating enzymes.Biochim. Biophys. Acta Mol. Cell Res.20141843111412810.1016/j.bbamcr.2013.06.02723845989
    [Google Scholar]
  26. BononiA. GiorgiC. PatergnaniS. LarsonD. VerbruggenK. TanjiM. PellegriniL. SignoratoV. OlivettoF. PastorinoS. NasuM. NapolitanoA. GaudinoG. MorrisP. SakamotoG. FerrisL.K. DaneseA. RaimondiA. TacchettiC. KuchayS. PassH.I. AffarE.B. YangH. PintonP. CarboneM. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation.Nature2017546765954955310.1038/nature2279828614305
    [Google Scholar]
  27. CarboneM. HarbourJ.W. BrugarolasJ. BononiA. PaganoI. DeyA. KrauszT. PassH.I. YangH. GaudinoG. Biological mechanisms and clinical significance of BAP1 mutations in human cancer.Cancer Discov.20201081103112010.1158/2159‑8290.CD‑19‑122032690542
    [Google Scholar]
  28. ChenP. WangH. ZhangW. ChenY. LvY. WuD. GuoM. DengH. Loss of BAP1 Results in growth inhibition and enhances mesenchymal–epithelial transition in kidney tumor cells.Mol. Cell. Proteomics20191871320132910.1074/mcp.RA119.00145730992312
    [Google Scholar]
  29. AffarE.B. CarboneM. BAP1 regulates different mechanisms of cell death.Cell Death Dis.2018912115110.1038/s41419‑018‑1206‑530455474
    [Google Scholar]
  30. ZhangY. ShiJ. LiuX. FengL. GongZ. KoppulaP. SirohiK. LiX. WeiY. LeeH. ZhuangL. ChenG. XiaoZ.D. HungM.C. ChenJ. HuangP. LiW. GanB. BAP1 links metabolic regulation of ferroptosis to tumour suppression.Nat. Cell Biol.201820101181119210.1038/s41556‑018‑0178‑030202049
    [Google Scholar]
  31. ChristouC. KyriacouK. BRCA1 and its network of interacting partners.Biology201321406310.3390/biology201004024832651
    [Google Scholar]
  32. ZhangN. ChenS. JiangG. WuY. ShaoJ. LiuW. WangX. NaR. XuJ. The study on copy number alteration of clear cell renal cancer in Chinese population.J. Cancer2020111162410.7150/jca.3331631892969
    [Google Scholar]
  33. PastorinoS. YoshikawaY. PassH.I. EmiM. NasuM. PaganoI. TakinishiY. YamamotoR. MinaaiM. Hashimoto-TamaokiT. OhmurayaM. GotoK. GoparajuC. SarinK.Y. TanjiM. BononiA. NapolitanoA. GaudinoG. HesdorfferM. YangH. CarboneM. A subset of mesotheliomas with improved survival occurring in carriers of BAP1 and other germline mutations.J. Clin. Oncol.201836353485349410.1200/JCO.2018.79.035230376426
    [Google Scholar]
  34. PanouV. GadirajuM. WolinA. WeipertC.M. SkardaE. HusainA.N. PatelJ.D. RoseB. ZhangS.R. WeatherlyM. NelakuditiV. Knight JohnsonA. HelgesonM. FischerD. DesaiA. SulaiN. RitterhouseL. RøeO.D. TuragaK.K. HuoD. SegalJ. KadriS. LiZ. KindlerH.L. ChurpekJ.E. Frequency of germline mutations in cancer susceptibility genes in malignant mesothelioma.J. Clin. Oncol.201836282863287110.1200/JCO.2018.78.520430113886
    [Google Scholar]
  35. HassanR. MorrowB. ThomasA. WalshT. LeeM.K. GulsunerS. GadirajuM. PanouV. GaoS. MianI. KhanJ. RaffeldM. PatelS. XiL. WeiJ.S. HesdorfferM. ZhangJ. CalzoneK. DesaiA. PadiernosE. AlewineC. SchrumpD.S. SteinbergS.M. KindlerH.L. KingM.C. ChurpekJ.E. Inherited predisposition to malignant mesothelioma and overall survival following platinum chemotherapy.Proc. Natl. Acad. Sci2019116189008901310.1073/pnas.182151011630975761
    [Google Scholar]
  36. PanouV. RøeO.D. Inherited genetic mutations and polymorphisms in malignant mesothelioma: A comprehensive review.Int. J. Mol. Sci.20202112432710.3390/ijms2112432732560575
    [Google Scholar]
  37. RaiK. PilarskiR. BoruG. RehmanM. SaqrA.H. MassengillJ.B. SinghA. MarinoM.J. DavidorfF.H. CebullaC.M. Abdel-RahmanH. GermlineM. BAP1 alterations in familial uveal melanoma: BAP1 in familial uveal melanoma.Genes Chromosomes Cancer201756216817410.1002/gcc.2242427718540
    [Google Scholar]
  38. HaughA.M. NjauwC.N. BubleyJ.A. VerzìA.E. ZhangB. KudalkarE. VandenBoomT. WaltonK. SwickB.L. KumarR. RanaH.Q. CochraneS. McCormickS.R. SheaC.R. TsaoH. GeramiP. Genotypic and phenotypic features of BAP1 cancer syndrome: A report of 8 new families and review of cases in the literature.JAMA Dermatol.201715310999100610.1001/jamadermatol.2017.233028793149
    [Google Scholar]
  39. RoyS. Galateau-SalléF. Le StangN. ChurgA. LyonsM.A. AttanoosR. DacicS. Molecular characterization of pleomorphic mesothelioma: a multi-institutional study.Mod. Pathol.2022351828610.1038/s41379‑021‑00900‑z34531524
    [Google Scholar]
  40. KnudsenE.S. WitkiewiczA.K. The Strange case of CDK4/6 inhibitors: Mechanisms, resistance, and combination strategies.Trends Cancer201731395510.1016/j.trecan.2016.11.00628303264
    [Google Scholar]
  41. CheungM. TestaJ.R. BAP1, a tumor suppressor gene driving malignant mesothelioma.Transl. Lung Cancer Res.20176327027810.21037/tlcr.2017.05.0328713672
    [Google Scholar]
  42. SatoT. SekidoY. NF2/Merlin Inactivation and potential therapeutic targets in mesothelioma.Int. J. Mol. Sci.201819498810.3390/ijms1904098829587439
    [Google Scholar]
  43. TangT.T. KonradiA.W. FengY. PengX. MaM. LiJ. YuF.X. GuanK.L. PostL. Small Molecule Inhibitors of TEAD Auto-palmitoylation Selectively Inhibit Proliferation and Tumor Growth of NF2 -deficient Mesothelioma.Mol. Cancer Ther.202120698699810.1158/1535‑7163.MCT‑20‑071733850002
    [Google Scholar]
  44. ShapiroI.M. KolevV.N. VidalC.M. KadariyaY. RingJ.E. WrightQ. WeaverD.T. MengesC. PadvalM. McClatcheyA.I. XuQ. TestaJ.R. PachterJ.A. Merlin deficiency predicts FAK inhibitor sensitivity: a synthetic lethal relationship.Sci. Transl. Med.20146237237ra6810.1126/scitranslmed.300863924848258
    [Google Scholar]
  45. Lo IaconoM. MonicaV. RighiL. GrossoF. LibenerR. VatranoS. BironzoP. NovelloS. MusmeciL. VolanteM. PapottiM. ScagliottiG.V. Targeted next- generation sequencing of cancer genes in advanced stage malignant pleural mesothelioma: a retrospective study.J. Thorac. Oncol.201510349249910.1097/JTO.000000000000043625514803
    [Google Scholar]
  46. De RienzoA. ArcherM.A. YeapB.Y. DaoN. SciaranghellaD. SiderisA.C. ZhengY. HolmanA.G. WangY.E. Dal CinP.S. FletcherJ.A. RubioR. CroftL. QuackenbushJ. SugarbakerP.E. MunirK.J. BattilanaJ.R. GustafsonC.E. ChirieacL.R. ChingS.M. WongJ. TayL.C. RuddS. HercusR. SugarbakerD.J. RichardsW.G. BuenoR. Gender-specific molecular and clinical features underlie malignant pleural mesothelioma.Cancer Res.201676231932810.1158/0008‑5472.CAN‑15‑075126554828
    [Google Scholar]
  47. SneddonS. DickI. LeeY.C.G. MuskA.W.B. PatchA.M. PearsonJ.V. WaddellN. AllcockR.J.N. HoltR.A. RobinsonB.W.S. CreaneyJ. Malignant cells from pleural fluids in malignant mesothelioma patients reveal novel mutations.Lung Cancer2018119647010.1016/j.lungcan.2018.03.00929656754
    [Google Scholar]
  48. HmeljakJ. Sanchez-VegaF. HoadleyK.A. ShihJ. StewartC. HeimanD. TarpeyP. DanilovaL. DrillE. GibbE.A. BowlbyR. KanchiR. OsmanbeyogluH.U. SekidoY. TakeshitaJ. NewtonY. GraimK. GuptaM. GayC.M. DiaoL. GibbsD.L. ThorssonV. IypeL. KanthetiH. SeversonD.T. RavegniniG. DesmeulesP. JungbluthA.A. TravisW.D. DacicS. ChirieacL.R. Galateau-SalléF. FujimotoJ. HusainA.N. SilveiraH.C. RuschV.W. RintoulR.C. PassH. KindlerH. ZaudererM.G. KwiatkowskiD.J. BuenoR. TsaoA.S. CreaneyJ. LichtenbergT. LeraasK. BowenJ. FelauI. ZenklusenJ.C. AkbaniR. CherniackA.D. ByersL.A. NobleM.S. FletcherJ.A. RobertsonA.G. ShenR. AburataniH. RobinsonB.W. CampbellP. LadanyiM. AburataniH. AkbaniR. AllyA. AnurP. ArmeniaJ. AumanJ.T. BalasundaramM. BaluS. BaylinS.B. BecichM. BehrensC. BeroukhimR. BielskiC. BodenheimerT. BootwallaM.S. BowenJ. BowlbyR. BrooksD. BuenoR. ByersL.A. CárcanoF.M. CarlsenR. CarvalhoA.L. CherniackA.D. CheungD. ChirieacL. ChoJ. ChuahE. ChudamaniS. CibulskisC. CopeL. CrainD. CreaneyJ. CurleyE. DacicS. DanilovaL. RienzoA.D. DeFreitasT. DemchokJ.A. DhallaN. DhirR. DiaoL. DrillE. FelauI. FeldmanM. FergusonM.L. FletcherJ.A. FujimotoJ. FujimotoJ. FukudaS. GabrielS.B. SalléF.G. GaoJ. GardnerJ. Gastier-FosterJ.M. GayC.M. GehlenborgN. GerkenM. GetzG. GibbE.A. GibbsD.L. GoparajuC. GraimK. GrossB. GuoG. GuptaM. HasegawaS. HausslerD. HayesD.N. HeimanD.I. HeinsZ. HmeljakJ. HoadleyK.A. HoltR.A. HoyleA.P. HusainA. HutterC.M. IypeL. JefferysS.R. JonesS.J.M. JonesC.D. KanchiR.S. KasaianK. KimJ. KindlerH. KondoN. KrauszT. KundraR. KuribayashiK. KwiatkowskiD.J. LadanyiM. LaiP.H. LairdP.W. LawrenceM.S. LeeD. LeraasK.M. LichtenbergT.M. LinP. LiuJ. LiuW. LiuE.M. LollaL. Longatto-FilhoA. LuY. LuketichJ. MaY. MaglinteD.T. MalloryD. MarraM.A. MayoM. MeierS. MelamedJ. MengS. MeyersonM. MieczkowskiP.A. MillsG.B. MooreR.A. MoranC. MorrisS. MoseL.E. MungallA.J. MungallK. NakanoT. NareshR. NewtonY. NobleM.S. OchoaA. OsmanbeyogluH. ParkerJ.S. PassH.I. PaulauskisJ. PennathurA. PennellN.A. PennyR. PerouC.M. PihlT. RamirezN.C. RasslD.M. RavegniniG. ReidG. ReisR.M. ReynoldsS.M. RiceD. RichardsW.G. RintoulR.C. RoachJ. RobertsonA.G. RuschV. SadeghiS. SaksenaG. Sanchez-VegaF. SanderC. SatoA. Scapulatempo-NetoC. ScheinJ.E. SchultzN. SchumacherS.E. SeiwertT. SekidoY. SeversonD.T. SheltonC. SheltonT. ShenR. SheridanR. ShiY. ShihJ. ShiraishiY. ShmulevichI. SilveiraH.C.S. SimonsJ.V. SipahimalaniP. SkellyT. SofiaH.J. SolowayM.G. SpellmanP. StewartC. StuartJ. SunQ. TakeshitaJ. TamA. TanD. TarnuzzerR. TatsunoK. TaylorB.S. ThiessenN. ThompsonE. ThorssonV. TravisW.D. TsaoA. TseK. TsujimuraT. ValdiviesoF. Van Den BergD.J. van ZandwijkN. VeluvoluU. VianaL.S. VoetD. WanY. WangZ. WangJ. WeaverJ. WeinsteinJ.N. WeisenbergerD.J. WilkersonM.D. WiseL. WistubaI. WongT. WuY. YamamotoS. YangL. ZaudererM.G. ZenklusenJ.C. ZhangJ. ZhangH. ZhangH. ZmudaE. Integrative molecular characterization of malignant pleural mesothelioma.Cancer Discov.20188121548156510.1158/2159‑8290.CD‑18‑080430322867
    [Google Scholar]
  49. TranchantR. QuetelL. TalletA. MeillerC. RenierA. de KoningL. de ReyniesA. Le Pimpec-BarthesF. Zucman-RossiJ. JaurandM.C. JeanD. Co-occurring mutations of tumor suppressor genes, LATS2 and NF2, in malignant pleural mesothelioma.Clin. Cancer Res.201723123191320210.1158/1078‑0432.CCR‑16‑197128003305
    [Google Scholar]
  50. HylebosM. Van CampG. VandeweyerG. FransenE. BeyensM. CornelissenR. SulsA. PauwelsP. van MeerbeeckJ.P. Op de BeeckK. Large-scale copy number analysis reveals variations in genes not previously associated with malignant pleural mesothelioma.Oncotarget201786911367311368610.18632/oncotarget.2281729371938
    [Google Scholar]
  51. TalletA. NaultJ-C. RenierA. HysiI. Galateau-SalléF. CazesA. CopinM-C. HofmanP. AndujarP. Le Pimpec-BarthesF. Zucman-RossiJ. JaurandM-C. JeanD. Overexpression and promoter mutation of the TERT gene in malignant pleural mesothelioma.Oncogene201433283748375210.1038/onc.2013.35123975423
    [Google Scholar]
  52. QuetelL. MeillerC. AssiéJ.B. BlumY. ImbeaudS. MontagneF. TranchantR. de WolfJ. CarusoS. CopinM.C. HofmanV. GibaultL. BadoualC. PintilieE. HofmanP. MonnetI. ScherpereelA. Le Pimpec-BarthesF. Zucman-RossiJ. JaurandM.C. JeanD. Genetic alterations of malignant pleural mesothelioma: association with tumor heterogeneity and overall survival.Mol. Oncol.20201461207122310.1002/1878‑0261.1265132083805
    [Google Scholar]
  53. KatoS. TomsonB.N. BuysT.P.H. ElkinS.K. CarterJ.L. KurzrockR. Genomic landscape of malignant mesotheliomas.Mol. Cancer Ther.201615102498250710.1158/1535‑7163.MCT‑16‑022927507853
    [Google Scholar]
  54. SneddonS. PatchA.M. DickI.M. KazakoffS. PearsonJ.V. WaddellN. AllcockR.J.N. HoltR.A. RobinsonB.W.S. CreaneyJ. Whole exome sequencing of an asbestos-induced wild-type murine model of malignant mesothelioma.BMC Cancer201717139610.1186/s12885‑017‑3382‑628577549
    [Google Scholar]
  55. ZhouS. LiuL. LiH. EilersG. KuangY. ShiS. YanZ. LiX. CorsonJ.M. MengF. ZhouH. ShengQ. FletcherJ.A. OuW-B. Multipoint targeting of the PI3K/mTOR pathway in mesothelioma.Br. J. Cancer2014110102479248810.1038/bjc.2014.22024762959
    [Google Scholar]
  56. AgarwalV. CampbellA. BeaumontK.L. CawkwellL. LindM.J. PTEN protein expression in malignant pleural mesothelioma.Tumour Biol.201334284785110.1007/s13277‑012‑0615‑923242608
    [Google Scholar]
  57. MezzapelleR. MiglioU. RenaO. PaganottiA. AllegriniS. AntonaJ. MolinariF. FrattiniM. MongaG. AlabisoO. BoldoriniR. Mutation analysis of the EGFR gene and downstream signalling pathway in histologic samples of malignant pleural mesothelioma.Br. J. Cancer201310881743174910.1038/bjc.2013.13023558893
    [Google Scholar]
  58. HiltbrunnerS. FleischmannZ. SokolE.S. ZocheM. Felley-BoscoE. Curioni-FontecedroA. Genomic landscape of pleural and peritoneal mesothelioma tumours.Br. J. Cancer2022127111997200510.1038/s41416‑022‑01979‑036138075
    [Google Scholar]
  59. NowakA.K. BrosseauS. CookA. ZalcmanG. Antiangiogeneic strategies in Mesothelioma.Front. Oncol.20201012610.3389/fonc.2020.0012632133285
    [Google Scholar]
  60. SuraokarM.B. NunezM.I. DiaoL. ChowC.W. KimD. BehrensC. LinH. LeeS. RasoG. MoranC. RiceD. MehranR. LeeJ.J. PassH.I. WangJ. MominA.A. JamesB.P. CorvalanA. CoombesK. TsaoA. WistubaI.I. Expression profiling stratifies mesothelioma tumors and signifies deregulation of spindle checkpoint pathway and microtubule network with therapeutic implications.Ann. Oncol.20142561184119210.1093/annonc/mdu12724669013
    [Google Scholar]
  61. AlìG. BorrelliN. RiccardoG. ProiettiA. PelliccioniS. NiccoliC. BoldriniL. LucchiM. MussiA. FontaniniG. Differential expression of extracellular matrix constituents and cell adhesion molecules between malignant pleural mesothelioma and mesothelial hyperplasia.J. Thorac. Oncol.20138111389139510.1097/JTO.0b013e3182a59f4524084442
    [Google Scholar]
  62. BaroneE. GemignaniF. LandiS. Overexpressed genes in malignant pleural mesothelioma: implications in clinical management.J. Thorac. Dis.201810S2Suppl. 2S369S38210.21037/jtd.2017.10.15829507807
    [Google Scholar]
  63. TuriniS. BergandiL. GazzanoE. PratoM. AldieriE. Epithelial to mesenchymal transition in human mesothelial cells exposed to asbestos fibers: Role of TGF-β as mediator of malignant mesothelioma development or metastasis via EMT event.Int. J. Mol. Sci.201920115010.3390/ijms2001015030609805
    [Google Scholar]
  64. KimM.K. KimH. JangM. OhS.S. YongS.J. JeongY. JungS.H. ChoiJ.W. LOX family and ZFPM2 as novel diagnostic biomarkers for malignant pleural mesothelioma.Biomark. Res.202081110.1186/s40364‑019‑0180‑031921422
    [Google Scholar]
  65. TamminenJ.A. ParviainenV. RöntyM. WohlA.P. MurrayL. JoenvääräS. VarjosaloM. LeppärantaO. RitvosO. SengleG. RenkonenR. MyllärniemiM. KoliK. Gremlin-1 associates with fibrillin microfibrils in vivo and regulates mesothelioma cell survival through transcription factor slug.Oncogenesis201328e6610.1038/oncsis.2013.2923978876
    [Google Scholar]
  66. StellaG.M. MarchiòC. BariE. FerrarottiI. BertuccioF.R. Di GennaroA. AbbottD.M. PutignanoP. CampoI. TorreM.L. CorsicoA.G. The genes–stemness–secretome interplay in malignant pleural mesothelioma: molecular dynamics and clinical hints.Int. J. Mol. Sci.2023244349610.3390/ijms2404349636834912
    [Google Scholar]
  67. BacolodM.D. BaranyF. FisherP.B. Can CpG methylation serve as surrogate markers for immune infiltration in cancer?Adv. Cancer Res.201914335138410.1016/bs.acr.2019.03.00731202362
    [Google Scholar]
  68. PintonG. WangZ. BalzanoC. MissagliaS. TavianD. BoldoriniR. FennellD.A. GriffinM. MoroL. CDKN2A determines mesothelioma cell fate to EZH2 inhibition.Front. Oncol.20211167844710.3389/fonc.2021.67844734277422
    [Google Scholar]
  69. ChengY.Y. MokE. TanS. LeygoC. McLaughlinC. GeorgeA.M. ReidG. SFRP tumour suppressor genes are potential plasma-based epigenetic biomarkers for malignant pleural mesothelioma.Dis. Markers2017201711010.1155/2017/253618729386699
    [Google Scholar]
  70. BosioM. SalvaterraE. DatturiF. MorbiniP. ZorzettoM. InghilleriS. TomaselliS. MangiarottiP. MeloniF. CerveriI. StellaG.M. 5-hydroxymethylcytosine but not MTAP methylation status can stratify malignant pleural mesothelioma based on the lineage of origin.Multidiscip. Respir. Med.20181312710.1186/s40248‑018‑0137‑430123503
    [Google Scholar]
  71. KinoshitaY. HamasakiM. YoshimuraM. MatsumotoS. SatoA. TsujimuraT. UedaH. MakihataS. KatoF. IwasakiA. NabeshimaK. A combination of MTAP and BAP1 immunohistochemistry is effective for distinguishing sarcomatoid mesothelioma from fibrous pleuritis.Lung Cancer201812519820410.1016/j.lungcan.2018.09.01930429020
    [Google Scholar]
  72. RozitisE. JohnsonB. ChengY.Y. LeeK. The use of immunohistochemistry, fluorescence in situ hybridization, and emerging epigenetic markers in the diagnosis of malignant pleural mesothelioma (MPM): A review.Front. Oncol.202010174210.3389/fonc.2020.0174233014860
    [Google Scholar]
  73. McLoughlinK.C. KaufmanA.S. SchrumpD.S. Targeting the epigenome in malignant pleural mesothelioma.Transl. Lung Cancer Res.20176335036510.21037/tlcr.2017.06.0628713680
    [Google Scholar]
  74. LaFaveL.M. BéguelinW. KocheR. TeaterM. SpitzerB. ChramiecA. PapalexiE. KellerM.D. HricikT. KonstantinoffK. MicolJ.B. DurhamB. KnutsonS.K. CampbellJ.E. BlumG. ShiX. DoudE.H. KrivtsovA.V. ChungY.R. KhodosI. de StanchinaE. OuerfelliO. AdusumilliP.S. ThomasP.M. KelleherN.L. LuoM. KeilhackH. Abdel-WahabO. MelnickA. ArmstrongS.A. LevineR.L. Loss of BAP1 function leads to EZH2-dependent transformation.Nat. Med.201521111344134910.1038/nm.394726437366
    [Google Scholar]
  75. PfisterS.X. AhrabiS. ZalmasL.P. SarkarS. AymardF. BachratiC.Z. HelledayT. LegubeG. La ThangueN.B. PorterA.C.G. HumphreyT.C. SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability.Cell Rep.2014762006201810.1016/j.celrep.2014.05.02624931610
    [Google Scholar]
  76. SatoY. YoshizatoT. ShiraishiY. MaekawaS. OkunoY. KamuraT. ShimamuraT. Sato-OtsuboA. NagaeG. SuzukiH. NagataY. YoshidaK. KonA. SuzukiY. ChibaK. TanakaH. NiidaA. FujimotoA. TsunodaT. MorikawaT. MaedaD. KumeH. SuganoS. FukayamaM. AburataniH. SanadaM. MiyanoS. HommaY. OgawaS. Integrated molecular analysis of clear-cell renal cell carcinoma.Nat. Genet.201345886086710.1038/ng.269923797736
    [Google Scholar]
  77. ZhuX. HeF. ZengH. LingS. ChenA. WangY. YanX. WeiW. PangY. ChengH. HuaC. ZhangY. YangX. LuX. CaoL. HaoL. DongL. ZouW. WuJ. LiX. ZhengS. YanJ. ZhouJ. ZhangL. MiS. WangX. ZhangL. ZouY. ChenY. GengZ. WangJ. ZhouJ. LiuX. WangJ. YuanW. HuangG. ChengT. WangQ. Identification of functional cooperative mutations of SETD2 in human acute leukemia.Nat. Genet.201446328729310.1038/ng.289424509477
    [Google Scholar]
  78. CooperJ. XuQ. ZhouL. PavlovicM. OjedaV. MoulickK. de StanchinaE. PoirierJ.T. ZaudererM. RudinC.M. KarajannisM.A. HanemannC.O. GiancottiF.G. Combined inhibition of NEDD8-activating enzyme and mTOR suppresses NF2 loss–driven tumorigenesis.Mol. Cancer Ther.20171681693170410.1158/1535‑7163.MCT‑16‑082128468780
    [Google Scholar]
  79. RossiT. PistoniM. SancisiV. GobbiG. TorricelliF. DonatiB. RibisiS. GugnoniM. CiarrocchiA. RAIN is a novel enhancer-associated lncRNA that controls RUNX2 expression and pomotes breast and thyroid cancer.Mol. Cancer Res.202018114015210.1158/1541‑7786.MCR‑19‑056431624086
    [Google Scholar]
  80. CatalanottoC. CogoniC. ZardoG. MicroRNA in control of gene expression: An overview of nuclear functions.Int. J. Mol. Sci.20161710171210.3390/ijms1710171227754357
    [Google Scholar]
  81. OspinaD. VillegasV.E. Rodríguez-LeguizamónG. Rondón-LagosM. Analyzing biological and molecular characteristics and genomic damage induced by exposure to asbestos.Cancer Manag. Res.2019114997501210.2147/CMAR.S20572331239765
    [Google Scholar]
  82. SantarelliL. GaetaniS. MonacoF. BracciM. ValentinoM. AmatiM. RubiniC. SabbatiniA. PasquiniE. ZanottaN. ComarM. NeuzilJ. TomasettiM. BovenziM. Four-miRNA signature to identify asbestos-related lung malignancies.Cancer Epidemiol. Biomarkers Prev.201928111912610.1158/1055‑9965.EPI‑18‑045330257964
    [Google Scholar]
  83. ReidG. PelM.E. KirschnerM.B. ChengY.Y. MugridgeN. WeissJ. WilliamsM. WrightC. EdelmanJ.J.B. VallelyM.P. McCaughanB.C. KlebeS. BrahmbhattH. MacDiarmidJ.A. van ZandwijkN. Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma.Ann. Oncol.201324123128313510.1093/annonc/mdt41224148817
    [Google Scholar]
  84. MozzoniP. AmpolliniL. GoldoniM. AlinoviR. TiseoM. GnettiL. CarbognaniP. RuscaM. MuttiA. PercesepeA. CorradiM. MicroRNA expression in malignant pleural mesothelioma and asbestosis: A pilot study.Dis. Markers2017201711010.1155/2017/964594028757678
    [Google Scholar]
  85. HendryS. SalgadoR. GevaertT. RussellP.A. JohnT. ThapaB. ChristieM. van de VijverK. EstradaM.V. Gonzalez-EricssonP.I. SandersM. SolomonB. SolinasC. Van den EyndenG.G.G.M. AlloryY. PreusserM. HainfellnerJ. PruneriG. VingianiA. DemariaS. SymmansF. NuciforoP. ComermaL. ThompsonE.A. LakhaniS. KimS.R. SchnittS. ColpaertC. SotiriouC. SchererS.J. IgnatiadisM. BadveS. PierceR.H. VialeG. SirtaineN. Penault-LlorcaF. SugieT. FinebergS. PaikS. SrinivasanA. RichardsonA. WangY. ChmielikE. BrockJ. JohnsonD.B. BalkoJ. WienertS. BossuytV. MichielsS. TernesN. BurchardiN. LuenS.J. SavasP. KlauschenF. WatsonP.H. NelsonB.H. CriscitielloC. O’TooleS. LarsimontD. de WindR. CuriglianoG. AndréF. Lacroix-TrikiM. van de VijverM. RojoF. FlorisG. BedriS. SparanoJ. RimmD. NielsenT. KosZ. HewittS. SinghB. FarshidG. LoiblS. AllisonK.H. TungN. AdamsS. Willard-GalloK. HorlingsH.M. GandhiL. MoreiraA. HirschF. DieciM.V. UrbanowiczM. BrcicI. KorskiK. GaireF. KoeppenH. LoA. GiltnaneJ. RebelattoM.C. SteeleK.E. ZhaJ. EmancipatorK. JucoJ.W. DenkertC. Reis-FilhoJ. LoiS. FoxS.B. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non–Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors.Adv. Anat. Pathol.201724631133510.1097/PAP.000000000000016128777143
    [Google Scholar]
  86. KlikovitsT. StockhammerP. LaszloV. DongY. HodaM.A. GhanimB. OpitzI. FrauenfelderT. Nguyen-KimT.D.L. WederW. BergerW. GruschM. AignerC. KlepetkoW. DomeB. Renyi-VamosF. OehlerR. HegedusB. Circulating complement component 4d (C4d) correlates with tumor volume, chemotherapeutic response and survival in patients with malignant pleural mesothelioma.Sci. Rep.2017711645610.1038/s41598‑017‑16551‑729184132
    [Google Scholar]
  87. GhanimB. HodaM.A. KlikovitsT. WinterM-P. AlimohammadiA. GruschM. DomeB. ArnsM. SchenkP. JakopovicM. SamarzijaM. BrcicL. FilipitsM. LaszloV. KlepetkoW. BergerW. HegedusB. Circulating fibrinogen is a prognostic and predictive biomarker in malignant pleural mesothelioma.Br. J. Cancer2014110498499010.1038/bjc.2013.81524434429
    [Google Scholar]
  88. VoglM. RosenmayrA. BohanesT. ScheedA. BrndiarM. StubenbergerE. GhanimB. Biomarkers for malignant pleural mesothelioma-A novel view on inflammation.Cancers202113465810.3390/cancers1304065833562138
    [Google Scholar]
  89. HamaidiaM. StaumontB. DuysinxB. LouisR. WillemsL. Improvement of malignant pleural mesothelioma immunotherapy by epigenetic modulators.Curr. Top. Med. Chem.201516777778710.2174/156802661566615082514115226303419
    [Google Scholar]
  90. CreganI.L. DharmarajanA.M. FoxS.A. Mechanisms of cisplatin-induced cell death in malignant mesothelioma cells: Role of inhibitor of apoptosis proteins (IAPs) and caspases.Int. J. Oncol.201342244445210.3892/ijo.2012.171523229133
    [Google Scholar]
  91. CrawfordN. StasikI. HolohanC. MajkutJ. McGrathM. JohnstonP.G. ChessariG. WardG.A. WaughD.J. FennellD.A. LongleyD.B. SAHA overcomes FLIP-mediated inhibition of SMAC mimetic-induced apoptosis in mesothelioma.Cell Death Dis.201347e73310.1038/cddis.2013.25823868066
    [Google Scholar]
  92. JacksonM.R. AshtonM. KoessingerA.L. DickC. VerheijM. ChalmersA.J. Mesothelioma cells depend on the antiapoptotic protein Bcl-xL for survival and are sensitized to ionizing radiation by BH3-mimetics.Int. J. Radiat. Oncol. Biol. Phys.2020106486787710.1016/j.ijrobp.2019.11.02931786278
    [Google Scholar]
  93. Di MarzoD. ForteI.M. IndovinaP. Di GennaroE. RizzoV. GiorgiF. MattioliE. IannuzziC.A. BudillonA. GiordanoA. PentimalliF. Pharmacological targeting of p53 through RITA is an effective antitumoral strategy for malignant pleural mesothelioma.Cell Cycle201413465266510.4161/cc.2754624345738
    [Google Scholar]
  94. CioceM. CaninoC. PassH. BlandinoG. StranoS. FazioV.M. Arachidonic acid drives adaptive responses to chemotherapy-induced stress in malignant mesothelioma.J. Exp. Clin. Cancer Res.202140134410.1186/s13046‑021‑02118‑y34727953
    [Google Scholar]
  95. EcheverryN. ZiltenerG. BarboneD. WederW. StahelR.A. BroaddusV.C. Felley-BoscoE. Inhibition of autophagy sensitizes malignant pleural mesothelioma cells to dual PI3K/mTOR inhibitors.Cell Death Dis.201565e175710.1038/cddis.2015.12425950487
    [Google Scholar]
  96. MathilakathuA. WessollyM. MairingerE. UebnerH. KreidtD. BrcicL. SteinbornJ. GreimelmaierK. WohlschlaegerJ. SchmidK.W. MairingerF.D. BorchertS. Cancer-associated fibroblasts regulate kinase activity in mesothelioma cell lines via paracrine signaling and thereby dictate cell faith and behavior.Int. J. Mol. Sci.2022236327810.3390/ijms2306327835328699
    [Google Scholar]
  97. MasclefL. AhmedO. EstavoyerB. LarrivéeB. LabrecqueN. NijnikA. AffarE.B. Roles and mechanisms of BAP1 deubiquitinase in tumor suppression.Cell Death Differ.202128260662510.1038/s41418‑020‑00709‑433462414
    [Google Scholar]
  98. IshiiY. KolluriK.K. PennycuickA. ZhangX. NigroE. AlrifaiD. BorgE. FalzonM. ShahK. KumarN. JanesS.M. BAP1 and YY1 regulate expression of death receptors in malignant pleural mesothelioma.J. Biol. Chem.2021297510122310.1016/j.jbc.2021.10122334597666
    [Google Scholar]
  99. KolluriK.K. AlifrangisC. KumarN. IshiiY. PriceS. MichautM. WilliamsS. BarthorpeS. LightfootH. BusaccaS. SharkeyA. YuanZ. SageE.K. VallathS. Le QuesneJ. TiceD.A. AlrifaiD. von KarstedtS. MontinaroA. GuppyN. WallerD.A. NakasA. GoodR. HolmesA. WalczakH. FennellD.A. GarnettM. IorioF. WesselsL. McDermottU. JanesS.M. Loss of functional BAP1 augments sensitivity to TRAIL in cancer cells.eLife20187e3022410.7554/eLife.3022429345617
    [Google Scholar]
  100. OehlK. VrugtB. WagnerU. KirschnerM.B. MeerangM. WederW. Felley-BoscoE. WollscheidB. BankovK. DemesM.C. OpitzI. WildP.J. Alterations in BAP1 are associated with cisplatin resistance through inhibition of apoptosis in malignant pleural mesothelioma.Clin. Cancer Res.20212782277229110.1158/1078‑0432.CCR‑20‑403733547197
    [Google Scholar]
  101. KindlerH.L. NovelloS. BearzA. CeresoliG.L. AertsJ.G.J.V. SpicerJ. TaylorP. NackaertsK. GreystokeA. JennensR. CalabròL. BurgersJ.A. SantoroA. CedrésS. SerwatowskiP. PonceS. Van MeerbeeckJ.P. NowakA.K. BlumenscheinG.Jr SiegelJ.M. KastenL. KöchertK. WalterA.O. ChildsB.H. ElbiC. HassanR. FennellD.A. Anetumab ravtansine versus vinorelbine in patients with relapsed, mesothelin- positive malignant pleural mesothelioma (ARCS-M): a randomised, open-label phase 2 trial.Lancet Oncol.202223454055210.1016/S1470‑2045(22)00061‑435358455
    [Google Scholar]
  102. FacchettiG. PetrellaF. SpaggiariL. RimoldiI. Malignant Pleural Mesothelioma: State of the art and advanced cell therapy.Eur. J. Med. Chem.201714226627010.1016/j.ejmech.2017.07.06328800871
    [Google Scholar]
  103. RottenbergS. DislerC. PeregoP. The rediscovery of platinum-based cancer therapy.Nat. Rev. Cancer2021211375010.1038/s41568‑020‑00308‑y33128031
    [Google Scholar]
  104. KovalevI.S. ZyryanovG.V. SantraS. MajeeA. VaraksinM.V. CharushinV.N. Folic acid antimetabolites (antifolates): A brief review on synthetic strategies and application opportunities.Molecules20222719622910.3390/molecules2719622936234766
    [Google Scholar]
  105. BanyalA. TiwariS. SharmaA. ChananaI. PatelS.K.S. KulshresthaS. KumarP. Vinca alkaloids as a potential cancer therapeutics: recent update and future challenges.3 Biotech.202313621110.1007/s13205‑023‑03636‑6
    [Google Scholar]
  106. SinaweH. CasadesusD. Mitomycin.StatPearlsTreasure Island (FL): StatPearls Publishing2023
    [Google Scholar]
  107. ZalcmanG. MazieresJ. MargeryJ. GreillierL. Audigier-ValetteC. Moro-SibilotD. MolinierO. CorreR. MonnetI. GounantV. RivièreF. JanicotH. GervaisR. LocherC. MilleronB. TranQ. LebitasyM.P. MorinF. CreveuilC. ParientiJ.J. ScherpereelA. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): A randomised, controlled, open-label, phase 3 trial.Lancet2016387100261405141410.1016/S0140‑6736(15)01238‑626719230
    [Google Scholar]
  108. MaS. MengZ. ChenR. GuanK.L. The Hippo Pathway: Biology and Pathophysiology.Annu. Rev. Biochem.201988157760410.1146/annurev‑biochem‑013118‑11182930566373
    [Google Scholar]
  109. MailleE. BrosseauS. HanouxV. CreveuilC. DanelC. BergotE. ScherpereelA. MazièresJ. MargeryJ. GreillierL. Audigier-ValetteC. Moro-SibilotD. MolinierO. CorreR. MonnetI. GounantV. LanglaisA. MorinF. LevalletG. ZalcmanG. MST1/Hippo promoter gene methylation predicts poor survival in patients with malignant pleural mesothelioma in the IFCT-GFPC-0701 MAPS Phase 3 trial.Br. J. Cancer2019120438739710.1038/s41416‑019‑0379‑830739911
    [Google Scholar]
  110. CunninghamR. HansenC.G. The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer.Clin. Sci. (Lond.)2022136319722210.1042/CS2020147435119068
    [Google Scholar]
  111. DuboisF. BazilleC. LevalletJ. MailleE. BrosseauS. MadelaineJ. BergotE. ZalcmanG. LevalletG. Molecular alterations in malignant pleural mesothelioma: A hope for effective treatment by targeting YAP.Target. Oncol.202217440743110.1007/s11523‑022‑00900‑235906513
    [Google Scholar]
  112. KrugL.M. KindlerH.L. CalvertH. ManegoldC. TsaoA.S. FennellD. ÖhmanR. PlummerR. EberhardtW.E.E. FukuokaK. GaafarR.M. LafitteJ.J. HillerdalG. ChuQ. BuikhuisenW.A. LubinieckiG.M. SunX. SmithM. BaasP. Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): a phase 3, double-blind, randomised, placebo-controlled trial.Lancet Oncol.201516444745610.1016/S1470‑2045(15)70056‑225800891
    [Google Scholar]
  113. CantiniL. HassanR. StermanD.H. AertsJ.G.J.V. Emerging treatments for malignant pleural mesothelioma: where are we heading?Front Oncol.2020121034310.3389/fonc.2020.00343
    [Google Scholar]
  114. Cortes-DericksL. FromentL. BoeschR. SchmidR.A. KaroubiG. Cisplatin-resistant cells in malignant pleural mesothelioma cell lines show ALDHhighCD44+ phenotype and sphere-forming capacity.BMC Cancer201414130410.1186/1471‑2407‑14‑30424884875
    [Google Scholar]
  115. GabanoE. PintonG. BalzanoC. BoumyaS. OsellaD. MoroL. RaveraM. Unsymmetric cisplatin-based pt(iv) conjugates containing a parp-1 inhibitor pharmacophore tested on malignant pleural mesothelioma cell lines.Molecules20212616474010.3390/molecules2616474034443328
    [Google Scholar]
  116. HwangK.E. KimY.S. HwangY.R. KwonS.J. ParkD.S. ChaB.K. KimB.R. YoonK.H. JeongE.T. KimH.R. Pemetrexed induces apoptosis in malignant mesothelioma and lung cancer cells through activation of reactive oxygen species and inhibition of sirtuin 1.Oncol. Rep.20153352411241910.3892/or.2015.383025738249
    [Google Scholar]
  117. PapazoglouE.D. JagirdarR.M. KouliouO.A. PitarakiE. HatzoglouC. GourgoulianisK.I. ZarogiannisS.G. In Vitro characterization of cisplatin and pemetrexed effects in malignant pleural mesothelioma 3d culture phenotypes.Cancers20191110144610.3390/cancers1110144631569615
    [Google Scholar]
  118. StinchcombeT.E. Flashback Foreword: Pemetrexed and cisplatin in mesothelioma.J. Clin. Oncol.202341122123212410.1200/JCO.22.0272037068376
    [Google Scholar]
  119. MonicaV. IaconoM.L. BraccoE. BussoS. BlasioL.D. PrimoL. PeracinoB. PapottiM. ScagliottiG. Dasatinib modulates sensitivity to pemetrexed in malignant pleural mesothelioma cell lines.Oncotarget2016747765777658910.18632/oncotarget.1042827391433
    [Google Scholar]
  120. GesmundoI. PedrolliF. VitaleN. BertoldoA. OrlandoG. BanfiD. GranatoG. KasarlaR. BalzolaF. DeaglioS. CaiR. ShaW. PapottiM. GhigoE. SchallyA.V. GranataR. Antagonist of growth hormone-releasing hormone potentiates the antitumor effect of pemetrexed and cisplatin in pleural mesothelioma.Int. J. Mol. Sci.202223191124810.3390/ijms23191124836232554
    [Google Scholar]
  121. SunR. TaninoR. TongX. HaqueE.F. AmanoY. IsobeT. TsubataY. Picropodophyllin inhibits the growth of pemetrexed-resistant malignant pleural mesothelioma via microtubule inhibition and IGF-1R-, caspase-independent pathways.Transl. Lung Cancer Res.202211454355910.21037/tlcr‑21‑76535529797
    [Google Scholar]
  122. SalaroglioI.C. BelisarioD.C. BironzoP. AnanthanarayananP. RicciL. DigiovanniS. FontanaS. NapoliF. SandriA. FacolmatàC. LibenerR. ComunanzaV. GrossoF. GazzanoE. LeoF. TaulliR. BussolinoF. RighiL. PapottiM.G. NovelloS. ScagliottiG.V. RigantiC. KopeckaJ. SKP2 drives the sensitivity to neddylation inhibitors and cisplatin in malignant pleural mesothelioma.J. Exp. Clin. Cancer Res.20224117510.1186/s13046‑022‑02284‑735197103
    [Google Scholar]
  123. LisiniD. LettieriS. NavaS. AccordinoG. FrigerioS. BortolottoC. LanciaA. FilippiA.R. AgustoniF. PandolfiL. PiloniD. ComoliP. CorsicoA.G. StellaG.M. Local therapies and modulation of tumor surrounding stroma in malignant pleural mesothelioma: A translational approach.Int. J. Mol. Sci.20212216901410.3390/ijms2216901434445720
    [Google Scholar]
  124. AndoH. KobayashiS. Advanced therapeutic approach for the treatment of malignant pleural mesothelioma via the intrapleural administration of liposomal pemetrexed.Control Release.2015228Pt A293610.1016/j.jconrel.2015.10.019
    [Google Scholar]
  125. PetrellaF. CoccèV. MasiaC. MilaniM. SalèE.O. AlessandriG. ParatiE. SistoF. PentimalliF. BriniA.T. PessinaA. SpaggiariL. Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells.Biomed. Pharmacother.20178775575810.1016/j.biopha.2017.01.11828153512
    [Google Scholar]
  126. PetrellaF. RimoldiI. RizzoS. SpaggiariL. Mesenchymal stromal cells for antineoplastic drug loading and delivery.Medicines2017448710.3390/medicines404008729168760
    [Google Scholar]
  127. BurgioS. NooriL. Marino GammazzaA. CampanellaC. LogozziM. FaisS. BucchieriF. CappelloF. Caruso BavisottoC. Extracellular vesicles-based drug delivery systems: A new challenge and the exemplum of malignant pleural mesothelioma.Int. J. Mol. Sci.20202115543210.3390/ijms2115543232751556
    [Google Scholar]
  128. de LimaV.A.B. SørensenJ.B. Third-line chemotherapy with carboplatin, gemcitabine and liposomised doxorubicin for malignant pleural mesothelioma.Med. Oncol.20153221110.1007/s12032‑014‑0458‑x25572813
    [Google Scholar]
  129. EldinN.E. Abu LilaA.S. KawazoeK. ElnahasH.M. MahdyM.A. IshidaT. Encapsulation in a rapid-release liposomal formulation enhances the anti-tumor efficacy of pemetrexed in a murine solid mesothelioma-xenograft model.Eur. J. Pharm. Sci.201681606610.1016/j.ejps.2015.09.01526415830
    [Google Scholar]
  130. MaraziotiA. PapadiaK. GiannouA. StathopoulosG.T. AntimisiarisS. Prolonged retention of liposomes in the pleural cavity of normal mice and high tumor distribution in mice with malignant pleural effusion, after intrapleural injection.Int. J. Nanomedicine2019143773378410.2147/IJN.S20256831213801
    [Google Scholar]
  131. CovaE. PandolfiL. ColomboM. FrangipaneV. InghilleriS. MorosiniM. Mrakic-SpostaS. MorettiS. MontiM. PignochinoY. BenvenutiS. ProsperiD. StellaG. MorbiniP. MeloniF. Pemetrexed-loaded nanoparticles targeted to malignant pleural mesothelioma cells: An in vitro study.Int. J. Nanomedicine20191477378510.2147/IJN.S18634430774332
    [Google Scholar]
  132. KanaiO. FujitaK. NakataniK. MioT. Repetitive responses to nanoparticle albumin-bound paclitaxel and carboplatin in malignant pleural mesothelioma.Respirol. Case Rep.201641283110.1002/rcr2.14526839699
    [Google Scholar]
  133. AmanoY. SakuraK.L. OhtaS. ItoT. Cisplatin–chelated iminodiacetic acid–conjugated hyaluronic acid nanogels for the treatment of malignant pleural mesothelioma in mice.Mol. Pharm.202219385386110.1021/acs.molpharmaceut.1c0079735142223
    [Google Scholar]
  134. OpitzI. LaukO. MeerangM. JetterA. AeschlimannB. SeifertB. GüntherD. StahelR.A. WederW. Intracavitary cisplatin-fibrin chemotherapy after surgery for malignant pleural mesothelioma: A phase I trial.J. Thorac. Cardiovasc. Surg.20201591330340.e410.1016/j.jtcvs.2019.07.07331590949
    [Google Scholar]
  135. LisiniD. NavaS. FrigerioS. PoglianiS. MaronatiG. MarciantiA. CoccèV. BondiolottiG. CavicchiniL. PainoF. PetrellaF. AlessandriG. ParatiE.A. PessinaA. Automated large-scale production of paclitaxel loaded mesenchymal stromal cells for cell therapy applications.Pharmaceutics202012541110.3390/pharmaceutics1205041132365861
    [Google Scholar]
  136. SzewcM. Radzikowska-BűchnerE. WdowiakP. KozakJ. KusztaP. NiezabitowskaE. MatysiakJ. KubińskiK. MasłykM. MSCs as tumor-specific vectors for the delivery of anticancer agents-a potential therapeutic strategy in cancer diseases: perspectives for quinazoline derivatives.Int. J. Mol. Sci.2022235274510.3390/ijms2305274535269887
    [Google Scholar]
  137. PessinaA. LeonettiC. ArtusoS. BenettiA. DessyE. PascucciL. PasseriD. OrlandiA. BerenziA. BonomiA. CoccèV. CeseraniV. FerriA. DossenaM. MazzucaP. CiusaniE. CeccarelliP. CarusoA. PortolaniN. SistoF. ParatiE. AlessandriG. Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model.J. Exp. Clin. Cancer Res.20153418210.1186/s13046‑015‑0200‑326264809
    [Google Scholar]
  138. CordaniN. LisiniD. CoccèV. PagliaG. MeantiR. CerritoM.G. TettamantiP. BonaffiniL. PainoF. AlessandriG. MarciantiA. GiannìA. VillaC. MauriM. MologniL. TorselloA. PessinaA. CazzanigaM.E. Conditioned medium of mesenchymal stromal cells loaded with paclitaxel is effective in preclinical models of triple-negative dreast cancer (TNBC).Int. J. Mol. Sci.2023246586410.3390/ijms2406586436982938
    [Google Scholar]
  139. CoccèV. BonelliM. La MonicaS. AlfieriR. DonedaL. MarteganiE. AlessandriG. LagrastaC.A. GiannìA. SordiV. PetrellaF. RoncoroniL. PainoF. PessinaA. Mesenchymal stromal cells loaded with Paclitaxel (PacliMES) a potential new therapeutic approach on mesothelioma.Biochem. Pharmacol.202321411567810.1016/j.bcp.2023.11567837399948
    [Google Scholar]
  140. ColomboM. RaposoG. ThéryC. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.Annu. Rev. Cell Dev. Biol.201430125528910.1146/annurev‑cellbio‑101512‑12232625288114
    [Google Scholar]
  141. BariE. FerrarottiI. TorreM.L. CorsicoA.G. PerteghellaS. Mesenchymal stem/stromal cell secretome for lung regeneration: The long way through “pharmaceuticalization” for the best formulation.J. Control. Release2019309112410.1016/j.jconrel.2019.07.02231326462
    [Google Scholar]
  142. PirisinuM. PhamT.C. ZhangD.X. HongT.N. NguyenL.T. LeM.T.N. Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: Recent advances, current obstacles, and challenges for clinical translation.Semin. Cancer Biol.20228034035510.1016/j.semcancer.2020.08.00732977006
    [Google Scholar]
  143. PaganoM. CeresoliL.G. ZucaliP.A. PaselloG. GarassinoM. GrossoF. TiseoM. Soto ParraH. ZanelliF. CappuzzoF. GrossiF. De MarinisF. PedrazzoliP. GnoniR. BonelliC. TorricelliF. CiarrocchiA. NormannoN. PintoC. Mutational profile of malignant pleural mesothelioma (MPM) in the phase II RAMES study.Cancers20201210294810.3390/cancers1210294833065998
    [Google Scholar]
  144. KimJ.E. KimD. HongY.S. KimK. YoonY.K. LeeD.H. KimS.W. ChunS.M. JangS.J. KimT.W. Mutational profiling of malignant mesothelioma revealed potential therapeutic targets in EGFR and NRAS.Transl. Oncol.201811226827410.1016/j.tranon.2018.01.00529413759
    [Google Scholar]
  145. BoreaF. FranczakM.A. GarciaM. PerrinoM. CorduaN. SmolenskiR.T. PetersG.J. DziadziuszkoR. SantoroA. ZucaliP.A. GiovannettiE. Target therapy in malignant pleural mesothelioma: hope or mirage?Int. J. Mol. Sci.20232411916510.3390/ijms2411916537298116
    [Google Scholar]
  146. GemelliM. CortinovisD.L. BaggiA. di MauroP. CalzaS. BerrutiA. GrisantiS. RotaM. Immune checkpoint inhibitors in malignant pleural mesothelioma: a systematic review and meta-analysis.Cancers20221424606310.3390/cancers1424606336551550
    [Google Scholar]
  147. BrownL.B. CorlF. BlackmonS.H. Surgical staging and resection of malignant pleural mesothelioma.J. Thorac. Dis.202012127467748010.21037/jtd‑19‑226733447434
    [Google Scholar]
  148. AlleyE.W. KatzS.I. CengelK.A. SimoneC.B.II Immunotherapy and radiation therapy for malignant pleural mesothelioma.Transl. Lung Cancer Res.20076221221910.21037/tlcr.2017.04.0128529903
    [Google Scholar]
  149. StellaG.M. LettieriS. PiloniD. FerrarottiI. PerrottaF. CorsicoA.G. BortolottoC. Smart Sensors and Microtechnologies in the Precision Medicine Approach against Lung Cancer.Pharmaceuticals2023167104210.3390/ph1607104237513953
    [Google Scholar]
  150. MansfieldA.S. RodenA.C. PeikertT. SheininY.M. HarringtonS.M. KrcoC.J. DongH. KwonE.D. B7-H1 expression in malignant pleural mesothelioma is associated with sarcomatoid histology and poor prognosis.J. Thorac. Oncol.2014971036104010.1097/JTO.000000000000017724926549
    [Google Scholar]
  151. PeaseD.F. KratzkeR.A. Oncolytic Viral Therapy for Mesothelioma.Front. Oncol.2017717910.3389/fonc.2017.0017928884088
    [Google Scholar]
  152. KlampatsaA. AlbeldaS.M. Current advances in CAR T aell therapy for malignant mesothelioma.J. Cell. Immunol.20202419220010.33696/immunology.2.04232914147
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673268206240405084558
Loading
/content/journals/cmc/10.2174/0109298673268206240405084558
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test