Skip to content
2000
Volume 32, Issue 11
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Today, one of the most prevalent reasons for death among people is carcinoma. Because it is still on the increase throughout the world, there is a critical need for in-depth research on the pathogenic mechanisms behind the disease as well as for efficient treatment. In the field of epigenetics, gene expression alterations that are inherited but not DNA sequence changes are investigated. Three key epigenetic changes, histone modifications, DNA methylation and non-coding RNA (ncRNA) expression, are principally responsible for the initiation and progression of different tumors. These changes are interconnected and constitute many epigenetic changes. A form of polyphenolic chemical obtained from plants called curcumin has great bioactivity against several diseases, specifically cancer. A naturally occurring substance called thymoquinone is well-known for its anticancer properties. Thymoquinone affects cancer cells through a variety of methods, according to preclinical studies. We retrieved information from popular databases, including PubMed, Google Scholar, and CNKI, to summarize current advancements in the efficiency of curcumin against cancer and its epigenetic regulation in terms of DNA methylation, histone modifications, and miRNA expression. The present investigation offers thorough insights into the molecular processes, based on epigenetic control, that underlie the clinical use of curcumin and thymoquinone in cancerous cells.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673288542240327112351
2024-04-04
2025-06-23
Loading full text...

Full text loading...

References

  1. MingT. TaoQ. TangS. ZhaoH. YangH. LiuM. RenS. XuH. Curcumin: An epigenetic regulator and its application in cancer.Biomed. Pharmacother.202215611395610.1016/j.biopha.2022.11395636411666
    [Google Scholar]
  2. ZhaoH. MingT. TangS. RenS. YangH. LiuM. TaoQ. XuH. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target.Mol. Cancer202221114410.1186/s12943‑022‑01616‑735836256
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  4. ChenL. HeM. ZhangM. SunQ. ZengS. ZhaoH. YangH. LiuM. RenS. MengX. XuH. The role of non-coding RNAs in colorectal cancer, with a focus on its autophagy.Pharmacol. Ther.202122610786810.1016/j.pharmthera.2021.10786833901505
    [Google Scholar]
  5. DaiE. ZhuZ. WahedS. QuZ. StorkusW.J. GuoZ.S. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy.Mol. Cancer202120117110.1186/s12943‑021‑01464‑x34930302
    [Google Scholar]
  6. Gimeno-ValienteF. López-RodasG. CastilloJ. FrancoL. Alternative splicing, epigenetic modifications and cancer: A dangerous triangle, or a hopeful one?Cancers202214356010.3390/cancers1403056035158828
    [Google Scholar]
  7. ZhaoJ. LiH. ZhaoS. WangE. ZhuJ. FengD. ZhuY. DouW. FanQ. HuJ. JiaL. LiuL. Epigenetic silencing of miR-144/451a cluster contributes to HCC progression via paracrine HGF/MIF-mediated TAM remodeling.Mol. Cancer20212014610.1186/s12943‑021‑01343‑533658044
    [Google Scholar]
  8. IrshadR. HusainM. Natural products in the reprogramming of cancer epigenetics.Toxicol. Appl. Pharmacol.202141711546710.1016/j.taap.2021.11546733631231
    [Google Scholar]
  9. Zare-FeizabadiN. Amiri-TehranizadehZ. Sharifi-RadA. MokaberiP. NosratiN. HashemzadehF. RahimiH.R. SaberiM.R. ChamaniJ. Determining the interaction behavior of calf thymus DNA with anastrozole in the presence of histone H1: Spectroscopies and cell viability of MCF-7 cell line investigations.DNA Cell Biol.20214081039105110.1089/dna.2021.005234165362
    [Google Scholar]
  10. FuS. KurzrockR. Development of curcumin as an epigenetic agent.Cancer2010116204670467610.1002/cncr.2541420597137
    [Google Scholar]
  11. HassanF. RehmanM.S. KhanM.S. AliM.A. JavedA. NawazA. YangC. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects.Front. Genet.20191051410.3389/fgene.2019.0051431214247
    [Google Scholar]
  12. ReuterS. GuptaS.C. ParkB. GoelA. AggarwalB.B. Epigenetic changes induced by curcumin and other natural compounds.Genes Nutr.2011629310810.1007/s12263‑011‑0222‑121516481
    [Google Scholar]
  13. Carlos-ReyesÁ. López-GonzálezJ.S. Meneses-FloresM. Gallardo-RincónD. Ruíz-GarcíaE. MarchatL.A. Astudillo-de la VegaH. Hernández de la CruzO.N. López-CamarilloC. Dietary compounds as epigenetic modulating agents in cancer.Front. Genet.2019107910.3389/fgene.2019.0007930881375
    [Google Scholar]
  14. AggarwalB.B. SungB. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets.Trends Pharmacol. Sci.2009302859410.1016/j.tips.2008.11.00219110321
    [Google Scholar]
  15. WangY.J. PanM.H. ChengA.L. LinL.I. HoY.S. HsiehC.Y. LinJ.K. Stability of curcumin in buffer solutions and characterization of its degradation products.J. Pharm. Biomed. Anal.199715121867187610.1016/S0731‑7085(96)02024‑99278892
    [Google Scholar]
  16. AnandP. ThomasS.G. KunnumakkaraA.B. SundaramC. HarikumarK.B. SungB. TharakanS.T. MisraK. PriyadarsiniI.K. RajasekharanK.N. AggarwalB.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature.Biochem. Pharmacol.200876111590161110.1016/j.bcp.2008.08.00818775680
    [Google Scholar]
  17. KaleemM. KayaliA. SheikhR.A. KuerbanA. HassanM.A. AlmalkiN.A.R. Al-AbbasiF.A. AnwarF. OmranZ. AlhosinM. In vitro and in vivo preventive effects of thymoquinone against breast cancer: Role of DNMT1.Molecules202429243410.3390/molecules2902043438257347
    [Google Scholar]
  18. KhanM.A. TaniaM. FuJ. Epigenetic role of thymoquinone: Impact on cellular mechanism and cancer therapeutics.Drug Discov. Today201924122315232210.1016/j.drudis.2019.09.00731541714
    [Google Scholar]
  19. KhanM.A. TaniaM. WeiC. MeiZ. FuS. ChengJ. XuJ. FuJ. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition.Oncotarget2015623195801959110.18632/oncotarget.397326023736
    [Google Scholar]
  20. Asaduzzaman KhanM. TaniaM. FuS. FuJ. Thymoquinone, as an anticancer molecule: From basic research to clinical investigation.Oncotarget2017831519075191910.18632/oncotarget.1720628881699
    [Google Scholar]
  21. ChowdhuryF.A. HossainM.K. MostofaA. AkborM.M. Bin SayeedM.S. Therapeutic potential of thymoquinone in glioblastoma treatment: Targeting major gliomagenesis signaling pathways.Biomed. Res. Int.201820184010629
    [Google Scholar]
  22. Gali-MuhtasibH.U. Abou KheirW.G. KheirL.A. DarwicheN. CrooksP.A. Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes.Anticancer Drugs200415438939910.1097/00001813‑200404000‑0001215057144
    [Google Scholar]
  23. DajaniE.Z. ShahwanT.G. DajaniN.E. Overview of the preclinical pharmacological properties of Nigella sativa (black seeds): A complementary drug with historical and clinical significance.J. Physiol. Pharmacol.201667680181728195061
    [Google Scholar]
  24. AhmadI. MuneerK.M. TamimiI.A. ChangM.E. AtaM.O. YusufN. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome.Toxicol. Appl. Pharmacol.20132701707610.1016/j.taap.2013.03.02723583630
    [Google Scholar]
  25. RahmaniA.H. AlzohairyM.A. KhanM.A. AlyS.M. Therapeutic implications of black seed and its constituent thymoquinone in the prevention of cancer through inactivation and activation of molecular pathways. Evid. Based Complement. Alternat. Med.2014201472465810.1155/2014/724658
    [Google Scholar]
  26. JayaniR.S. RamanujamP.L. GalandeS. Studying histone modifications and their genomic functions by employing chromatin immunoprecipitation and immunoblotting.Methods Cell Biol.201098355610.1016/S0091‑679X(10)98002‑320816229
    [Google Scholar]
  27. HaoF. KaleS. DimitrovS. HayesJ.J. Unraveling linker histone interactions in nucleosomes.Curr. Opin. Struct. Biol.202171879310.1016/j.sbi.2021.06.00134246862
    [Google Scholar]
  28. NingB. LiW. ZhaoW. WangR. Targeting epigenetic regulations in cancer.Acta Biochim. Biophys. Sin.20164819710910.1093/abbs/gmv11626508480
    [Google Scholar]
  29. GuptaR. Epigenetic regulation and targeting of ECM for cancer therapy.Am. J. Physiol. Cell Physiol.20223224C762C76810.1152/ajpcell.00022.202235235427
    [Google Scholar]
  30. VannK.R. KleinB.J. KutateladzeT.G. Mechanistic similarities in recognition of histone tails and DNA by epigenetic readers.Curr. Opin. Struct. Biol.2021711610.1016/j.sbi.2021.04.00333993059
    [Google Scholar]
  31. AllisC.D. JenuweinT. The molecular hallmarks of epigenetic control.Nat. Rev. Genet.201617848750010.1038/nrg.2016.5927346641
    [Google Scholar]
  32. GrosselinK. DurandA. MarsolierJ. PoitouA. MarangoniE. NematiF. DahmaniA. LameirasS. ReyalF. FrenoyO. PousseY. ReichenM. WoolfeA. BrenanC. GriffithsA.D. VallotC. GérardA. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer.Nat. Genet.20195161060106610.1038/s41588‑019‑0424‑931152164
    [Google Scholar]
  33. MushtaqA. MirU.S. HuntC.R. PanditaS. TantrayW.W. BhatA. PanditaR.K. AltafM. PanditaT.K. Role of histone methylation in maintenance of genome integrity.Genes2021127100010.3390/genes1207100034209979
    [Google Scholar]
  34. YangG.J. ZhuM.H. LuX.J. LiuY.J. LuJ.F. LeungC.H. MaD.L. ChenJ. The emerging role of KDM5A in human cancer.J. Hematol. Oncol.20211413010.1186/s13045‑021‑01041‑133596982
    [Google Scholar]
  35. LiY. ChenX. LuC. The interplay between DNA and histone methylation: Molecular mechanisms and disease implications.EMBO Rep.2021225e5180310.15252/embr.20205180333844406
    [Google Scholar]
  36. RajanP.K. UdohU.A. SanabriaJ.D. BanerjeeM. SmithG. SchadeM.S. SanabriaJ. SodhiK. PierreS. XieZ. ShapiroJ.I. SanabriaJ. The role of histone acetylation-/methylation-mediated apoptotic gene regulation in hepatocellular carcinoma.Int. J. Mol. Sci.20202123889410.3390/ijms2123889433255318
    [Google Scholar]
  37. CarrozzaM.J. UtleyR.T. WorkmanJ.L. CôtéJ. The diverse functions of histone acetyltransferase complexes.Trends Genet.200319632132910.1016/S0168‑9525(03)00115‑X12801725
    [Google Scholar]
  38. ConeryA.R. RocnikJ.L. TrojerP. Small molecule targeting of chromatin writers in cancer.Nat. Chem. Biol.202218212413310.1038/s41589‑021‑00920‑534952934
    [Google Scholar]
  39. BennettR.L. LichtJ.D. Targeting epigenetics in cancer.Annu. Rev. Pharmacol. Toxicol.201858118720710.1146/annurev‑pharmtox‑010716‑10510628992434
    [Google Scholar]
  40. OikeT. OgiwaraH. AmornwichetN. NakanoT. KohnoT. Chromatin-regulating proteins as targets for cancer therapy.J. Radiat. Res.201455461362810.1093/jrr/rrt22724522270
    [Google Scholar]
  41. ChenY. ShuW. ChenW. WuQ. LiuH. CuiG. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells.Basic Clin. Pharmacol. Toxicol.2007101642743310.1111/j.1742‑7843.2007.00142.x17927689
    [Google Scholar]
  42. LindholmM.E. MarabitaF. Gomez-CabreroD. RundqvistH. EkströmT.J. TegnérJ. SundbergC.J. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training.Epigenetics20149121557156910.4161/15592294.2014.98244525484259
    [Google Scholar]
  43. HuJ. WangY. ChenY. Curcumin-induced histone acetylation in malignant hematologic cells.J. Huazhong Univ. Sci. Technolog. Med. Sci.2009291252810.1007/s11596‑009‑0105‑519224157
    [Google Scholar]
  44. LiuH. ChenY. CuiG. ZhouJ. Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation.Acta Pharmacol. Sin.200526560360910.1111/j.1745‑7254.2005.00081.x15842781
    [Google Scholar]
  45. MejaK.K. RajendrasozhanS. AdenugaD. BiswasS.K. SundarI.K. SpoonerG. MarwickJ.A. ChakravartyP. FletcherD. WhittakerP. MegsonI.L. KirkhamP.A. RahmanI. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2.Am. J. Respir. Cell Mol. Biol.200839331232310.1165/rcmb.2008‑0012OC18421014
    [Google Scholar]
  46. WuR. WangL. YinR. HudlikarR. LiS. KuoH.C.D. PeterR. SargsyanD. GuoY. LiuX. KongA.N. Epigenetics/epigenomics and prevention by curcumin of early stages of inflammatory-driven colon cancer.Mol. Carcinog.202059222723610.1002/mc.2314631820492
    [Google Scholar]
  47. ZhouX. JiaoD. DouM. ZhangW. LvL. ChenJ. LiL. WangL. HanX. Curcumin inhibits the growth of triple-negative breast cancer cells by silencing EZH2 and restoring DLC1 expression.J. Cell. Mol. Med.20202418106481066210.1111/jcmm.1568332725802
    [Google Scholar]
  48. CianfrugliaL. MinnelliC. LaudadioE. ScirèA. ArmeniT. Side effects of curcumin: Epigenetic and antiproliferative implications for normal dermal fibroblast and breast cancer cells.Antioxidants20198938210.3390/antiox809038231505772
    [Google Scholar]
  49. ArnaudoA.M. GarciaB.A. Proteomic characterization of novel histone post-translational modifications.Epigenetics Chromatin2013612410.1186/1756‑8935‑6‑2423916056
    [Google Scholar]
  50. BoyanapalliS.S.S. KongA.N.T. “Curcumin, the king of spices”: Epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases.Curr. Pharmacol. Rep.20151212913910.1007/s40495‑015‑0018‑x26457241
    [Google Scholar]
  51. ZhangL. ChengX. GaoY. BaoJ. GuanH. LuR. YuH. XuQ. SunY. Induction of ROS-independent DNA damage by curcumin leads to G2/M cell cycle arrest and apoptosis in human papillary thyroid carcinoma BCPAP cells.Food Funct.20167131532510.1039/C5FO00681C26442630
    [Google Scholar]
  52. YeY. MaY. KongM. WangZ. SunK. LiF. Effects of dietary phytochemicals on DNA damage in cancer cells.Nutr. Cancer202375376177510.1080/01635581.2022.215702436562548
    [Google Scholar]
  53. HuminieckiL. HorbańczukJ. AtanasovA.G. Seminars in cancer biology.Elsevier201746107118
    [Google Scholar]
  54. ZhangB. ZhengH. HuangB. LiW. XiangY. PengX. MingJ. WuX. ZhangY. XuQ. LiuW. KouX. ZhaoY. HeW. LiC. ChenB. LiY. WangQ. MaJ. YinQ. KeeK. MengA. GaoS. XuF. NaJ. XieW. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development.Nature2016537762155355710.1038/nature1936127626382
    [Google Scholar]
  55. NishiyamaA. NakanishiM. Navigating the DNA methylation landscape of cancer.Trends Genet.202137111012102710.1016/j.tig.2021.05.00234120771
    [Google Scholar]
  56. VelandN. HardikarS. ZhongY. GayatriS. DanJ. StrahlB.D. RothbartS.B. BedfordM.T. ChenT. The arginine methyltransferase PRMT6 regulates DNA methylation and contributes to global DNA hypomethylation in cancer.Cell Rep.201721123390339710.1016/j.celrep.2017.11.08229262320
    [Google Scholar]
  57. KongX. ChenJ. XieW. BrownS.M. CaiY. WuK. FanD. NieY. YegnasubramanianS. TiedemannR.L. Defining UHRF1 domains that support maintenance of human colon cancer DNA methylation and oncogenic properties.Cancer Cell201935463364810.1016/j.ccell.2019.03.003
    [Google Scholar]
  58. MatteiA.L. BaillyN. MeissnerA. DNA methylation: A historical perspective.Trends Genet.202238767670710.1016/j.tig.2022.03.01035504755
    [Google Scholar]
  59. HermanJ.G. BaylinS.B. Gene silencing in cancer in association with promoter hypermethylation.N. Engl. J. Med.2003349212042205410.1056/NEJMra02307514627790
    [Google Scholar]
  60. TeitenM.H. DicatoM. DiederichM. Curcumin as a regulator of epigenetic events.Mol. Nutr. Food Res.20135791619162910.1002/mnfr.20130020123754571
    [Google Scholar]
  61. LinkA. BalaguerF. ShenY. LozanoJ.J. LeungH.C.E. BolandC.R. GoelA. Curcumin modulates DNA methylation in colorectal cancer cells.PLoS One201382e5770910.1371/journal.pone.005770923460897
    [Google Scholar]
  62. StillsonN.J. AndersonK.E. ReichN.O. In silico study of selective inhibition mechanism of S-adenosyl-L-methionine analogs for human DNA methyltransferase 3A.Comput. Biol. Chem.202310210779610.1016/j.compbiolchem.2022.10779636495748
    [Google Scholar]
  63. ParasharG. ParasharN.C. CapalashN. Curcumin causes promoter hypomethylation and increased expression of FANCF gene in SiHa cell line.Mol. Cell. Biochem.20123651-2293510.1007/s11010‑012‑1240‑z22297615
    [Google Scholar]
  64. ZamaniM. SadeghizadehM. BehmaneshM. NajafiF. Dendrosomal curcumin increases expression of the long non-coding RNA gene MEG3 via up-regulation of epi-miRs in hepatocellular cancer.Phytomedicine2015221096196710.1016/j.phymed.2015.05.07126321746
    [Google Scholar]
  65. Linares-PinedaT. Peña-MonteroN. Fragoso-BargasN. Gutiérrez-RepisoC. Lima-RubioF. Suarez-AranaM. Sánchez-PozoA. TinahonesF.J. Molina-VegaM. Picón-CésarM.J. SommerC. MorcilloS. Epigenetic marks associated with gestational diabetes mellitus across two time points during pregnancy.Clin. Epigenetics202315111010.1186/s13148‑023‑01523‑837415231
    [Google Scholar]
  66. ZhouY. ZhangY. BotchwayB.O. WangX. LiuX. Curcumin can improve spinal cord injury by inhibiting DNA methylation.Mol. Cell. Biochem.202311237076656
    [Google Scholar]
  67. WangD. ZhangY. LiQ. LiY. LiW. ZhangA. XuJ. MengJ. TangL. LyuS. Epigenetics: Mechanisms, potential roles, and therapeutic strategies in cancer progression.Genes Dis.202311510102010.1016/j.gendis.2023.04.040
    [Google Scholar]
  68. ZhangZ. WangG. LiY. LeiD. XiangJ. OuyangL. WangY. YangJ. Recent progress in DNA methyltransferase inhibitors as anticancer agents.Front. Pharmacol.202213107265110.3389/fphar.2022.107265137077808
    [Google Scholar]
  69. MarzioniD. MazzucchelliR. FantoneS. TossettaG. NRF2 modulation in TRAMP mice: An in vivo model of prostate cancer.Mol. Biol. Rep.202350187388110.1007/s11033‑022‑08052‑236335520
    [Google Scholar]
  70. DengR. ZhuY. LiuK. ZhangQ. HuS. WangM. ZhangY. Genetic loss of Nrf1 and Nrf2 leads to distinct metabolism reprogramming of HepG2 cells by opposing regulation of the PI3K-AKT-mTOR signalling pathway.Bioorg. Chem.202414510721210.1016/j.bioorg.2024.10721238377819
    [Google Scholar]
  71. LiuR. ChenY. LiuG. LiC. SongY. CaoZ. LiW. HuJ. LuC. LiuY. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers.Cell Death Dis.202011979710.1038/s41419‑020‑02998‑632973135
    [Google Scholar]
  72. FitzgeraldG. Soro-ArnaizI. De BockK. The Warburg effect in endothelial cells and its potential as an anti-angiogenic target in cancer.Front. Cell Dev. Biol.2018610010.3389/fcell.2018.0010030255018
    [Google Scholar]
  73. TonelliC. ChioI.I.C. TuvesonD.A. Transcriptional regulation by Nrf2.Antioxid. Redox Signal.201829171727174510.1089/ars.2017.734228899199
    [Google Scholar]
  74. LinL. WuQ. LuF. LeiJ. ZhouY. LiuY. ZhuN. YuY. NingZ. SheT. HuM. Nrf2 signaling pathway: Current status and potential therapeutic targetable role in human cancers.Front. Oncol.202313118407910.3389/fonc.2023.118407937810967
    [Google Scholar]
  75. RuwaliM. ShuklaR. In Handbook of Oxidative Stress in Cancer: Mechanistic Aspects.Springer202295797310.1007/978‑981‑15‑9411‑3_60
    [Google Scholar]
  76. SargaziZ. YazdaniY. TahavvoriA. YoushanloueiH.R. AlivirdilooV. BeilankouhiE.A.V. ValiloM. NFR2/ABC transporter axis in drug resistance of breast cancer cells.Mol. Biol. Rep.20235065407541410.1007/s11033‑023‑08384‑737081307
    [Google Scholar]
  77. MukherjeeA.G. GopalakrishnanA.V. The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: A deadly scenario.Med. Oncol.202340924810.1007/s12032‑023‑02124‑437480500
    [Google Scholar]
  78. SoghliN. YousefiH. NaderiT. FallahA. MoshksarA. DarbeheshtiF. VittoriC. DelavarM.R. ZareA. RadH.S. KazemiA. BitarafA. HussenB.M. TaheriM. JamaliE. NRF2 signaling pathway: A comprehensive prognostic and gene expression profile analysis in breast cancer.Pathol. Res. Pract.202324315434110.1016/j.prp.2023.15434136739754
    [Google Scholar]
  79. MaB. ZhongY. ChenR. ZhanX. HuangG. XiongY. TanB. Tripterygium glycosides reverse chemotherapy resistance in ovarian cancer by targeting the NRF2/GPX4 signal axis to induce ferroptosis of drug-resistant human epithelial ovarian cancer cells.Biochem. Biophys. Res. Commun.202366517818637163938
    [Google Scholar]
  80. CasperE. The crosstalk between Nrf2 and NF-κB pathways in coronary artery disease: Can it be regulated by SIRT6?Life Sci.202333012200710.1016/j.lfs.2023.12200737544377
    [Google Scholar]
  81. YaoX. NiJ. LinL. JinP. MaF. The NF-κB/relish activates miR-308 to negatively regulate imd pathway immune signaling in Drosophila.J. Immunol.2023211459160010.4049/jimmunol.220068037358278
    [Google Scholar]
  82. GongZ. LiuW. SongR. DongW. ZhangK. LiJ. ZouH. ZhuJ. MaY. LiuG. LiuZ. Nuclear factor-kappaB mediates the survival of rat kidney cells after cadmium exposure via promoting autophagy and inhibiting apoptosis.Ecotoxicol. Environ. Saf.202324911446510.1016/j.ecoenv.2022.11446538321684
    [Google Scholar]
  83. ShiP. XuJ. CuiH. The recent research progress of NF-κB signaling on the proliferation, migration, invasion, immune escape and drug resistance of glioblastoma.Int. J. Mol. Sci.202324121033710.3390/ijms24121033737373484
    [Google Scholar]
  84. DekaK. LiY. Transcriptional regulation during aberrant activation of NF-κB signalling in cancer.Cells202312578810.3390/cells1205078836899924
    [Google Scholar]
  85. PavitraE. KancharlaJ. GuptaV.K. PrasadK. SungJ.Y. KimJ. TejM.B. ChoiR. LeeJ.H. HanY.K. RajuG.S.R. BhaskarL.V.K.S. HuhY.S. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy.Biomed. Pharmacother.202316311482210.1016/j.biopha.2023.11482237146418
    [Google Scholar]
  86. CaiJ. WangY. WangX. AiZ. LiT. PuX. YangX. YaoY. HeJ. ChengS.Y. YuT. LiuC. YueS. AMPK attenuates SHH subgroup medulloblastoma growth and metastasis by inhibiting NF-κB activation.Cell Biosci.20231311510.1186/s13578‑023‑00963‑236593479
    [Google Scholar]
  87. ZhangZ. ChenL. ZhaoC. GongQ. TangZ. LiH. TaoJ. CASC9 potentiates gemcitabine resistance in pancreatic cancer by reciprocally activating NRF2 and the NF-κB signaling pathway.Cell Biol. Toxicol.20233941549156010.1007/s10565‑022‑09746‑w35913601
    [Google Scholar]
  88. LiC. GengC. GLIS family zinc finger 3 promotes triple-negative breast cancer progression by inducing cell proliferation, migration and invasion, and activating the NF-κB signaling pathway.Biol. Pharm. Bull.202346220921810.1248/bpb.b22‑0059536724950
    [Google Scholar]
  89. ChengX. WangF. QiaoY. ChenT. FanL. ShenX. YuD. HuangY. WeiM. Honokiol inhibits interleukin-induced angiogenesis in the NSCLC microenvironment through the NF-κB signaling pathway.Chem. Biol. Interact.202337011029536470525
    [Google Scholar]
  90. LiuY.P. ZhengC.C. HuangY.N. HeM.L. XuW.W. LiB. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment.MedComm20212331534010.1002/mco2.5534766149
    [Google Scholar]
  91. ShiX. ZhangW. BaoX. LiuX. YangM. YinC. Eugenol modulates the NOD1-NF-κB signaling pathway via targeting NF-κB protein in triple-negative breast cancer cells.Front. Endocrinol.202314113606710.3389/fendo.2023.113606736923216
    [Google Scholar]
  92. SelvakumarS.C. PreethiK.A. SekarD. MicroRNAs as important players in regulating cancer through PTEN/PI3K/AKT signalling pathways.Biochim. Biophys. Acta, Rev. Cancer2023188904
    [Google Scholar]
  93. HashemiM. EtemadS. RezaeiS. ZiaolhaghS. RajabiR. RahmanianP. AbdiS. KoohparZ.K. RafieiR. RaeiB. AhmadiF. SalimimoghadamS. ArefA.R. ZandiehM.A. EntezariM. TaheriazamA. HushmandiK. Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions.Biomed. Pharmacother.202315811420410.1016/j.biopha.2022.11420436916430
    [Google Scholar]
  94. AquilaS. SantoroM. CaputoA. PannoM.L. PezziV. De AmicisF. The tumor suppressor PTEN as molecular switch node regulating cell metabolism and autophagy: Implications in immune system and tumor microenvironment.Cells202097172510.3390/cells907172532708484
    [Google Scholar]
  95. XunG. HuW. LiB. PTEN loss promotes oncogenic function of STMN1 via PI3K/AKT pathway in lung cancer.Sci. Rep.20211111431810.1038/s41598‑021‑93815‑334253824
    [Google Scholar]
  96. LiaoW. DuJ. LiL. WuX. ChenX. FengQ. XuL. ChenX. LiaoM. HuangJ. YuanK. ZengY. CircZNF215 promotes tumor growth and metastasis through inactivation of the PTEN/AKT pathway in intrahepatic cholangiocarcinoma.J. Exp. Clin. Cancer Res.202342112510.1186/s13046‑023‑02699‑w37198696
    [Google Scholar]
  97. VidottoT. MeloC.M. CastelliE. KotiM. dos ReisR.B. SquireJ.A. Emerging role of PTEN loss in evasion of the immune response to tumours.Br. J. Cancer2020122121732174310.1038/s41416‑020‑0834‑632327707
    [Google Scholar]
  98. SahuR. PattanayakS.P. Strategic developments & future perspective on gene therapy for breast cancer: Role of mTOR and Brk/PTK6 as molecular targets.Curr. Gene Ther.202020423725810.2174/156652322099920073100240832807051
    [Google Scholar]
  99. SherG. MasoodiT. PatilK. Seminars in Cancer Biology.Elsevier2022
    [Google Scholar]
  100. KumarB. ChandV. RamA. UsmaniD. MuhammadN. Oncogenic mutations in tumorigenesis and targeted therapy in breast cancer.Curr. Mol. Biol. Rep.20206311612510.1007/s40610‑020‑00136‑x
    [Google Scholar]
  101. Martínez-NavaG.A. Urbina-JaraL.K. Lira-AlbarránS. GómezH.L. Ruiz-GarcíaE. Nieto-CoronelM.T. Ortiz-LopezR. Martínez VillalbaK.N. Muñoz-SánchezM. AguilarD. Gómez-Flores-RamosL. Cabrera-NietoS.A. MoharA. Cruz-RamosM. Somatic mutations in latin american breast cancer patients: A systematic review and meta-analysis.Diagnostics202414328710.3390/diagnostics1403028738337803
    [Google Scholar]
  102. ChapdelaineA.G. SunG. Challenges and opportunities in developing targeted therapies for triple negative breast cancer.Biomolecules2023138120710.3390/biom1308120737627272
    [Google Scholar]
  103. FuscoN. SajjadiE. VenetisK. GaudiosoG. LopezG. CortiC. Guerini RoccoE. CriscitielloC. MalapelleU. InvernizziM. PTEN alterations and their role in cancer management: Are we making headway on precision medicine?Genes202011771910.3390/genes1107071932605290
    [Google Scholar]
  104. CermaK. PiacentiniF. MoscettiL. BarboliniM. CaninoF. TornincasaA. CaggiaF. CerriS. MolinaroA. DominiciM. OmariniC. Targeting pi3k/akt/mtor pathway in breast cancer: From biology to clinical challenges.Biomedicines202311110910.3390/biomedicines1101010936672617
    [Google Scholar]
  105. EffatH. AbosharafH.A. RadwanA.M. Combined effects of naringin and doxorubicin on the JAK/STAT signaling pathway reduce the development and spread of breast cancer cells.Sci. Rep.2024141282410.1038/s41598‑024‑53320‑938310190
    [Google Scholar]
  106. SunJ. LiJ. KongX. GuoQ. Peimine inhibits MCF-7 breast cancer cell growth by modulating inflammasome activation: Critical roles of MAPK and NF-κB signaling.Anti-Cancer Agents Med. Chem.2023233317327
    [Google Scholar]
  107. ShomaliN. KamraniA. HerisJ.A. ShahabiP. NasiriH. SadeghvandS. GhahremanzadehK. AkbariM. Dysregulation of P53 in breast cancer: Causative factors and treatment strategies.Pathol. Res. Pract.202324715453910.1016/j.prp.2023.15453937257244
    [Google Scholar]
  108. HashemiM. HasaniS. HajimazdaranyS. GhadyaniF. OlyaeeY. KhodadadiM. ZiyaraniM.F. DehghanpourA. SalehiH. KakavandA. GoharriziM.A.S.B. ArefA.R. SalimimoghadamS. AkbariM.E. TaheriazamA. HushmandiK. EntezariM. Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: Revisiting signaling networks.Int. J. Biol. Macromol.202323212337710.1016/j.ijbiomac.2023.12337736702226
    [Google Scholar]
  109. FatehiR. RashediniaM. AkbarizadehA.R. zamaniM. FirouzabadiN. Metformin enhances anti-cancer properties of resveratrol in MCF-7 breast cancer cells via induction of apoptosis, autophagy and alteration in cell cycle distribution.Biochem. Biophys. Res. Commun.202364413013910.1016/j.bbrc.2022.12.06936641965
    [Google Scholar]
  110. Todorović-RakovićN. WhitfieldJ.R. Therapeutic implications of the interplay between interferons and ER in breast cancer.Cytokine Growth Factor Rev.20247511912510.1016/j.cytogfr.2024.01.00238296759
    [Google Scholar]
  111. FatimaF. ChourasiyaN.K. MishraM. KoriS. PathakS. DasR. KashawV. IyerA.K. KashawS.K. Curcumin and its derivatives targeting multiple signaling pathways to elicit anticancer activity: A comprehensive perspective.Curr. Med. Chem.202431243668371437221681
    [Google Scholar]
  112. Sudhesh DevS. Zainal AbidinS.A. FarghadaniR. OthmanI. NaiduR. Receptor tyrosine kinases and their signaling pathways as therapeutic targets of curcumin in cancer.Front. Pharmacol.20211277251010.3389/fphar.2021.77251034867402
    [Google Scholar]
  113. ShenH. ShenJ. PanH. XuL. ShengH. LiuB. YaoM. Curcumin analog B14 has high bioavailability and enhances the effect of anti-breast cancer cells in vitro and in vivo.Cancer Sci.2021112281582710.1111/cas.1477033316116
    [Google Scholar]
  114. ChimentoA. D’AmicoM. De LucaA. ConfortiF.L. PezziV. De AmicisF. Resveratrol, epigallocatechin gallate and curcumin for cancer therapy: Challenges from their pro-apoptotic properties.Life202313226110.3390/life1302026136836619
    [Google Scholar]
  115. KumarG. MittalS. SakK. TuliH.S. Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives.Life Sci.201614831332810.1016/j.lfs.2016.02.02226876915
    [Google Scholar]
  116. RaynalN.J.M. SiJ. TabyR.F. GharibyanV. AhmedS. JelinekJ. EstécioM.R.H. IssaJ.P.J. DNA methylation does not stably lock gene expression but instead serves as a molecular mark for gene silencing memory.Cancer Res.20127251170118110.1158/0008‑5472.CAN‑11‑324822219169
    [Google Scholar]
  117. KimM. CostelloJ. DNA methylation: An epigenetic mark of cellular memory.Exp. Mol. Med.2017494e322e32210.1038/emm.2017.1028450738
    [Google Scholar]
  118. MirzaS. PennyC. JainN.K. RawalR.M. Curcumin mediated dendritic cell maturation by modulating cancer associated fibroblasts-derived exosomal miRNA-146a.J. Cancer Res. Ther.202319Suppl. 2S649S65710.4103/jcrt.jcrt_1286_2238384034
    [Google Scholar]
  119. XiaJ. BuC. ZhangB. WangX. ChenY. LiT. The emerging role of microRNA-22 in the Leukemia: Experimental and clinical implications.Mol. Biol. Rep.20245111210.1007/s11033‑023‑08922‑338085373
    [Google Scholar]
  120. ReisenauerK.N. AroujoJ. TaoY. RanganathanS. RomoD. TaubeJ.H. Therapeutic vulnerabilities of cancer stem cells and effects of natural products.Nat. Prod. Rep.20234081432145610.1039/D3NP00002H37103550
    [Google Scholar]
  121. ZhaoZ. SuJ. ZhaoJ. ChenJ. CuiX. SunM. ZhangX. Curcumin inhibits invasion and metastasis of human hepatoma cells through Bclaf1-mediated Wnt/β- catenin signalling.Food Agric. Immunol.202233166467610.1080/09540105.2022.2113864
    [Google Scholar]
  122. WahyudiL.D. YuS.H. ChoM.K. The effect of curcumin on the cadmium-induced mitochondrial apoptosis pathway by metallothionein 2A regulation.Life Sci.202231012107610.1016/j.lfs.2022.12107636243116
    [Google Scholar]
  123. LiP. PuS. LinC. HeL. ZhaoH. YangC. GuoZ. XuS. ZhouZ. Curcumin selectively induces colon cancer cell apoptosis and S cell cycle arrest by regulates Rb/E2F/p53 pathway.J. Mol. Struct.2022126313318010.1016/j.molstruc.2022.133180
    [Google Scholar]
  124. TongQ. WuZ. Curcumin inhibits colon cancer malignant progression and promotes T cell killing by regulating miR-206 expression.Clin. Anat.202337121137191314
    [Google Scholar]
  125. KatlebaK.D. GhoshP.M. MudryjM. Beyond prostate cancer: An androgen receptor splice variant expression in multiple malignancies, non-cancer pathologies, and development.Biomedicines2023118221510.3390/biomedicines1108221537626712
    [Google Scholar]
  126. LiuC. RokavecM. HuangZ. HermekingH. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis.Cell Death Differ.20233071771178510.1038/s41418‑023‑01178‑137210578
    [Google Scholar]
  127. SaleemM. Mazhar FareedM. Salman Akbar SaaniM. ShityakovS. Network pharmacology and multitarget analysis of Nigella sativa in the management of diabetes and obesity: A computational study.J. Biomol. Struct. Dyn.202311737350443
    [Google Scholar]
  128. ShabaniH. KaramiM.H. KolourJ. SayyahiZ. ParvinM.A. SoghalaS. BaghiniS.S. MardasiM. ChopaniA. MoulaviP. FarkhondehT. DarroudiM. KabiriM. SamarghandianS. Anticancer activity of thymoquinone against breast cancer cells: Mechanisms of action and delivery approaches.Biomed. Pharmacother.202316511497210.1016/j.biopha.2023.11497237481931
    [Google Scholar]
  129. WaniM.R. ShadabG.G.H.A. Low doses of thymoquinone protect isolated human blood cells from TiO2 nanoparticles induced oxidative stress, hemolysis, cytotoxicity, DNA damage and collapse of mitochondrial activity.Phytomedicine Plus20211410005610.1016/j.phyplu.2021.100056
    [Google Scholar]
  130. AnsariM.O. ParveenN. AhmadM.F. WaniA.L. AfrinS. RahmanY. JameelS. KhanY.A. SiddiqueH.R. TabishM. ShadabG.G.H.A. Evaluation of DNA interaction, genotoxicity and oxidative stress induced by iron oxide nanoparticles both in vitro and in vivo: Attenuation by thymoquinone.Sci. Rep.201991691210.1038/s41598‑019‑43188‑531061500
    [Google Scholar]
  131. RautP.K. LeeH.S. JooS.H. ChunK.S. Thymoquinone induces oxidative stress-mediated apoptosis through downregulation of Jak2/STAT3 signaling pathway in human melanoma cells.Food Chem. Toxicol.202115711260410.1016/j.fct.2021.11260434627931
    [Google Scholar]
  132. AbdullahO. OmranZ. HosawiS. HamicheA. BronnerC. AlhosinM. Thymoquinone is a multitarget single epidrug that inhibits the UHRF1 protein complex.Genes202112562210.3390/genes1205062233922029
    [Google Scholar]
  133. GiordanoF. PaolìA. ForastieroM. MarsicoS. De AmicisF. MarrelliM. NaimoG.D. MauroL. PannoM.L. Valproic acid inhibits cell growth in both MCF-7 and MDA-MB231 cells by triggering different responses in a cell type-specific manner.J. Transl. Med.202321116510.1186/s12967‑023‑04015‑836864445
    [Google Scholar]
  134. KaleemM. PerwaizM. NurS.M. AbdulrahmanA.O. AhmadW. Al-AbbasiF.A. KumarV. KamalM.A. AnwarF. Epigenetics of triple-negative breast cancer via natural compounds.Curr. Med. Chem.20222981436145810.2174/092986732866621070716553034238140
    [Google Scholar]
  135. TangS. LingZ. JiangJ. GuX. LengY. WeiC. ChengH. LiX. Integrating the tumor-suppressive activity of Maspin with p53 in retuning the epithelial homeostasis: A working hypothesis and applicable prospects.Front. Oncol.202212103779410.3389/fonc.2022.103779436523976
    [Google Scholar]
  136. ParbinS. ShilpiA. KarS. PradhanN. SenguptaD. DebM. RathS.K. PatraS.K. Insights into the molecular interactions of thymoquinone with histone deacetylase: Evaluation of the therapeutic intervention potential against breast cancer.Mol. Biosyst.2016121485810.1039/C5MB00412H26540192
    [Google Scholar]
  137. LeeY.H. KimS.J. SurhY.J. Role of post-translational modification of silent mating type information regulator 2 homolog 1 in cancer and other disorders.J. Cancer Prev.202227315716910.15430/JCP.2022.27.3.15736258719
    [Google Scholar]
  138. WangY. WangJ. LiuC. LiM. Silent information regulator 1 promotes proliferation, migration, and invasion of cervical cancer cells and is upregulated by human papillomavirus 16 E7 oncoprotein.Gynecol. Obstet. Invest.2022871222910.1159/00052064234808628
    [Google Scholar]
  139. JiaX. LiuH. RenX. LiP. SongR. LiX. GuoY. LiX. Nucleolar protein NOC4L inhibits tumorigenesis and progression by attenuating SIRT1-mediated p53 deacetylation.Oncogene202241394474448410.1038/s41388‑022‑02447‑y36030331
    [Google Scholar]
  140. PatraS. PraharajP.P. SinghA. BhutiaS.K. Targeting SIRT1-regulated autophagic cell death as a novel therapeutic avenue for cancer prevention.Drug Discov. Today202328910369210.1016/j.drudis.2023.10369237379905
    [Google Scholar]
  141. TangH. WenJ. QinT. ChenY. HuangJ. YangQ. JiangP. WangL. ZhaoY. YangQ. New insights into Sirt1: Potential therapeutic targets for the treatment of cerebral ischemic stroke.Front. Cell. Neurosci.202317122876110.3389/fncel.2023.122876137622049
    [Google Scholar]
  142. AdolphR.S. Biochemical and structural characterization of the regulation of human Sirtuin 1 by small molecules and proteins.Bayreuth Doctoral thesis, University of Bayreuth, Faculty of Biology, Chemistry and Earth Sciences.2023192
    [Google Scholar]
  143. LuS. ZhouJ. YangC. ZhangX. ShiY. LiuJ. YanX. LiangJ. LiuX. LuoL. ZhouD. YinZ. γ-Glutamylcysteine ameliorates d -gal-induced senescence in PC12 cells and mice via activating AMPK and SIRT1.Food Funct.202213147560757110.1039/D2FO01246D35815429
    [Google Scholar]
  144. ZhuJ.G. XieP. SongC. LiuT.W. GongD.Q. Differential expression of glucose metabolism-related genes and AMP-activated protein kinases in crop tissue of male and female pigeons (Columba livia domestica) during the incubation and chick-rearing periods.J. Anim. Physiol. Anim. Nutr.2023107268069010.1111/jpn.1374135668622
    [Google Scholar]
  145. AdinewG.M. MessehaS. TakaE. MochonaB. ReddaK.K. SolimanK.F.A. Thymoquinone inhibition of chemokines in TNF-α-induced inflammatory and metastatic effects in triple-negative breast cancer cells.Int. J. Mol. Sci.20232412987810.3390/ijms2412987837373025
    [Google Scholar]
  146. AlhmiedF. AlammarA. AlsultanB. AlshehriM. PottooF.H. Molecular mechanisms of thymoquinone as anticancer agent.Comb. Chem. High Throughput Screen.202124101644165310.2174/18755402MTEwiOTgd033115388
    [Google Scholar]
  147. AlmajaliB. Al-JamalH.A.N. TaibW.R.W. IsmailI. JohanM.F. DoolaaneaA.A. IbrahimW.N. Thymoquinone, as a novel therapeutic candidate of cancers.Pharmaceuticals202114436910.3390/ph1404036933923474
    [Google Scholar]
  148. Al-RawashdeF.A. JohanM.F. TaibW.R.W. IsmailI. JohariS.A.T.T. AlmajaliB. Al-wajeehA.S. Nazari VishkaeiM. Al-JamalH.A.N. Thymoquinone inhibits growth of acute myeloid leukemia cells through reversal SHP-1 and SOCS-3 hypermethylation: In vitro and in silico evaluation.Pharmaceuticals20211412128710.3390/ph1412128734959687
    [Google Scholar]
  149. TangX. PengH. XuP. ZhangL. FuR. TuH. GuoX. HuangK. LuJ. ChenH. DongZ. DaiL. LuoJ. ChenQ. Synthetic mRNA-based gene therapy for glioblastoma: TRAIL-mRNA synergistically enhances PTEN-mRNA-based therapy.Mol. Ther. Oncolytics20222470771810.1016/j.omto.2022.01.01335317516
    [Google Scholar]
  150. FaraniM.R. SarlakM. GholamiA. AzaraianM. BinabajM.M. KakavandiS. TambuwalaM.M. TaheriazamA. HashemiM. GhasemiS. Epigenetic drugs as new emerging therapeutics: What is the scale’s orientation of application and challenges?Pathol. Res. Pract.202324815468810.1016/j.prp.2023.15468837494800
    [Google Scholar]
  151. ArafaE.S.A. ZhuQ. ShahZ.I. WaniG. BarakatB.M. RacomaI. El-MahdyM.A. WaniA.A. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells.Mutat. Res.20117061-2283510.1016/j.mrfmmm.2010.10.00721040738
    [Google Scholar]
  152. LiY. JiaL. RenD. LiuC. GongY. WangN. ZhangX. ZhaoY. Axl mediates tumor invasion and chemosensitivity through PI3K/Akt signaling pathway and is transcriptionally regulated by slug in breast carcinoma.IUBMB Life201466750751810.1002/iub.128524984960
    [Google Scholar]
  153. MajdalawiehA.F. FayyadM.W. NasrallahG.K. Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa .Crit. Rev. Food Sci. Nutr.201757183911392810.1080/10408398.2016.127797128140613
    [Google Scholar]
  154. SuH.C. WuS.C. YenL.C. ChiaoL.K. WangJ.K. ChiuY.L. HoC.L. HuangS.M. Gene expression profiling identifies the role of Zac1 in cervical cancer metastasis.Sci. Rep.20201011183710.1038/s41598‑020‑68835‑032678267
    [Google Scholar]
  155. BhatS. KabekkoduS.P. AdigaD. FernandesR. ShuklaV. BhandariP. PandeyD. SharanK. SatyamoorthyK. ZNF471 modulates EMT and functions as methylation regulated tumor suppressor with diagnostic and prognostic significance in cervical cancer.Cell Biol. Toxicol.202137573174910.1007/s10565‑021‑09582‑433566221
    [Google Scholar]
  156. BronnerC. FuhrmannG. ChédinF.L. MacalusoM. Dhe-PaganonS. UHRF1 links the histone code and DNA methylation to ensure faithful epigenetic memory inheritance.Genet. Epigenet.2009S399210.4137/GEG.S3992
    [Google Scholar]
  157. IbrahimA. AlhosinM. PapinC. OuararhniK. OmranZ. ZamzamiM.A. Al-MalkiA.L. ChoudhryH. MélyY. HamicheA. MousliM. BronnerC. Thymoquinone challenges UHRF1 to commit auto-ubiquitination: A key event for apoptosis induction in cancer cells.Oncotarget2018947285992861110.18632/oncotarget.2558329983883
    [Google Scholar]
  158. QadiS.A. HassanM.A. SheikhR.A. BaothmanO.A.S. ZamzamiM.A. ChoudhryH. Al-MalkiA.L. AlbukhariA. AlhosinM. Thymoquinone-induced reactivation of tumor suppressor genes in cancer cells involves epigenetic mechanisms.Epigenet. Insights201912p. 251686571983901110.1177/251686571983901131058255
    [Google Scholar]
  159. EustaceA.J. LeeM.J. ColleyG. RobanJ. DowningT. BuchananP.J. Aberrant calcium signalling downstream of mutations in TP53 and the PI3K/AKT pathway genes promotes disease progression and therapy resistance in triple negative breast cancer.Cancer Drug Resist.20225356057610.20517/cdr.2022.4136176752
    [Google Scholar]
  160. BabarQ. SaeedA. TabishT.A. PriclS. TownleyH. ThoratN. Novel epigenetic therapeutic strategies and targets in cancer.Biochim. Biophys. Acta - Mol. Basis Dis2022166552
    [Google Scholar]
  161. ParkJ.W. HanJ.W. Targeting epigenetics for cancer therapy.Arch. Pharm. Res.201942215917010.1007/s12272‑019‑01126‑z30806885
    [Google Scholar]
  162. AtteiaH.H. ArafaM.H. MohammadN.S. AminD.M. SakrA.T. Thymoquinone upregulates miR-125a-5p, attenuates STAT3 activation, and potentiates doxorubicin antitumor activity in murine solid Ehrlich carcinoma.J. Biochem. Mol. Toxicol.20213512e2292410.1002/jbt.2292434605108
    [Google Scholar]
  163. LealB. CarvalhoC. ChavesJ. Eur. J. Neurol.Wiley-Blackwell 111 River StHoboken 07030-5774, NJ USA20152276
    [Google Scholar]
  164. RellesD. ChipitsynaG.I. GongQ. YeoC.J. ArafatH.A. Thymoquinone promotes pancreatic cancer cell death and reduction of tumor size through combined inhibition of histone deacetylation and induction of histone acetylation.Adv. Prev. Med.20162016140784010.1155/2016/1407840
    [Google Scholar]
  165. ZhaoZ. LiuL. LiS. HouX. YangJ. Advances in research on the relationship between thymoquinone and pancreatic cancer.Front. Oncol.202312109202010.3389/fonc.2022.109202036686732
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673288542240327112351
Loading
/content/journals/cmc/10.2174/0109298673288542240327112351
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; CNKI; Curcumin; DNA methylation; epigenetic; thymoquinone
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test