Skip to content
2000
Volume 32, Issue 11
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Diabetic coronary heart disease is a global medical problem that poses a serious threat to human health, and its pathogenesis is complex and interconnected. Nicotinamide adenine dinucleotide (NAD) is an important small molecule used in the body that serves as a coenzyme in redox reactions and as a substrate for non-redox processes. NAD levels are highly controlled by various pathways, and increasing evidence has shown that NAD pathways, including NAD precursors and key enzymes involved in NAD synthesis and catabolism, exert both positive and negative effects on the pathogenesis of diabetic coronary heart disease. Thus, the mechanisms by which the NAD pathway acts in diabetic coronary heart disease require further investigation. This review first briefly introduces the current understanding of the intertwined pathological mechanisms of diabetic coronary heart disease, including insulin resistance, dyslipidemia, oxidative stress, chronic inflammation, and intestinal flora dysbiosis. Then, we mainly review the relationships between NAD pathways, such as nicotinic acid, tryptophan, the kynurenine pathway, nicotinamide phosphoribosyltransferase, and sirtuins, and the pathogenic mechanisms of diabetic coronary heart disease. Moreover, we discuss the potential of targeting NAD pathways in the prevention and treatment of diabetic coronary heart disease, which may provide important strategies to modulate its progression.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673293982240221050207
2024-02-22
2025-06-11
Loading full text...

Full text loading...

References

  1. MaglianoD.J. BoykoE.J. IDF Diabetes Atlas10th ed.International Diabetes FederationBrussels2021
    [Google Scholar]
  2. ZhengY. LeyS.H. HuF.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications.Nat. Rev. Endocrinol.2018142889810.1038/nrendo.2017.15129219149
    [Google Scholar]
  3. EinarsonT.R. AcsA. LudwigC. PantonU.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017.Cardiovasc. Diabetol.20181718310.1186/s12933‑018‑0728‑629884191
    [Google Scholar]
  4. SarwarN. GaoP. SeshasaiS.R.K. GobinER. KaptogeS. AngelantonioD. IngelssonE LawlorD.A. SelvinE. StampferM. StehouwerC.D.A. LewingtonS. PennellsL. ThompsonA. SattarN. WhiteI.R. RayK.K. DaneshJ. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies.Lancet201037522152222
    [Google Scholar]
  5. WangY. YuQ. FanD. CaoF. Coronary heart disease in Type 2 diabetes: mechanisms and comprehensive prevention strategies.Expert Rev. Cardiovasc. Ther.20121081051106010.1586/erc.12.5223030294
    [Google Scholar]
  6. JanssonP.A. Endothelial dysfunction in insulin resistance and type 2 diabetes.J. Intern. Med.2007262217318310.1111/j.1365‑2796.2007.01830.x17645585
    [Google Scholar]
  7. KatsikiN. TentolourisN. MikhailidisD.P. Dyslipidaemia in type 2 diabetes mellitus.Curr. Opin. Cardiol.201732442242910.1097/HCO.000000000000040728362666
    [Google Scholar]
  8. TibautM. PetrovičD. Oxidative stress genes, antioxidants and coronary artery disease in type 2 diabetes mellitus.Cardiovasc. Hematol. Agents Med. Chem.2016141233810.2174/187152571466616040714341627052028
    [Google Scholar]
  9. SmaniT. Gallardo-CastilloI. Ávila-MédinaJ. Jimenez-NavarroM.F. OrdoñezA. HmadchaA. Impact of diabetes on cardiac and vascular disease: Role of calcium signaling.Curr. Med. Chem.201926224166417710.2174/092986732466617052314092528545369
    [Google Scholar]
  10. NavasL.E. CarneroA. NAD+ metabolism, stemness, the immune response, and cancer.Signal Transduct. Target. Ther.202161210.1038/s41392‑020‑00354‑w33384409
    [Google Scholar]
  11. Zapata-PérezR. WandersR.J.A. van KarnebeekC.D.M. HoutkooperR.H. NAD+ homeostasis in human health and disease.EMBO Mol. Med.2021137e1394310.15252/emmm.20211394334041853
    [Google Scholar]
  12. AbdellatifM. SedejS. KroemerG. NAD+ metabolism in cardiac health, aging, and disease.Circulation2021144221795181710.1161/CIRCULATIONAHA.121.05658934843394
    [Google Scholar]
  13. ImaiS. GuarenteL. NAD+ and sirtuins in aging and disease.Trends Cell Biol.201424846447110.1016/j.tcb.2014.04.00224786309
    [Google Scholar]
  14. BoganK.L. BrennerC. Nicotinic acid, nicotinamide, and nicotinamide riboside: A molecular evaluation of NAD+ precursor vitamins in human nutrition.Annu. Rev. Nutr.200828111513010.1146/annurev.nutr.28.061807.15544318429699
    [Google Scholar]
  15. DongY. ChenH. GaoJ. LiuY. LiJ. WangJ. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease.J. Mol. Cell. Cardiol.2019136274110.1016/j.yjmcc.2019.09.00131505198
    [Google Scholar]
  16. FreemanA.M. RamanS.V. AggarwalM. MaronD.J. BhattD.L. ParwaniP. OsborneJ. EarlsJ.P. MinJ.K. BaxJ.J. ShapiroM.D. Integrating coronary atherosclerosis burden and progression with coronary artery disease risk factors to guide therapeutic decision making.Am. J. Med.20231363260269.e710.1016/j.amjmed.2022.10.02136509122
    [Google Scholar]
  17. American diabetes association professional practice committee2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2022.Diabetes Care202245S1S17S3810.2337/dc22‑S00234964875
    [Google Scholar]
  18. GonnaH. RayK.K. The importance of dyslipidaemia in the pathogenesis of cardiovascular disease in people with diabetes.Diabetes Obes. Metab.201921S161610.1111/dom.1369131002453
    [Google Scholar]
  19. AronsonD. Hyperglycemia and the pathobiology of diabetic complications.Adv. Cardiol.20084511610.1159/00011511818230953
    [Google Scholar]
  20. RashidS. UffelmanK.D. LewisG.F. The mechanism of HDL lowering in hypertriglyceridemic, insulin-resistant states.J. Diabetes Complications2002161242810.1016/S1056‑8727(01)00191‑X11872362
    [Google Scholar]
  21. NichollsS.J. ZhengL. HazenS.L. Formation of dysfunctional high-density lipoprotein by myeloperoxidase.Trends Cardiovasc. Med.200515621221910.1016/j.tcm.2005.06.00416182131
    [Google Scholar]
  22. RizzoM. BerneisK. Low-density lipoprotein size and cardiovascular risk assessment.QJM200699111410.1093/qjmed/hci15416371404
    [Google Scholar]
  23. CarmenaR. Type 2 diabetes, dyslipidemia, and vascular risk: Rationale and evidence for correcting the lipid imbalance.Am. Heart J.2005150585987010.1016/j.ahj.2005.04.02716290951
    [Google Scholar]
  24. OtaniH. Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome.Antioxid. Redox Signal.20111571911192610.1089/ars.2010.373921126197
    [Google Scholar]
  25. AndreadiA. BelliaA. Di DanieleN. MeloniM. LauroR. Della-MorteD. LauroD. The molecular link between oxidative stress, insulin resistance, and type 2 diabetes: A target for new therapies against cardiovascular diseases.Curr. Opin. Pharmacol.202262859610.1016/j.coph.2021.11.01034959126
    [Google Scholar]
  26. VekicJ. Jelic-IvanovicZ. Spasojevic-KalimanovskaV. MemonL. ZeljkovicA. Bogavac-StanojevicN. SpasicS. High serum uric acid and low-grade inflammation are associated with smaller LDL and HDL particles.Atherosclerosis2009203123624210.1016/j.atherosclerosis.2008.05.04718603253
    [Google Scholar]
  27. KatakamiN. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus.J. Atheroscler. Thromb.2018251273910.5551/jat.RV1701428966336
    [Google Scholar]
  28. VandanmagsarB. YoumY.H. RavussinA. GalganiJ.E. StadlerK. MynattR.L. RavussinE. StephensJ.M. DixitV.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance.Nat. Med.201117217918810.1038/nm.227921217695
    [Google Scholar]
  29. StevenS. FrenisK. OelzeM. KalinovicS. KunticM. Bayo JimenezM.T. Vujacic-MirskiK. HelmstädterJ. Kröller-SchönS. MünzelT. DaiberA. Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease.Oxid. Med. Cell. Longev.2019201912610.1155/2019/709215131341533
    [Google Scholar]
  30. WangZ. KlipfellE. BennettB.J. KoethR. LevisonB.S. DuGarB. FeldsteinA.E. BrittE.B. FuX. ChungY.M. WuY. SchauerP. SmithJ.D. AllayeeH. TangW.H.W. DiDonatoJ.A. LusisA.J. HazenS.L. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.Nature20114727341576310.1038/nature0992221475195
    [Google Scholar]
  31. MaleszaI.J. MaleszaM. WalkowiakJ. MussinN. WalkowiakD. AringazinaR. Bartkowiak-WieczorekJ. MądryE. High-Fat, western-style diet, systemic inflammation, and gut microbiota: A narrative review.Cells20211011316410.3390/cells1011316434831387
    [Google Scholar]
  32. AmyotJ. SemacheM. FerdaoussiM. FontésG. PoitoutV. Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling.PLoS One201274e3620010.1371/journal.pone.003620022558381
    [Google Scholar]
  33. SaadM.J.A. SantosA. PradaP.O. Linking gut microbiota and inflammation to obesity and insulin resistance.Physiology201631428329310.1152/physiol.00041.201527252163
    [Google Scholar]
  34. Martin-GallausiauxC. MarinelliL. BlottièreH.M. LarraufieP. LapaqueN. SCFA: Mechanisms and functional importance in the gut.Proc. Nutr. Soc.2021801374910.1017/S002966512000691632238208
    [Google Scholar]
  35. CovarrubiasA.J. PerroneR. GrozioA. VerdinE. NAD+ metabolism and its roles in cellular processes during ageing.Nat. Rev. Mol. Cell Biol.202122211914110.1038/s41580‑020‑00313‑x33353981
    [Google Scholar]
  36. KhaidizarF.D. BesshoY. NakahataY. Nicotinamide phosphoribosyltransferase as a key molecule of the aging/senescence process.Int. J. Mol. Sci.2021227370910.3390/ijms2207370933918226
    [Google Scholar]
  37. Castro-PortuguezR. SutphinG.L. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan.Exp. Gerontol.202013211084110.1016/j.exger.2020.11084131954874
    [Google Scholar]
  38. LandayA.L. PaddyW.G.M. HIV and comorbidities - the importance of gut inflammation and the kynurenine pathway.Curr. Opin. HIV AIDS2023182102110
    [Google Scholar]
  39. YangS.J. ChoiJ.M. KimL. ParkS.E. RheeE.J. LeeW.Y. OhK.W. ParkS.W. ParkC.Y. Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes.J. Nutr. Biochem.2014251667210.1016/j.jnutbio.2013.09.00424314867
    [Google Scholar]
  40. AméJ.C. SpenlehauerC. de MurciaG. The PARP superfamily.BioEssays200426888289310.1002/bies.2008515273990
    [Google Scholar]
  41. SzántóM. GupteR. KrausW.L. PacherP. BaiP. PARPs in lipid metabolism and related diseases.Prog. Lipid Res.20218410111710.1016/j.plipres.2021.10111734450194
    [Google Scholar]
  42. BaiP. CantóC. OudartH. BrunyánszkiA. CenY. ThomasC. YamamotoH. HuberA. KissB. HoutkooperR.H. SchoonjansK. SchreiberV. SauveA.A. Menissier-de MurciaJ. AuwerxJ. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation.Cell Metab.201113446146810.1016/j.cmet.2011.03.00421459330
    [Google Scholar]
  43. YingW. GarnierP. SwansonR.A. NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes.Biochem. Biophys. Res. Commun.2003308480981310.1016/S0006‑291X(03)01483‑912927790
    [Google Scholar]
  44. FehrA.R. SinghS.A. KerrC.M. MukaiS. HigashiH. AikawaM. The impact of PARPs and ADP-ribosylation on inflammation and host–pathogen interactions.Genes Dev.2020345-634135910.1101/gad.334425.11932029454
    [Google Scholar]
  45. MalavasiF. DeaglioS. FerreroE. FunaroA. SanchoJ. AusielloC.M. OrtolanE. VaisittiT. ZubiaurM. FedeleG. AydinS. TibaldiE.V. DurelliI. LussoR. CoznoF. HorensteinA.L. CD38 and CD157 as receptors of the immune system: A bridge between innate and adaptive immunity.Mol. Med.20061211-1233434110.2119/2006‑00094.Malavasi17380201
    [Google Scholar]
  46. MalavasiF. DeaglioS. FunaroA. FerreroE. HorensteinA.L. OrtolanE. VaisittiT. AydinS. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology.Physiol. Rev.200888384188610.1152/physrev.00035.200718626062
    [Google Scholar]
  47. BarbosaM.T.P. SoaresS.M. NovakC.M. SinclairD. LevineJ.A. AksoyP. ChiniE.N. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity.FASEB J.200721133629363910.1096/fj.07‑8290com17585054
    [Google Scholar]
  48. NogueirasR. HabeggerK.M. ChaudharyN. FinanB. BanksA.S. DietrichM.O. HorvathT.L. SinclairD.A. PflugerP.T. TschöpM.H. Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism.Physiol. Rev.20129231479151410.1152/physrev.00022.201122811431
    [Google Scholar]
  49. DrydenS.C. NahhasF.A. NowakJ.E. GoustinA.S. TainskyM.A. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle.Mol. Cell. Biol.20032393173318510.1128/MCB.23.9.3173‑3185.200312697818
    [Google Scholar]
  50. VerdinE. HirscheyM.D. FinleyL.W.S. HaigisM.C. Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling.Trends Biochem. Sci.2010351266967510.1016/j.tibs.2010.07.00320863707
    [Google Scholar]
  51. D’OnofrioN. ServilloL. BalestrieriM.L. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection.Antioxid Redox Signal201828711732
    [Google Scholar]
  52. KashyapS.R. DefronzoR.A. The insulin resistance syndrome: Physiological considerations.Diab. Vasc. Dis. Res.200741131910.3132/dvdr.2007.00117469039
    [Google Scholar]
  53. RachdaouiN. Insulin: The friend and the foe in the development of type 2 diabetes mellitus.Int. J. Mol. Sci.2020215177010.3390/ijms2105177032150819
    [Google Scholar]
  54. KhalilovR. AbdullayevaSh. Mechanisms of insulin action and insulin resistance.ABES20238165179
    [Google Scholar]
  55. ReavenG. Insulin resistance and coronary heart disease in nondiabetic individuals.Arterioscler. Thromb. Vasc. Biol.20123281754175910.1161/ATVBAHA.111.24188522815340
    [Google Scholar]
  56. StoutR.W. Vallance-OwenJ. Insulin and atheroma.Lancet196929376051078108010.1016/S0140‑6736(69)91711‑54181737
    [Google Scholar]
  57. ReuschJ.E.B. Current concepts in insulin resistance, type 2 diabetes mellitus, and the metabolic syndrome.Am. J. Cardiol.2002905192610.1016/S0002‑9149(02)02555‑912231075
    [Google Scholar]
  58. YoshinoM. YoshinoJ. KayserB.D. PattiG.J. FranczykM.P. MillsK.F. SindelarM. PietkaT. PattersonB.W. ImaiS.I. KleinS. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women.Science202137265471224122910.1126/science.abe998533888596
    [Google Scholar]
  59. ZhouS. TangX. ChenH.Z. Sirtuins and insulin resistance.Front. Endocrinol.2018974810.3389/fendo.2018.0074830574122
    [Google Scholar]
  60. FröjdöS. DurandC. MolinL. CareyA.L. El-OstaA. KingwellB.A. FebbraioM.A. SolariF. VidalH. PirolaL. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1.Mol. Cell. Endocrinol.2011335216617610.1016/j.mce.2011.01.00821241768
    [Google Scholar]
  61. AlamF. SyedH. AmjadS. BaigM. KhanT.A. RehmanR. Interplay between oxidative stress, SIRT1, reproductive and metabolic functions.Curr. Res. Physiol.2021411912410.1016/j.crphys.2021.03.00234746831
    [Google Scholar]
  62. SzkudelskiT. SzkudelskaK. Resveratrol and diabetes: From animal to human studies.Biochim. Biophys. Acta Mol. Basis Dis.2015185261145115410.1016/j.bbadis.2014.10.01325445538
    [Google Scholar]
  63. TaskinenM.R. Diabetic dyslipidaemia: From basic research to clinical practice.Diabetologia200346673374910.1007/s00125‑003‑1111‑y12774165
    [Google Scholar]
  64. GinsbergH.N. New perspectives on atherogenesis: Role of abnormal triglyceride-rich lipoprotein metabolism.Circulation2002106162137214210.1161/01.CIR.0000035280.64322.3112379586
    [Google Scholar]
  65. DigbyJ.E. LeeJ.M.S. ChoudhuryR.P. Nicotinic acid and the prevention of coronary artery disease.Curr. Opin. Lipidol.200920432132610.1097/MOL.0b013e32832d3b9d19494772
    [Google Scholar]
  66. JuliusU. FischerS. Nicotinic acid as a lipid-modifying drug - A review.Atheroscler. Suppl.201314171310.1016/j.atherosclerosissup.2012.10.03623357134
    [Google Scholar]
  67. PoyntenA.M. Khee GanS. KriketosA.D. O’SullivanA. KellyJ.J. EllisB.A. ChisholmD.J. CampbellL.V. Nicotinic acid-induced insulin resistance is related to increased circulating fatty acids and fat oxidation but not muscle lipid content.Metabolism200352669970410.1016/S0026‑0495(03)00030‑112800094
    [Google Scholar]
  68. MurrC. GrammerT.B. KleberM.E. MeinitzerA. MärzW. FuchsD. Low serum tryptophan predicts higher mortality in cardiovascular disease.Eur. J. Clin. Invest.201545324725410.1111/eci.1240225586781
    [Google Scholar]
  69. ZhangL. OvchinnikovaO. JönssonA. LundbergA.M. BergM. HanssonG.K. KetelhuthD.F.J. The tryptophan metabolite 3-hydroxyanthranilic acid lowers plasma lipids and decreases atherosclerosis in hypercholesterolaemic mice.Eur. Heart J.201233162025203410.1093/eurheartj/ehs17522711758
    [Google Scholar]
  70. ChangM.Y. SmithC. DuHadawayJ.B. PyleJ.R. BouldenJ. SolerA.P. MullerA.J. Laury-KleintopL.D. PrendergastG.C. Cardiac and gastrointestinal liabilities caused by deficiency in the immune modulatory enzyme indoleamine 2,3-dioxygenase.Cancer Biol. Ther.201112121050105810.4161/cbt.12.12.1814222157149
    [Google Scholar]
  71. MatsudaH. SatoM. YakushijiM. KoshiguchiM. HiraiS. EgashiraY. Regulation of rat hepatic α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase, a key enzyme in the tryptophan-NAD pathway, by dietary cholesterol and sterol regulatory element-binding protein-2.Eur. J. Nutr.201453246947710.1007/s00394‑013‑0547‑125289390
    [Google Scholar]
  72. WinnikS. AuwerxJ. SinclairD.A. MatterC.M. Protective effects of sirtuins in cardiovascular diseases: From bench to bedside.Eur. Heart J.201536483404341210.1093/eurheartj/ehv29026112889
    [Google Scholar]
  73. HirscheyM.D. ShimazuT. GoetzmanE. JingE. SchwerB. LombardD.B. GrueterC.A. HarrisC. BiddingerS. IlkayevaO.R. StevensR.D. LiY. SahaA.K. RudermanN.B. BainJ.R. NewgardC.B. FareseR.V.Jr AltF.W. KahnC.R. VerdinE. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation.Nature2010464728512112510.1038/nature0877820203611
    [Google Scholar]
  74. TaoR. XiongX. DePinhoR.A. DengC.X. DongX.C. FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression.J. Biol. Chem.201328841292522925910.1074/jbc.M113.48147323974119
    [Google Scholar]
  75. Hertiš PetekT. PetekT. MočnikM. Marčun VardaN. Systemic inflammation, oxidative stress and cardiovascular health in children and adolescents: A systematic review.Antioxidants202211589410.3390/antiox1105089435624760
    [Google Scholar]
  76. Rask-MadsenC. KingG.L. Vascular complications of diabetes: Mechanisms of injury and protective factors.Cell Metab.2013171203310.1016/j.cmet.2012.11.01223312281
    [Google Scholar]
  77. IghodaroO.M. Molecular pathways associated with oxidative stress in diabetes mellitus.Biomed. Pharmacother.201810865666210.1016/j.biopha.2018.09.05830245465
    [Google Scholar]
  78. YangX. HeT. HanS. ZhangX. SunY. XingY. ShangH. The role of traditional chinese medicine in the regulation of oxidative stress in treating coronary heart disease.Oxid Med Cell Longev201920193231424
    [Google Scholar]
  79. ZhangW. HuangQ. ZengZ. WuJ. ZhangY. ChenZ. Sirt1 inhibits oxidative stress in vascular endothelial cells.Oxid. Med. Cell. Longev.201720171810.1155/2017/754397328546854
    [Google Scholar]
  80. MengT. QinW. LiuB. SIRT1 antagonizes oxidative stress in diabetic vascular complication.Front. Endocrinol.20201156886110.3389/fendo.2020.56886133304318
    [Google Scholar]
  81. SinghC.K. ChhabraG. NdiayeM.A. Garcia-PetersonL.M. MackN.J. AhmadN. The role of sirtuins in antioxidant and redox signaling.Antioxid Redox Signal201828643661
    [Google Scholar]
  82. Lontchi-YimagouE. SobngwiE. MatshaT.E. KengneA.P. Diabetes mellitus and inflammation.Curr. Diab. Rep.201313343544410.1007/s11892‑013‑0375‑y23494755
    [Google Scholar]
  83. LibbyP. Inflammation during the life cycle of the atherosclerotic plaque.Cardiovasc. Res.202111713cvab30310.1093/cvr/cvab30334550337
    [Google Scholar]
  84. HoffmanW.H. WhelanS.A. LeeN. Tryptophan, kynurenine pathway, and diabetic ketoacidosis in type 1 diabetes.PLoS One2021167e025411610.1371/journal.pone.025411634280211
    [Google Scholar]
  85. KetelhuthD.F.J. The immunometabolic role of indoleamine 2,3-dioxygenase in atherosclerotic cardiovascular disease: Immune homeostatic mechanisms in the artery wall.Cardiovasc. Res.201911591408141510.1093/cvr/cvz06730847484
    [Google Scholar]
  86. Sudar-MilovanovicE. GluvicZ. ObradovicM. ZaricB. IsenovicE.R. Tryptophan metabolism in atherosclerosis and diabetes.Curr. Med. Chem.20222919911310.2174/092986732866621071415364934269660
    [Google Scholar]
  87. KonjeV.C. RajendiranT.M. BellovichK. GadegbekuC.A. GipsonD.S. AfshinniaF. MathewA.V. Tryptophan levels associate with incident cardiovascular disease in chronic kidney disease.Clin. Kidney J.20211441097110510.1093/ckj/sfaa03134094518
    [Google Scholar]
  88. SamalB. SunY. StearnsG. XieC. SuggsS. McNieceI. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor.Mol. Cell. Biol.1994142143114378289818
    [Google Scholar]
  89. KimS.R. BaeY.H. BaeS.K. ChoiK.S. YoonK.H. KooT.H. JangH.O. YunI. KimK.W. KwonY.G. YooM.A. BaeM.K. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-κB activation in endothelial cells.Biochim. Biophys. Acta Mol. Cell Res.20081783588689510.1016/j.bbamcr.2008.01.00418241674
    [Google Scholar]
  90. BlankenbergS. RupprechtH.J. BickelC. PeetzD. HafnerG. TiretL. MeyerJ. Circulating cell adhesion molecules and death in patients with coronary artery disease.Circulation2001104121336134210.1161/hc3701.09594911560847
    [Google Scholar]
  91. KongY. LiG. ZhangW. HuaX. ZhouC. XuT. LiZ. WangP. MiaoC. Nicotinamide phosphoribosyltransferase aggravates inflammation and promotes atherosclerosis in ApoE knockout mice.Acta Pharmacol. Sin.20194091184119210.1038/s41401‑018‑0207‑330833708
    [Google Scholar]
  92. BaiX. HeT. LiuY. ZhangJ. LiX. ShiJ. WangK. HanF. ZhangW. ZhangY. CaiW. HuD. Acetylation-dependent regulation of notch signaling in macrophages by SIRT1 affects sepsis development.Front. Immunol.2018976210.3389/fimmu.2018.0076229867921
    [Google Scholar]
  93. YangY. LiuY. WangY. ChaoY. ZhangJ. JiaY. TieJ. HuD. Regulation of SIRT1 and its roles in inflammation.Front. Immunol.20221383116810.3389/fimmu.2022.83116835359990
    [Google Scholar]
  94. ChanS.H. HungC.H. ShihJ.Y. ChuP.M. ChengY.H. LinH.C. TsaiK.L. SIRT1 inhibition causes oxidative stress and inflammation in patients with coronary artery disease.Redox Biol.20171330130910.1016/j.redox.2017.05.02728601780
    [Google Scholar]
  95. LeeC.B. ChaeS.U. JoS.J. JerngU.M. BaeS.K. The relationship between the gut microbiome and metformin as a key for treating type 2 diabetes mellitus.Int. J. Mol. Sci.2021227356610.3390/ijms2207356633808194
    [Google Scholar]
  96. IatcuC.O. SteenA. CovasaM. Gut microbiota and complications of type-2 diabetes.Nutrients202114116610.3390/nu1401016635011044
    [Google Scholar]
  97. GaoJ. XuK. LiuH. LiuG. BaiM. PengC. LiT. YinY. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism.Front. Cell. Infect. Microbiol.201881310.3389/fcimb.2018.0001329468141
    [Google Scholar]
  98. LeusteanA.M. CiocoiuM. SavaA. CosteaC.F. FloriaM. TarniceriuC.C. TanaseD.M. Implications of the intestinal microbiota in diagnosing the progression of diabetes and the presence of cardiovascular complications.J. Diabetes Res.201820181910.1155/2018/520512630539026
    [Google Scholar]
  99. LiuN. SunS. WangP. SunY. HuQ. WangX. The mechanism of secretion and metabolism of gut-derived 5-hydroxytryptamine.Int. J. Mol. Sci.20212215793110.3390/ijms2215793134360695
    [Google Scholar]
  100. HodgeS. BuntingB.P. CarrE. StrainJ.J. Stewart- KnoxB.J. Obesity, whole blood serotonin and sex differences in healthy volunteers.Obes. Facts20125339940710.1159/00033998122797367
    [Google Scholar]
  101. ArnoldS.V. BhattD.L. BarsnessG.W. BeattyA.L. DeedwaniaP.C. InzucchiS.E. KosiborodM. LeiterL.A. LipskaK.J. NewmanJ.D. WeltyF.K. Clinical management of stable coronary artery disease in patients with type 2 diabetes mellitus: A scientific statement from the American heart association.Circulation202014119e779e80610.1161/CIR.000000000000076632279539
    [Google Scholar]
  102. HorodinschiR-N. StanescuA.M.A. BratuO.G. Pantea StoianA. RadavoiD.G. DiaconuC.C. Treatment with statins in elderly patients.Medicina20195511721
    [Google Scholar]
  103. BaranA. Fırat BaranM. KeskinC. HatipoğluA. YavuzÖ. İrtegün KandemirS. AdicanM.T. KhalilovR. MammadovaA. AhmadianE. RosićG. SelakovicD. EftekhariA. Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from cicer arietinum L. green leaf extract.Front. Bioeng. Biotechnol.20221085513610.3389/fbioe.2022.85513635330628
    [Google Scholar]
  104. GunashovaG.Y. Synthesis of silver nanoparticles usıng a thermophilic bacterium strain isolated from the spring Yukhari Istisu of the Kalbajar region (Azerbaijan).Adv. Biol. Earth Sci.20227198204
    [Google Scholar]
  105. JagtapR.R. GarudA. WarudeB. PuranikS.S. Embelin isolated from Embelia ribes derived silver nanoparticles and its application in breast cancer nanomedicine.Mater. Today Proc.20237340341110.1016/j.matpr.2022.09.265
    [Google Scholar]
  106. AlkaladiA. AbdelazimA. AfifiM. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats.Int. J. Mol. Sci.20141522015202310.3390/ijms1502201524477262
    [Google Scholar]
  107. ChoudhuryH. PandeyM. LimY.Q. LowC.Y. LeeC.T. MarilynT.C.L. LohH.S. LimY.P. LeeC.F. BhattamishraS.K. KesharwaniP. GorainB. Silver nanoparticles: Advanced and promising technology in diabetic wound therapy.Mater. Sci. Eng. C.202011211092510.1016/j.msec.2020.11092532409075
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673293982240221050207
Loading
/content/journals/cmc/10.2174/0109298673293982240221050207
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test