Skip to content
2000
Volume 32, Issue 11
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Lipids are stored energy sources in animals, and disturbance of lipid metabolism is associated with metabolic disorders, including cardiovascular diseases, obesity, nonalcoholic fatty liver disease, and diabetes. Modifying dysregulated lipid metabolism homeostasis can lead to enhanced therapeutic benefits, such as the use of statin therapy in cardiovascular disease. However, many natural compounds may have therapeutic utility to improve lipid metabolism. Resveratrol is a polyphenol extracted from dietary botanicals, including grapes and berries, which has been reported to affect many biological processes, including lipid metabolism. This review evaluates the effects of resveratrol on lipid metabolism dysregulation affecting atherosclerosis, diabetes, and nonalcoholic fatty liver disease (NAFLD). In addition, it details the mechanisms by which resveratrol may improve lipid metabolism homeostasis.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673255218231005062112
2023-10-11
2025-06-27
Loading full text...

Full text loading...

References

  1. ParhoferK.G. The treatment of disorders of lipid metabolism.Dtsch. Arztebl. Int.20161131526126810.3238/arztebl.2016.026127151464
    [Google Scholar]
  2. OphardtC. Overview of lipid function.2003Available from:http://chemistry elmhurst edu/vchembook/620fattyacid html
  3. DelitalaA.P. FanciulliG. MaioliM. DelitalaG. Subclinical hypothyroidism, lipid metabolism and cardiovascular disease.Eur. J. Intern. Med.201738172410.1016/j.ejim.2016.12.01528040402
    [Google Scholar]
  4. ScorlettiE. ByrneC.D. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease.Annu. Rev. Nutr.201333123124810.1146/annurev‑nutr‑071812‑16123023862644
    [Google Scholar]
  5. MonguchiT. IshidaT. NakajimaH. HasokawaM. KondoK. YasudaT. Trans fatty acids induce systemic inflammation and atherosclerosis through toll-like receptor- mediated pathway in ldl receptor knockout mice.Am. Heart Assoc.20131282214652
    [Google Scholar]
  6. EngeliS. StinkensR. HeiseT. MayM. GoossensG.H. BlaakE.E. HavekesB. JaxT. AlbrechtD. PalP. TegtburU. HaufeS. LangenickelT.H. JordanJ. Effect of sacubitril/valsartan on exercise-induced lipid metabolism in patients with obesity and hypertension.Hypertension2018711707710.1161/HYPERTENSIONAHA.117.1022429180454
    [Google Scholar]
  7. HouC. ZhangW. LiJ. DuL. LvO. ZhaoS. LiJ. Beneficial effects of pomegranate on lipid metabolism in metabolic disorders.Mol. Nutr. Food Res.20196316180077310.1002/mnfr.20180077330677224
    [Google Scholar]
  8. Gómez-ZoritaS. Fernández-QuintelaA. MacarullaM.T. AguirreL. HijonaE. BujandaL. MilagroF. MartínezJ.A. PortilloM.P. Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress.Br. J. Nutr.2012107220221010.1017/S000711451100275321733326
    [Google Scholar]
  9. CaoK. XuJ. ZouX. LiY. ChenC. ZhengA. LiH. LiH. SzetoI.M.Y. ShiY. LongJ. LiuJ. FengZ. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice.Free Radic. Biol. Med.20146739640710.1016/j.freeradbiomed.2013.11.02924316371
    [Google Scholar]
  10. Al-GuboryK.H. BlachierF. FaureP. GarrelC. Pomegranate peel extract decreases small intestine lipid peroxidation by enhancing activities of major antioxidant enzymes.J. Sci. Food Agric.201696103462346810.1002/jsfa.752926564426
    [Google Scholar]
  11. LiS. XuY. GuoW. ChenF. ZhangC. TanH.Y. WangN. FengY. The impacts of herbal medicines and natural products on regulating the hepatic lipid metabolism.Front. Pharmacol.20201135110.3389/fphar.2020.0035132265720
    [Google Scholar]
  12. KoushkiM. Amiri-DashatanN. AhmadiN. AbbaszadehH.A. Rezaei-TaviraniM. Resveratrol: A miraculous natural compound for diseases treatment.Food Sci. Nutr.2018682473249010.1002/fsn3.85530510749
    [Google Scholar]
  13. GaliniakS. AebisherD. Bartusik-AebisherD. Health benefits of resveratrol administration.Acta Biochim. Pol.2019661132130816367
    [Google Scholar]
  14. MikulskiD. GórniakR. MolskiM. A theoretical study of the structure-radical scavenging activity of trans-resveratrol analogues and cis-resveratrol in gas phase and water environment.Eur. J. Med. Chem.20104531015102710.1016/j.ejmech.2009.11.04420004046
    [Google Scholar]
  15. BoocockD.J. PatelK.R. FaustG.E.S. NormolleD.P. MarczyloT.H. CrowellJ.A. BrennerD.E. BoothT.D. GescherA. StewardW.P. Quantitation of trans-resveratrol and detection of its metabolites in human plasma and urine by high performance liquid chromatography.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2007848218218710.1016/j.jchromb.2006.10.01717097357
    [Google Scholar]
  16. BrownV.A. PatelK.R. ViskadurakiM. CrowellJ.A. PerloffM. BoothT.D. VasilininG. SenA. SchinasA.M. PiccirilliG. BrownK. StewardW.P. GescherA.J. BrennerD.E. Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: Safety, pharmacokinetics, and effect on the insulin-like growth factor axis.Cancer Res.201070229003901110.1158/0008‑5472.CAN‑10‑236420935227
    [Google Scholar]
  17. YuC. ShinY.G. ChowA. LiY. KosmederJ.W. LeeY.S. HirschelmanW.H. PezzutoJ.M. MehtaR.G. van BreemenR.B. Human, rat, and mouse metabolism of resveratrol.Pharm. Res.200219121907191410.1023/A:102141412928012523673
    [Google Scholar]
  18. WenzelE. SomozaV. Metabolism and bioavailability oftrans-resveratrol.Mol. Nutr. Food Res.200549547248110.1002/mnfr.20050001015779070
    [Google Scholar]
  19. PatelK.R. ScottE. BrownV.A. GescherA.J. StewardW.P. BrownK. Clinical trials of resveratrol.Ann. N. Y. Acad. Sci.20111215116116910.1111/j.1749‑6632.2010.05853.x21261655
    [Google Scholar]
  20. ChengC.K. LuoJ.Y. LauC.W. ChenZ.Y. TianX.Y. HuangY. Pharmacological basis and new insights of resveratrol action in the cardiovascular system.Br. J. Pharmacol.202017761258127710.1111/bph.1480131347157
    [Google Scholar]
  21. BermanA.Y. MotechinR.A. WiesenfeldM.Y. HolzM.K. The therapeutic potential of resveratrol: A review of clinical trials.NPJ Precis. Oncol.2017113510.1038/s41698‑017‑0038‑628989978
    [Google Scholar]
  22. GorabiA.M. AslaniS. ImaniD. RaziB. SathyapalanT. SahebkarA. Effect of resveratrol on C-reactive protein: An updated meta-analysis of randomized controlled trials.Phytother. Res.202135126754676710.1002/ptr.726234472150
    [Google Scholar]
  23. KumarS. ChangY.C. LaiK.H. HwangT.L. Resveratrol, a molecule with anti-inflammatory and anti-cancer activities: Natural product to chemical synthesis.Curr. Med. Chem.202128193773378610.2174/1875533XMTEwrMDQh532957870
    [Google Scholar]
  24. OmraninavaM. RaziB. AslaniS. ImaniD. JamialahmadiT. SahebkarA. Effect of resveratrol on inflammatory cytokines: A meta-analysis of randomized controlled trials.Eur. J. Pharmacol.202190817438010.1016/j.ejphar.2021.17438034303665
    [Google Scholar]
  25. ZhangL.X. LiC.X. KakarM.U. KhanM.S. WuP.F. AmirR.M. DaiD.F. NaveedM. LiQ.Y. SaeedM. ShenJ.Q. RajputS.A. LiJ.H. Resveratrol (RV): A pharmacological review and call for further research.Biomed. Pharmacother.202114311216410.1016/j.biopha.2021.11216434649335
    [Google Scholar]
  26. XuN. WangL. FuS. JiangB. Resveratrol is cytotoxic and acts synergistically with NF-κB inhibition in osteosarcoma MG-63 cells.Arch. Med. Sci.202117116617610.5114/aoms.2020.10077733488869
    [Google Scholar]
  27. ShaitoA. PosadinoA.M. YounesN. HasanH. HalabiS. AlhababiD. Al-MohannadiA. Abdel-RahmanW.M. EidA.H. NasrallahG.K. PintusG. Potential adverse effects of resveratrol: A literature review.Int. J. Mol. Sci.2020216208410.3390/ijms2106208432197410
    [Google Scholar]
  28. SahebkarA. SerbanC. UrsoniuS. WongN.D. MuntnerP. GrahamI.M. MikhailidisD.P. RizzoM. RyszJ. SperlingL.S. LipG.Y.H. BanachM. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors - Results from a systematic review and meta-analysis of randomized controlled trials.Int. J. Cardiol.2015189475510.1016/j.ijcard.2015.04.00825885871
    [Google Scholar]
  29. SahebkarA. Effects of resveratrol supplementation on plasma lipids: A systematic review and meta-analysis of randomized controlled trials.Nutr. Rev.2013711282283510.1111/nure.1208124111838
    [Google Scholar]
  30. HerringtonW. LaceyB. SherlikerP. ArmitageJ. LewingtonS. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease.Circ. Res.2016118453554610.1161/CIRCRESAHA.115.30761126892956
    [Google Scholar]
  31. PrasadK. Resveratrol, wine, and atherosclerosis.Int. J. Angiol.201221171810.1007/s00547‑004‑1060‑423450206
    [Google Scholar]
  32. IchikiT. IzumiR. CataliottiA. LarsenA.M. SandbergS.M. BurnettJ.C.Jr Endothelial permeability in vitro and in vivo: Protective actions of ANP and omapatrilat in experimental atherosclerosis.Peptides201348212610.1016/j.peptides.2013.07.02023927843
    [Google Scholar]
  33. WeberC. NoelsH. Atherosclerosis: Current pathogenesis and therapeutic options.Nat. Med.201117111410142210.1038/nm.253822064431
    [Google Scholar]
  34. ZhouL. LongJ. SunY. ChenW. QiuR. YuanD. Resveratrol ameliorates atherosclerosis induced by high-fat diet and LPS in ApoE−/− mice and inhibits the activation of CD4+ T cells.Nutr. Metab.20201714110.1186/s12986‑020‑00461‑z32508962
    [Google Scholar]
  35. JawieńJ. NastałekP. KorbutR. Mouse models of experimental atherosclerosis.J. Physiol. Pharmacol.200455350351715381823
    [Google Scholar]
  36. DoG.M. KwonE.Y. KimH.J. JeonS.M. HaT.Y. ParkT. ChoiM.S. Long-term effects of resveratrol supplementation on suppression of atherogenic lesion formation and cholesterol synthesis in apo E-deficient mice.Biochem. Biophys. Res. Commun.20083741555910.1016/j.bbrc.2008.06.11318611391
    [Google Scholar]
  37. ChassotL.N. ScolaroB. RoschelG.G. CogliatiB. CavalcantiM.F. AbdallaD.S.P. CastroI.A. Comparison between red wine and isolated trans-resveratrol on the prevention and regression of atherosclerosis in LDLr (−/−) mice.J. Nutr. Biochem.201861485510.1016/j.jnutbio.2018.07.01430184518
    [Google Scholar]
  38. ShettyN.P. BhattP. NeelwarneB. NambiarS.S. Inhibition of LDL oxidation and oxidized LDL-induced foam cell formation in RAW 264.7 cells show anti-atherogenic properties of a foliar methanol extract of Scoparia dulcis.Pharmacogn. Mag.20141038Suppl. 224010.4103/0973‑1296.13324124991098
    [Google Scholar]
  39. PirilloA. NorataG.D. CatapanoA.L. LOX-1, OxLDL, and atherosclerosis.Mediators Inflamm.2013201311210.1155/2013/15278623935243
    [Google Scholar]
  40. ZhangH. ZhengF. ZhaoJ. GuoD. ChenX. Genistein inhibits ox-LDL-induced VCAM-1, ICAM-1 and MCP-1 expression of HUVECs through heme oxygenase-1.Arch. Med. Res.2013441132010.1016/j.arcmed.2012.12.00123291378
    [Google Scholar]
  41. ZhongY. LiuT. GuoZ. Curcumin inhibits ox-LDL-induced MCP-1 expression by suppressing the p38MAPK and NF-κB pathways in rat vascular smooth muscle cells.Inflamm. Res.2012611616710.1007/s00011‑011‑0389‑322005927
    [Google Scholar]
  42. BoyleJ. Macrophage activation in atherosclerosis: Pathogenesis and pharmacology of plaque rupture.Curr. Vasc. Pharmacol.200531636810.2174/157016105277386115638783
    [Google Scholar]
  43. GoG.W. ManiA. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis.Yale J. Biol. Med.2012851192822461740
    [Google Scholar]
  44. HerijgersN. Van EckM. GrootP.H.E. HoogerbruggeP.M. Van BerkelT.J.C. Low density lipoprotein receptor of macrophages facilitates atherosclerotic lesion formation in C57Bl/6 mice.Arterioscler. Thromb. Vasc. Biol.20002081961196710.1161/01.ATV.20.8.196110938018
    [Google Scholar]
  45. MitraS. GoyalT. MehtaJ.L. Oxidized LDL, LOX-1 and atherosclerosis.Cardiovasc. Drugs Ther.201125541942910.1007/s10557‑011‑6341‑521947818
    [Google Scholar]
  46. SukhorukovV.N. KhotinaV.A. ChegodaevY.S. IvanovaE. SobeninI.A. OrekhovA.N. Lipid metabolism in macrophages: Focus on atherosclerosis.Biomedicines20208826210.3390/biomedicines808026232752275
    [Google Scholar]
  47. LiuX. WuJ. TianR. SuS. DengS. MengX. Targeting foam cell formation and macrophage polarization in atherosclerosis: The Therapeutic potential of rhubarb.Biomed. Pharmacother.202012911043310.1016/j.biopha.2020.11043332768936
    [Google Scholar]
  48. FanE. ZhangL. JiangS. BaiY. Beneficial effects of resveratrol on atherosclerosis.J. Med. Food200811461061410.1089/jmf.2007.009119053850
    [Google Scholar]
  49. ChenC. ZouL.X. LinQ.Y. YanX. BiH.L. XieX. WangS. WangQ.S. ZhangY.L. LiH.H. Resveratrol as a new inhibitor of immunoproteasome prevents PTEN degradation and attenuates cardiac hypertrophy after pressure overload.Redox Biol.20192039040110.1016/j.redox.2018.10.02130412827
    [Google Scholar]
  50. AhmadiA. JamialahmadiT. SahebkarA. Polyphenols and atherosclerosis: A critical review of clinical effects on LDL oxidation.Pharmacol. Res.202218410641410.1016/j.phrs.2022.10641436028188
    [Google Scholar]
  51. ParsamaneshN. AsghariA. SardariS. TasbandiA. JamialahmadiT. XuS. SahebkarA. Resveratrol and endothelial function: A literature review.Pharmacol. Res.202117010572510.1016/j.phrs.2021.10572534119624
    [Google Scholar]
  52. RochaK.K.R. SouzaG.A. EbaidG.X. SeivaF.R.F. CataneoA.C. NovelliE.L.B. Resveratrol toxicity: Effects on risk factors for atherosclerosis and hepatic oxidative stress in standard and high-fat diets.Food Chem. Toxicol.20094761362136710.1016/j.fct.2009.03.01019298841
    [Google Scholar]
  53. ChenY-J. WangJ-S. ChowS-E. Resveratrol protects vascular endothelial cell from ox-LDL-induced reduction in antithrombogenic activity.Chin. J. Physiol.2007501222817593799
    [Google Scholar]
  54. PandeyK.B. RizviS.I. Protective effect of resveratrol on formation of membrane protein carbonyls and lipid peroxidation in erythrocytes subjected to oxidative stress.Appl. Physiol. Nutr. Metab.20093461093109710.1139/H09‑11520029519
    [Google Scholar]
  55. Tomé-CarneiroJ. GonzálvezM. LarrosaM. García-AlmagroF.J. Avilés-PlazaF. ParraS. Yáñez-GascónM.J. Ruiz-RosJ.A. García-ConesaM.T. Tomás-BarberánF.A. EspínJ.C. Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: A triple-blind, 6-month follow-up, placebo-controlled, randomized trial.Mol. Nutr. Food Res.201256581082110.1002/mnfr.20110067322648627
    [Google Scholar]
  56. VoloshynaI. HussainiS.M. ReissA.B. Resveratrol in cholesterol metabolism and atherosclerosis.J. Med. Food201215976377310.1089/jmf.2012.002522856383
    [Google Scholar]
  57. LiA.C. BinderC.J. GutierrezA. BrownK.K. PlotkinC.R. PattisonJ.W. ValledorA.F. DavisR.A. WillsonT.M. WitztumJ.L. PalinskiW. GlassC.K. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ.J. Clin. Invest.2004114111564157610.1172/JCI1873015578089
    [Google Scholar]
  58. ChawlaA. BoisvertW.A. LeeC.H. LaffitteB.A. BarakY. JosephS.B. LiaoD. NagyL. EdwardsP.A. CurtissL.K. EvansR.M. TontonozP. A PPAR γ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis.Mol. Cell20017116117110.1016/S1097‑2765(01)00164‑211172721
    [Google Scholar]
  59. ZhangY. LuoZ. MaL. XuQ. YangQ. SiL. Resveratrol prevents the impairment of advanced glycosylation end products (AGE) on macrophage lipid homeostasis by suppressing the receptor for AGE via peroxisome proliferator-activated receptor gamma activation.Int. J. Mol. Med.201025572973420372816
    [Google Scholar]
  60. TrasinoS KimYS WangTT Cancer preventive phytochemicals uniquely activate liver X receptor responsive genes through receptor dependent and independent mechanisms in prostate cancer cells.FASEB J.200923717.7710.1096/fasebj.23.1_supplement.717.7
    [Google Scholar]
  61. BerrouguiH. GrenierG. LouedS. DrouinG. KhalilA. A new insight into resveratrol as an atheroprotective compound: Inhibition of lipid peroxidation and enhancement of cholesterol efflux.Atherosclerosis2009207242042710.1016/j.atherosclerosis.2009.05.01719552907
    [Google Scholar]
  62. Reiss AllisonB DeLeonJ Carsons StevenE MounessaJ Littlefield MichaelJ VoloshynaI. A theroprotective effects of adalimumab and resveratrol in THP-1 human macrophages: Changes in expression of proteins involved in lipid efflux.J. Am. College Cardiol.201463S12A2049A
    [Google Scholar]
  63. SevovM. ElfinehL. CavelierL.B. Resveratrol regulates the expression of LXR-α in human macrophages.Biochem. Biophys. Res. Commun.200634831047105410.1016/j.bbrc.2006.07.15516901463
    [Google Scholar]
  64. TeimouriM. HosseiniH. The role of protein tyrosine phosphatase 1B (PTP1B) in the pathogenesis of type 2 diabetes mellitus and its complications.J. Physiol. Biochem.2022782116
    [Google Scholar]
  65. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  66. BahiruE. HsiaoR. PhillipsonD. WatsonK.E. Mechanisms and treatment of dyslipidemia in diabetes.Curr. Cardiol. Rep.20212342610.1007/s11886‑021‑01455‑w33655372
    [Google Scholar]
  67. Batista-JorgeG.C. Barcala-JorgeA.S. SilveiraM.F. LelisD.F. AndradeJ.M.O. de PaulaA.M.B. GuimarãesA.L.S. SantosS.H.S. Oral resveratrol supplementation improves Metabolic Syndrome features in obese patients submitted to a lifestyle-changing program.Life Sci.202025611796210.1016/j.lfs.2020.11796232534040
    [Google Scholar]
  68. Abbasi OshaghiE. GoodarziM.T. HigginsV. AdeliK. Role of resveratrol in the management of insulin resistance and related conditions: Mechanism of action.Crit. Rev. Clin. Lab. Sci.201754426729310.1080/10408363.2017.134327428704113
    [Google Scholar]
  69. El-BidawyM.H. Omar HussainA.B. Al-GhamdiS. AldossariK.K. HaidaraM.A. Al-AniB. Resveratrol ameliorates type 2 diabetes mellitus-induced alterations to the knee joint articular cartilage ultrastructure in rats.Ultrastruct. Pathol.20214529210110.1080/01913123.2021.188262933567949
    [Google Scholar]
  70. Simental-MendíaL.E. Guerrero-RomeroF. Effect of resveratrol supplementation on lipid profile in subjects with dyslipidemia: A randomized double-blind, placebo- controlled trial.Nutrition20195871010.1016/j.nut.2018.06.01530278430
    [Google Scholar]
  71. YangD.K. KangH.S. Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats.Biomol. Ther.201826213013810.4062/biomolther.2017.25429462848
    [Google Scholar]
  72. Mohamad ShahiM. HaidariF. ShiriM.R. Comparison of effect of resveratrol and vanadium on diabetes related dyslipidemia and hyperglycemia in streptozotocin induced diabetic rats.Adv. Pharm. Bull.201112818624312761
    [Google Scholar]
  73. Vilas-BoasE.A. AlmeidaD.C. RomaL.P. OrtisF. CarpinelliA.R. Lipotoxicity and β-cell failure in type 2 diabetes: Oxidative stress linked to NADPH oxidase and ER stress.Cells20211012332810.3390/cells1012332834943836
    [Google Scholar]
  74. StumvollM. GoldsteinB.J. van HaeftenT.W. Type 2 diabetes: Principles of pathogenesis and therapy.Lancet200536594671333134610.1016/S0140‑6736(05)61032‑X15823385
    [Google Scholar]
  75. AmélieI.SS. ClaudiaA.B. AlanJ.S. Changes in plasma free fatty acids associated with type-2 diabetes.Nutrients20191192022
    [Google Scholar]
  76. SzkudelskaK. OkuliczM. HertigI. SzkudelskiT. Resveratrol ameliorates inflammatory and oxidative stress in type 2 diabetic Goto-Kakizaki rats.Biomed. Pharmacother.202012511002610.1016/j.biopha.2020.11002632092822
    [Google Scholar]
  77. SzkudelskaK. DeniziakM. HertigI. WojciechowiczT. TyczewskaM. JaroszewskaM. SzkudelskiT. Effects of resveratrol in goto-kakizaki rat, a model of type 2 diabetes.Nutrients20191110248810.3390/nu1110248831623226
    [Google Scholar]
  78. SzkudelskaK. NogowskiL. SzkudelskiT. Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes.J. Steroid Biochem. Mol. Biol.20091131-2172410.1016/j.jsbmb.2008.11.00119041941
    [Google Scholar]
  79. SrikantaA.H. KumarA. SukhdeoS.V. PeddhaM.S. GovindaswamyV. The antioxidant effect of mulberry and jamun fruit wines by ameliorating oxidative stress in streptozotocin-induced diabetic Wistar rats.Food Funct.20167104422443110.1039/C6FO00372A27711821
    [Google Scholar]
  80. LeeY.E. KimJ.W. LeeE.M. AhnY.B. SongK.H. YoonK.H. KimH.W. ParkC.W. LiG. LiuZ. KoS.H. Chronic resveratrol treatment protects pancreatic islets against oxidative stress in db/db mice.PLoS One2012711e5041210.1371/journal.pone.005041223226280
    [Google Scholar]
  81. ZhangJ. ChenL. ZhengJ. ZengT. LiH. XiaoH. DengX. HuX. The protective effect of resveratrol on islet insulin secretion and morphology in mice on a high- fat diet.Diabetes Res. Clin. Pract.201297347448210.1016/j.diabres.2012.02.02922497970
    [Google Scholar]
  82. LiuC.W. HuangC.C. HsuC.F. LiT.H. TsaiY.L. LinM.W. TsaiH.C. HuangS.F. YangY.Y. HsiehY.C. LeeT.Y. TsaiC.Y. HuangY.H. HouM.C. LinH.C. SIRT1-dependent mechanisms and effects of resveratrol for amelioration of muscle wasting in NASH mice.BMJ Open Gastroenterol.202071e00038110.1136/bmjgast‑2020‑00038132371503
    [Google Scholar]
  83. ZhaoW. LiA. FengX. HouT. LiuK. LiuB. ZhangN. Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue.Cell. Signal.20162891401141110.1016/j.cellsig.2016.06.01827343375
    [Google Scholar]
  84. ChangC.C. LinK.Y. PengK.Y. DayY.J. HungL.M. Resveratrol exerts anti-obesity effects in high-fat diet obese mice and displays differential dosage effects on cytotoxicity, differentiation, and lipolysis in 3T3-L1 cells.Endocr. J.201663216917810.1507/endocrj.EJ15‑054526698690
    [Google Scholar]
  85. LiY. ZhongS. YanH. WangK. ChenL. ZhouM. LiY. Resveratrol reverts Streptozotocin-induced diabetic nephropathy.Front. Biosci.202025469970910.2741/482931585912
    [Google Scholar]
  86. MeexR.C.R. BlaakE.E. LoonL.J.C. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes.Obes. Rev.20192091205121710.1111/obr.1286231240819
    [Google Scholar]
  87. MorignyP. BoucherJ. ArnerP. LanginD. Lipid and glucose metabolism in white adipocytes: Pathways, dysfunction and therapeutics.Nat. Rev. Endocrinol.202117527629510.1038/s41574‑021‑00471‑833627836
    [Google Scholar]
  88. Milton-LaskibarI. Gómez-ZoritaS. AguirreL. Fernández-QuintelaA. GonzálezM. PortilloM. Resveratrol-induced effects on body fat differ depending on feeding conditions.Molecules20172212209110.3390/molecules2212209129186045
    [Google Scholar]
  89. Jimenez-GomezY. MattisonJ.A. PearsonK.J. Martin-MontalvoA. PalaciosH.H. SossongA.M. WardT.M. YountsC.M. LewisK. AllardJ.S. LongoD.L. BelmanJ.P. MalagonM.M. NavasP. SanghviM. MoaddelR. TilmontE.M. HerbertR.L. MorrellC.H. EganJ.M. BaurJ.A. FerrucciL. BoganJ.S. BernierM. de CaboR. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet.Cell Metab.201318453354510.1016/j.cmet.2013.09.00424093677
    [Google Scholar]
  90. KuC.R. ChoY.H. HongZ.Y. LeeH. LeeS.J. HongS. LeeE.J. The effects of high fat diet and resveratrol on mitochondrial activity of brown adipocytes.Endocrinol. Metab.201631232833510.3803/EnM.2016.31.2.32827077216
    [Google Scholar]
  91. AsadiS. RahimiZ. SaidijamM. ShababN. GoodarziM.T. Effects of resveratrol on FOXO1 and FOXO3a genes expression in adipose tissue, serum insulin, insulin resistance and serum SOD activity in type 2 diabetic rats.Int. J. Mol. Cell. Med.20187317618431565649
    [Google Scholar]
  92. ZhaoW. LiA. FengX. HouT. LiuK. LiuB. ZhangN. Data on biochemical indexes of HFD-fed mice treatment with metformin or resveratrol.Data Brief201681190119310.1016/j.dib.2016.07.04927547796
    [Google Scholar]
  93. BaileC.A. YangJ.Y. RayalamS. HartzellD.L. LaiC.Y. AndersenC. Della-FeraM.A. Effect of resveratrol on fat mobilization.Ann. N. Y. Acad. Sci.201112151404710.1111/j.1749‑6632.2010.05845.x21261640
    [Google Scholar]
  94. Fernández-QuintelaA. Milton-LaskibarI. GonzálezM. PortilloM.P. Antiobesity effects of resveratrol: Which tissues are involved?Ann. N. Y. Acad. Sci.20171403111813110.1111/nyas.1341328796895
    [Google Scholar]
  95. KraG. DaddamJ.R. GabayH. YosefiS. ZachutM. Antioxidant resveratrol increases lipolytic and reduces lipogenic gene expression under in vitro heat stress conditions in dedifferentiated adipocyte-derived progeny cells from dairy cows.Antioxidants202110690510.3390/antiox1006090534205039
    [Google Scholar]
  96. LasaA. SchweigerM. KotzbeckP. ChurrucaI. SimónE. ZechnerR. PortilloM.P. Resveratrol regulates lipolysis via adipose triglyceride lipase.J. Nutr. Biochem.201223437938410.1016/j.jnutbio.2010.12.01421543206
    [Google Scholar]
  97. CuiJ. BaiY. WuL. SunM. LinC. ZhangH. SuM. SongW. Effects of exercise and resveratrol on retinol binding protein 4, blood glucose and insulin sensitivity in aged obese rats.Wei Sheng Yen Chiu201746460260929903183
    [Google Scholar]
  98. CuiJ.Q. BaiY.P. SuM. SongW.W. LinC. WuL. ZhangH.Y. Effects of different intensities exercise combined with resveratrol on RBP4 in aged obese rats.Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih201733546146529926594
    [Google Scholar]
  99. RosenowA. NobenJ.P. JockenJ. KallendruschS. Fischer-PosovszkyP. MarimanE.C.M. RenesJ. Resveratrol-induced changes of the human adipocyte secretion profile.J. Proteome Res.20121194733474310.1021/pr300539b22905912
    [Google Scholar]
  100. SongY-J ZhongC-B WuW Resveratrol and diabetic cardiomyopathy: Focusing on the protective signaling mechanisms.Oxidative Med. Cell. Longevity20202020705184510.1155/2020/7051845
    [Google Scholar]
  101. SowtonA.P. GriffinJ.L. MurrayA.J. Metabolic profiling of the diabetic heart: Toward a richer picture.Front. Physiol.20191063910.3389/fphys.2019.0063931214041
    [Google Scholar]
  102. LiW. YaoM. WangR. ShiY. HouL. HouZ. LianK. ZhangN. WangY. LiW. WangW. JiangL. Profile of cardiac lipid metabolism in STZ-induced diabetic mice.Lipids Health Dis.201817123110.1186/s12944‑018‑0872‑830301464
    [Google Scholar]
  103. WangL. CaiY. JianL. CheungC.W. ZhangL. XiaZ. Impact of peroxisome proliferator-activated receptor-α on diabetic cardiomyopathy.Cardiovasc. Diabetol.2021201210.1186/s12933‑020‑01188‑033397369
    [Google Scholar]
  104. BayevaM. SawickiK.T. ArdehaliH. Taking diabetes to heart--deregulation of myocardial lipid metabolism in diabetic cardiomyopathy.J. Am. Heart Assoc.201326e00043310.1161/JAHA.113.00043324275630
    [Google Scholar]
  105. AhmadI. HodaM. Molecular mechanisms of action of resveratrol in modulation of diabetic and non-diabetic cardiomyopathy.Pharmacol. Res.202016110511210.1016/j.phrs.2020.10511232758636
    [Google Scholar]
  106. DolinskyV.W. JonesK.E. SidhuR.S. HaykowskyM. CzubrytM.P. GordonT. DyckJ.R.B. Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats.J. Physiol.2012590112783279910.1113/jphysiol.2012.23049022473781
    [Google Scholar]
  107. RimbaudS. RuizM. PiquereauJ. MateoP. FortinD. VekslerV. GarnierA. Ventura-ClapierR. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure.PLoS One2011610e2639110.1371/journal.pone.002639122028869
    [Google Scholar]
  108. AthyrosV.G. DoumasM. ImprialosK.P. StavropoulosK. GeorgianouE. KatsimardouA. KaragiannisA. Diabetes and lipid metabolism.Hormones2018171616710.1007/s42000‑018‑0014‑829858856
    [Google Scholar]
  109. Lieben LouisX. RajP. MeikleZ. YuL. SusserS.E. MacInnisS. DuhamelT.A. WigleJ.T. NetticadanT. Resveratrol prevents palmitic-acid-induced cardiomyocyte contractile impairment.Can. J. Physiol. Pharmacol.201997121132114010.1139/cjpp‑2019‑005131374178
    [Google Scholar]
  110. MantovaniA. ScorlettiE. MoscaA. AlisiA. ByrneC.D. TargherG. Complications, morbidity and mortality of nonalcoholic fatty liver disease.Metabolism202011115417010.1016/j.metabol.2020.15417032006558
    [Google Scholar]
  111. YounossiZ.M. KoenigA.B. AbdelatifD. FazelY. HenryL. WymerM. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.Hepatology2016641738410.1002/hep.2843126707365
    [Google Scholar]
  112. SmithB.W. AdamsL.A. Non-alcoholic fatty liver disease.Crit. Rev. Clin. Lab. Sci.20114839711310.3109/10408363.2011.59652121875310
    [Google Scholar]
  113. PowellE.E. WongV.W.S. RinellaM. Non-alcoholic fatty liver disease.Lancet2021397102902212222410.1016/S0140‑6736(20)32511‑333894145
    [Google Scholar]
  114. PaulS.B. DhamijaE. KediaS. Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: An increasing concern.Indian J. Med. Res.2019149191710.4103/ijmr.IJMR_1456_1731115369
    [Google Scholar]
  115. KneemanJ.M. MisdrajiJ. CoreyK.E. Secondary causes of nonalcoholic fatty liver disease.Therap. Adv. Gastroenterol.20125319920710.1177/1756283X1143085922570680
    [Google Scholar]
  116. IpsenD.H. LykkesfeldtJ. Tveden-NyborgP. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease.Cell. Mol. Life Sci.201875183313332710.1007/s00018‑018‑2860‑629936596
    [Google Scholar]
  117. PeiK GuiT KanD FengH JinY YangY An overview of lipid metabolism and nonalcoholic fatty liver disease.BioMed. Res. Int.20202020402024910.1155/2020/4020249
    [Google Scholar]
  118. HuangY. LangH. ChenK. ZhangY. GaoY. RanL. YiL. MiM. ZhangQ. Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPARα pathway.Appl. Physiol. Nutr. Metab.202045322723910.1139/apnm‑2019‑005731173696
    [Google Scholar]
  119. TheodotouM. FokianosK. MoniatisD. KadlenicR. ChrysikouA. AristotelousA. MouzouridouA. DiakidesJ. StavrouE. Effect of resveratrol on non-alcoholic fatty liver disease.Exp. Ther. Med.201918155956510.3892/etm.2019.760731316594
    [Google Scholar]
  120. HeebøllS. ThomsenK.L. PedersenS.B. VilstrupH. GeorgeJ. GrønbækH. Effects of resveratrol in experimental and clinical non-alcoholic fatty liver disease.World J. Hepatol.20146418819810.4254/wjh.v6.i4.18824799987
    [Google Scholar]
  121. ShangJ. ChenL. XiaoF. SunH. DingH. XiaoH. Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase.Acta Pharmacol. Sin.200829669870610.1111/j.1745‑7254.2008.00807.x18501116
    [Google Scholar]
  122. BaurJ.A. PearsonK.J. PriceN.L. JamiesonH.A. LerinC. KalraA. PrabhuV.V. AllardJ.S. Lopez-LluchG. LewisK. PistellP.J. PoosalaS. BeckerK.G. BossO. GwinnD. WangM. RamaswamyS. FishbeinK.W. SpencerR.G. LakattaE.G. Le CouteurD. ShawR.J. NavasP. PuigserverP. IngramD.K. de CaboR. SinclairD.A. Resveratrol improves health and survival of mice on a high-calorie diet.Nature2006444711733734210.1038/nature0535417086191
    [Google Scholar]
  123. AlberdiG. RodríguezV.M. MacarullaM.T. MirandaJ. ChurrucaI. PortilloM.P. Hepatic lipid metabolic pathways modified by resveratrol in rats fed an obesogenic diet.Nutrition201329356256710.1016/j.nut.2012.09.01123274094
    [Google Scholar]
  124. PriceN.L. GomesA.P. LingA.J.Y. DuarteF.V. Martin-MontalvoA. NorthB.J. AgarwalB. YeL. RamadoriG. TeodoroJ.S. HubbardB.P. VarelaA.T. DavisJ.G. VaraminiB. HafnerA. MoaddelR. RoloA.P. CoppariR. PalmeiraC.M. de CaboR. BaurJ.A. SinclairD.A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function.Cell Metab.201215567569010.1016/j.cmet.2012.04.00322560220
    [Google Scholar]
  125. ShabaniM. SadeghiA. HosseiniH. TeimouriM. Babaei KhorzoughiR. PasalarP. MeshkaniR. Resveratrol alleviates obesity-induced skeletal muscle inflammation via decreasing M1 macrophage polarization and increasing the regulatory T cell population.Sci. Rep.2020101379110.1038/s41598‑020‑60185‑132123188
    [Google Scholar]
  126. SimmonsG.Jr PruittW. PruittK. Diverse roles of SIRT1 in cancer biology and lipid metabolism.Int. J. Mol. Sci.201516195096510.3390/ijms1601095025569080
    [Google Scholar]
  127. LiX. SIRT1 and energy metabolism.Acta Biochim. Biophys. Sin.2013451516010.1093/abbs/gms10823257294
    [Google Scholar]
  128. DingR.B. BaoJ. DengC.X. Emerging roles of SIRT1 in fatty liver diseases.Int. J. Biol. Sci.201713785286710.7150/ijbs.1937028808418
    [Google Scholar]
  129. ColakY. OzturkO. SenatesE. TuncerI. YorulmazE. AdaliG. DoganayL. EncF.Y. SIRT1 as a potential therapeutic target for treatment of nonalcoholic fatty liver disease.Med. Sci. Monit.2011175HY5HY910.12659/MSM.88174921525818
    [Google Scholar]
  130. GaoM. LiuD. Resveratrol suppresses T0901317-induced hepatic fat accumulation in mice.AAPS J.201315374475210.1208/s12248‑013‑9473‑723591747
    [Google Scholar]
  131. ChenS. LiJ. ZhangZ. LiW. SunY. ZhangQ. FengX. ZhuW. Effects of resveratrol on the amelioration of insulin resistance in KKAy mice.Can. J. Physiol. Pharmacol.201290223724210.1139/y11‑12322309033
    [Google Scholar]
  132. HosseiniH. TeimouriM. ShabaniM. KoushkiM. Babaei KhorzoughiR. NamvarjahF. IzadiP. MeshkaniR. Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway.Int. J. Biochem. Cell Biol.202011910566710.1016/j.biocel.2019.10566731838177
    [Google Scholar]
  133. TeimouriM. HosseiniH. ShabaniM. KoushkiM. NoorbakhshF. MeshkaniR. Inhibiting miR-27a and miR-142-5p attenuate nonalcoholic fatty liver disease by regulating Nrf2 signaling pathway.IUBMB Life202072336137210.1002/iub.222131889412
    [Google Scholar]
  134. TimmersS. KoningsE. BiletL. HoutkooperR.H. van de WeijerT. GoossensG.H. HoeksJ. van der KriekenS. RyuD. KerstenS. Moonen-KornipsE. HesselinkM.K.C. KunzI. Schrauwen-HinderlingV.B. BlaakE.E. AuwerxJ. SchrauwenP. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans.Cell Metab.201114561262210.1016/j.cmet.2011.10.00222055504
    [Google Scholar]
  135. PoulsenM.M. VestergaardP.F. ClasenB.F. RadkoY. ChristensenL.P. Stødkilde-JørgensenH. MøllerN. JessenN. PedersenS.B. JørgensenJ.O.L. High-dose resveratrol supplementation in obese men: An investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition.Diabetes20136241186119510.2337/db12‑097523193181
    [Google Scholar]
  136. YoshinoJ. ConteC. FontanaL. MittendorferB. ImaiS. SchechtmanK.B. GuC. KunzI. FanelliF.R. PattersonB.W. KleinS. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance.Cell Metab.201216565866410.1016/j.cmet.2012.09.01523102619
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673255218231005062112
Loading
/content/journals/cmc/10.2174/0109298673255218231005062112
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cardiovascular diseases; dyslipidemia; Lipids; metabolism; phytomedicine; resveratrol
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test