Skip to content
2000
Volume 32, Issue 11
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

α-Glucosidase inhibitors (AGIs) showcase versatile biochemical activities with respect to antidiabetic, anticancerous, antiobese and antiviral effects. They have drawn a great deal of attention from the scientific community. While α-glucosidase inhibitors are mostly discovered from plants and microorganisms, the recent advance in natural α-glucosidase inhibitors over the past five years has been reviewed in this article, and 139 distinct α-glucosidase inhibitors from the plants and microorganisms were classified into ten groups based on their chemical structures, including flavonoids (), xanthones (), alkaloids (), benzopyrones / benzofuranones (), terpenes (), saponins (), phenols / alcohols (), esters (), chalcone () and other compounds (). In this review, we mainly focused on the novel chemical structures and the various biological activities of theses natural AGIs. Some of the selected natural compounds exhibit powerful α-glucosidase inhibitory activity and anti-tumor activity, may hold promise to become the candidate drugs for treating type II diabetes and cancer in future.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673272908231115101520
2023-11-27
2025-06-21
Loading full text...

Full text loading...

References

  1. BrownleeM. The pathobiology of diabetic complications: A unifying mechanism.Diabetes20055461615162510.2337/diabetes.54.6.161515919781
    [Google Scholar]
  2. AnilD.A. AydinB.O. DemirY. TurkmenogluB. Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1,2,3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase.J. Mol. Struct.2022125713261310.1016/j.molstruc.2022.132613
    [Google Scholar]
  3. TokalıF.S. DemirY. Demircioğluİ.H. TürkeşC. KalayE. ŞendilK. BeydemirŞ. Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolin‐4( 3 H )‐one derivatives as potential aldose reductase inhibitors.Drug Dev. Res.2021833ddr.2188710.1002/ddr.2188734585414
    [Google Scholar]
  4. DemirY. CeylanH. TürkeşC. BeydemirŞ. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes.J. Biomol. Struct. Dyn.20224022120081202110.1080/07391102.2021.196719534424822
    [Google Scholar]
  5. IDF Diabetes Atlas.2021https://diabetesatlas.org/atlas/tenth-edition
  6. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  7. SeverB. AltıntopM.D. DemirY. Akalın ÇiftçiG. BeydemirŞ. ÖzdemirA. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds.Bioorg. Chem.202010210411010.1016/j.bioorg.2020.10411032739480
    [Google Scholar]
  8. SeverB. AltıntopM.D. DemirY. PekdoğanM. Akalın ÇiftçiG. BeydemirŞ. ÖzdemirA. An extensive research on aldose reductase inhibitory effects of new 4H-1,2,4-triazole derivatives.J. Mol. Struct.2021122412944610.1016/j.molstruc.2020.129446
    [Google Scholar]
  9. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. ColagiuriS. GuariguataL. MotalaA.A. OgurtsovaK. ShawJ.E. BrightD. WilliamsR. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract.201915710784310.1016/j.diabres.2019.107843
    [Google Scholar]
  10. SeverB. AltıntopM.D. DemirY. YılmazN. Akalın ÇiftçiG. BeydemirŞ. ÖzdemirA. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines.Chem. Biol. Interact.202134510957610.1016/j.cbi.2021.10957634252406
    [Google Scholar]
  11. AkdağM. ÖzçelikA.B. DemirY. BeydemirŞ. Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety.J. Mol. Struct.2022125813267510.1016/j.molstruc.2022.132675
    [Google Scholar]
  12. TripathiB.K. SrivastavaA.K. Diabetes mellitus: Complications and therapeutics.Med. Sci. Monit.2006127RA130RA14716810145
    [Google Scholar]
  13. TürkeşC. ArslanM. DemirY. ÇoçajL. NixhaA.R. BeydemirŞ. N ‐substituted phthalazine sulfonamide derivatives as non‐classical aldose reductase inhibitors.J. Mol. Recognit.20223512e299110.1002/jmr.299136073557
    [Google Scholar]
  14. PalabıyıkE. SulumerA.N. UguzH. AvcıB. AskınS. AskınH. DemirY. Assessment of hypolipidemic and anti‐inflammatory properties of walnut ( Juglans regia ) seed coat extract and modulates some metabolic enzymes activity in triton WR‐1339‐induced hyperlipidemia in rat kidney, liver, and heart.J. Mol. Recognit.2023363e300410.1002/jmr.300436537558
    [Google Scholar]
  15. WojciechowskaJ. KrajewskiW. BolanowskiM. KręcickiT. ZatońskiT. Diabetes and cancer: A review of current knowledge.Exp. Clin. Endocrinol. Diabetes2016124526327510.1055/s‑0042‑10091027219686
    [Google Scholar]
  16. TokalıF.S. DemirY. TürkeşC. DinçerB. BeydemirŞ. Novel acetic acid derivatives containing quinazolin‐4(3 H )‐one ring: Synthesis, in vitro, and in silico evaluation of potent aldose reductase inhibitors.Drug Dev. Res.202384227529510.1002/ddr.2203136598092
    [Google Scholar]
  17. AltıntopM.D. DemirY. TürkeşC. ÖztürkR.B. CantürkZ. BeydemirŞ. ÖzdemirA. A new series of hydrazones as small‐molecule aldose reductase inhibitors.Arch. Pharm.20233564220057010.1002/ardp.20220057036603162
    [Google Scholar]
  18. ErtanoB.Y. DemirY. NuralY. ErdoğanO. Investigation of the effect of acylthiourea derivatives on diabetes‐associated enzymes.ChemistrySelect2022746e20220414910.1002/slct.202204149
    [Google Scholar]
  19. MichelsA.W. RedondoM.J. AtkinsonM.A. The pathogenesis, natural history, and treatment of type 1 diabetes: time (thankfully) does not stand still.Lancet Diabetes Endocrinol.2022102909210.1016/S2213‑8587(21)00344‑234951951
    [Google Scholar]
  20. Ramírez-AlarcónK. VictorianoM. MardonesL. VillagranM. Al-HarrasiA. Al-RawahiA. Cruz-MartinsN. Sharifi-RadJ. MartorellM. Phytochemicals as potential epidrugs in type 2 diabetes mellitus.Front. Endocrinol.20211265697810.3389/fendo.2021.65697834140928
    [Google Scholar]
  21. TürkeşC. DemirY. BeydemirŞ. In vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as AR and SDH inhibitors**.ChemistrySelect2022748e20220405010.1002/slct.202204050
    [Google Scholar]
  22. ÖzaslanM.S. SağlamtaşR. DemirY. GençY. Saraçoğluİ. Gülçinİ. Isolation of some phenolic compounds from plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity.Chem. Biodivers.2022198e20220028010.1002/cbdv.20220028035796520
    [Google Scholar]
  23. LiY. TengD. ShiX. QinG. QinY. QuanH. ShiB. SunH. BaJ. ChenB. DuJ. HeL. LaiX. LiY. ChiH. LiaoE. LiuC. LiuL. TangX. TongN. WangG. ZhangJ. WangY. XueY. YanL. YangJ. YangL. YaoY. YeZ. ZhangQ. ZhangL. ZhuJ. ZhuM. NingG. MuY. ZhaoJ. TengW. ShanZ. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: National cross sectional study.BMJ2020369m99710.1136/bmj.m99732345662
    [Google Scholar]
  24. DemirY. TaslimiP. KoçyiğitÜ.M. AkkuşM. ÖzaslanM.S. DuranH.E. BudakY. TüzünB. GürdereM.B. CeylanM. TaysiS. Gülçinİ. BeydemirŞ. Determination of the inhibition profiles of pyrazolyl–thiazole derivatives against aldose reductase and α‐glycosidase and molecular docking studies.Arch. Pharm.202035312200011810.1002/ardp.20200011832761859
    [Google Scholar]
  25. DemirY. DuranH.E. DurmazL. TaslimiP. BeydemirŞ. Gulçinİ. The influence of some nonsteroidal anti-inflammatory drugs on metabolic enzymes of aldose reductase, sorbitol dehydrogenase, and α-glycosidase: A perspective for metabolic disorders.Appl. Biochem. Biotechnol.2020190243744710.1007/s12010‑019‑03099‑731378842
    [Google Scholar]
  26. TousifM.I. TauseefS. NabeelahS. SharmeenJ. ZenginG. LegoabeL. ImranM. MahomoodallyM.F. Phenolics from endophytic fungi as natural α-glucosidase inhibitors: A comprehensive review.J. Mol. Struct.2023129113585210.1016/j.molstruc.2023.135852
    [Google Scholar]
  27. Leiria CampoV. Aragão‐LeonetiV. CarvalhoI. Glycosidases and diabetes: Metabolic changes, mode of action and therapeutic perspectives.Carbohydrate chemistry: Chemical and biological approaches. Pilar RauterA. LindhorstT. The Royal Society of Chemistry2013Vol. 3918120310.1039/9781849737173‑00181
    [Google Scholar]
  28. DerosaG. MaffioliP. Mini-Special Issue paper Management of diabetic patients with hypoglycemic agents α-Glucosidase inhibitors and their use in clinical practice.Arch. Med. Sci.20125589990610.5114/aoms.2012.3162123185202
    [Google Scholar]
  29. ChengA.Y.Y. FantusI.G. Oral antihyperglycemic therapy for type 2 diabetes mellitus.CMAJ2005172221322610.1503/cmaj.103141415655244
    [Google Scholar]
  30. ÇağlayanC. TaslimiP. DemirY. KüçüklerS. KandemirF.M. Gulçinİ. The effects of zingerone against vancomycin‐induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes.J. Biochem. Mol. Toxicol.20193310e2238110.1002/jbt.2238131454121
    [Google Scholar]
  31. DemirY. DurmazL. TaslimiP. Gulçinİ. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α‐amylase, aldose reductase, and α‐glycosidase.Biotechnol. Appl. Biochem.201966578178610.1002/bab.178131135076
    [Google Scholar]
  32. Borges de MeloE. da Silveira GomesA. CarvalhoI. α- and β-Glucosidase inhibitors: Chemical structure and biological activity.Tetrahedron20066244102771030210.1016/j.tet.2006.08.055
    [Google Scholar]
  33. TakadaK. UeharaT. NakaoY. MatsunagaS. van SoestR.W.M. FusetaniN. SchulzeinesA-C. Schulzeines A-C, new α-glucosidase inhibitors from the marine sponge Penares schulzei.J. Am. Chem. Soc.2004126118719310.1021/ja037368r14709083
    [Google Scholar]
  34. MushtaqA. AzamU. MehreenS. NaseerM.M. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges.Eur. J. Med. Chem.202324911511910.1016/j.ejmech.2023.11511936680985
    [Google Scholar]
  35. MehmoodR. MughalE.U. ElkaeedE.B. ObaidR.J. NazirY. Al-GhulikahH.A. NaeemN. Al-RooqiM.M. AhmedS.A. ShahS.W.A. SadiqA. Synthesis of novel 2,3-dihydro-1,5-benzothiazepines as α-glucosidase inhibitors: In vitro, in vivo, kinetic, SAR, molecular docking, and QSAR studies.ACS Omega2022734302153023210.1021/acsomega.2c0332836061741
    [Google Scholar]
  36. MaW. XiaoL. LiuH. HaoX. Hypoglycemic natural products with in vivo activities and their mechanisms: A review.Food Sci. Hum. Wellness20221151087110010.1016/j.fshw.2022.04.001
    [Google Scholar]
  37. KordikC.P. ReitzA.B. Pharmacological treatment of obesity: Therapeutic strategies.J. Med. Chem.199942218120110.1021/jm980521l9925722
    [Google Scholar]
  38. KaradeS.S. FrancoE.J. RojasA.C. HanrahanK.C. KolesnikovA. YuW. MacKerellA.D.Jr HillD.C. WeberD.J. BrownA.N. TrestonA.M. MariuzzaR.A. Structure-based design of potent iminosugar inhibitors of endoplasmic reticulum α-glucosidase i with anti-SARS-CoV-2 activity.J. Med. Chem.20236642744276010.1021/acs.jmedchem.2c0175036762932
    [Google Scholar]
  39. KaradeS.S. HillM.L. KiappesJ.L. ManneR. AakulaB. ZitzmannN. WarfieldK.L. TrestonA.M. MariuzzaR.A. N-substituted valiolamine derivatives as potent inhibitors of endoplasmic reticulum α-glucosidases I and II with antiviral activity.J. Med. Chem.20216424180101802410.1021/acs.jmedchem.1c0137734870992
    [Google Scholar]
  40. ZhangR. ZhangY. XinX. HuangG. ZhangN. ZengQ. TangL. AttariboT. LeeK.S. JinB.R. GuiZ. Dual-targeting antiproliferation hybrids derived from 1-deoxynojirimycin and kaempferol induce MCF-7 cell apoptosis through the mitochondria-mediated pathway.J. Nat. Prod.20218451534154310.1021/acs.jnatprod.1c0001433979163
    [Google Scholar]
  41. ButtersT.D. DwekR.A. PlattF.M. Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses.Glycobiology2005151043R52R10.1093/glycob/cwi07615901676
    [Google Scholar]
  42. YamamotoK. SakamotoY. MizowakiY. IwagakiY. KimuraT. NakagawaK. MiyazawaT. TsudukiT. Intake of mulberry 1-deoxynojirimycin prevents colorectal cancer in mice.J. Clin. Biochem. Nutr.2017611475210.3164/jcbn.16‑9428751809
    [Google Scholar]
  43. BayrakS. ÖztürkC. DemirY. AlımZ. KüfreviogluÖ.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity.Protein Pept. Lett.202027318719210.2174/092986652666619100214230131577197
    [Google Scholar]
  44. ÖztürkC. BayrakS. DemirY. AksoyM. AlımZ. ÖzdemirH. İrfan KüfreviogluÖ. Some indazoles as alternative inhibitors for potato polyphenol oxidase.Biotechnol. Appl. Biochem.20226952249225610.1002/bab.228334775655
    [Google Scholar]
  45. BhutaniP. JoshiG. RajaN. BachhavN. RajannaP.K. BhutaniH. PaulA.T. KumarR. U.S. FDA approved drugs from 2015–June 2020: A perspective.J. Med. Chem.20216452339238110.1021/acs.jmedchem.0c0178633617716
    [Google Scholar]
  46. NingZ. ZhaiL. HuangT. PengJ. HuD. XiaoH. WenB. LinC. ZhaoL. BianZ. Identification of α-glucosidase inhibitors from cyclocarya paliurus tea leaves using UF-UPLC-Q/TOF-MS/MS and molecular docking.Food Funct.20191041893190210.1039/C8FO01845F30865735
    [Google Scholar]
  47. XieL. FuQ. ShiS. LiJ. ZhouX. Rapid and comprehensive profiling of α-glucosidase inhibitors in Buddleja Flos by ultrafiltration HPLC–QTOF-MS/MS with diagnostic ions filtering strategy.Food Chem.202134412865110.1016/j.foodchem.2020.12865133243557
    [Google Scholar]
  48. van de LaarF.A. LucassenP.L. AkkermansR.P. van de LisdonkE.H. RuttenG.E. van WeelC. Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis.Diabetes Care200528115416310.2337/diacare.28.1.15415616251
    [Google Scholar]
  49. JeongG.S. BaeJ.S. Anti-inflammatory effects of triterpenoids; naturally occurring and synthetic agents.Mini Rev. Org. Chem.201411331632910.2174/1570193X1103140915111703
    [Google Scholar]
  50. KarnwalA. SachanR. BalaR. Al TawahaA.R. KhanumS. Antimicrobial drugs obtained from marine algae.Current Trends in the Identification and Development of Antimicrobial Agents202321324710.2174/9789815080056123020011
    [Google Scholar]
  51. AkhzariM. MohammadiS. JaliliS. BarazeshM. NoorizadehK. Nigella sativa, a jack of all trades plant in medicine: Pharmacological aspects in diseases treatment and prevention.Nat. Prod. J.2023136e05102220958810.2174/2210315513666221005093047
    [Google Scholar]
  52. YangJ. LvJ. ChengS. JingT. MengT. HuoD. MaX. WenR. Recent progresses in chalcone derivatives as potential anticancer agents.Anticancer. Agents Med. Chem.202323111265128310.2174/187152062366623022311253036825723
    [Google Scholar]
  53. Habib-MartinZ.A. HammadH.M. AfifiF.U. ZihlifM. Al-AmeerH.J. SalehM.M. AbazaI.F. NassarZ.D. In vitro and in vivo evaluation of the antiangiogenic activities of Trigonella foenum-graecum extracts.Asian Pac. J. Trop. Biomed.20177873273810.1016/j.apjtb.2017.07.013
    [Google Scholar]
  54. LyonsM.J. EhrhardtC. WalshJ.J. Orellanine: From fungal origin to a potential future cancer treatment.J. Nat. Prod.20238661620163110.1021/acs.jnatprod.2c0106837308446
    [Google Scholar]
  55. PandeyN. Antidiabetic role of swertia chirayita: Phytochemical and pharmacological perspective of a himalayan botanical.Bioactive Phytochemicals from Himalayas: A Phytotherapeutic Approach2023394710.2174/9789815123289123010007
    [Google Scholar]
  56. WangM. CantrellC.L. MathewsS.T. PaudelP. LeeJ. MentreddyS.R. Agronomy, chemical analysis, and antidiabetic activity of basil ( Ocimum Species).ACS Food Science & Technology2022281243125610.1021/acsfoodscitech.2c00100
    [Google Scholar]
  57. LiC.J. ChenP.N. LiH.J. MahmudT. WuD.L. XuJ. LanW.J. Potential antidiabetic fumiquinazoline alkaloids from the marine-derived fungus Scedosporium apiospermum F41-1.J. Nat. Prod.20208341082109110.1021/acs.jnatprod.9b0109632130008
    [Google Scholar]
  58. Yashwant KumarA. NandakumarK. HandralM. TalwarS. DhayabaranD. Hypoglycaemic and anti-diabetic activity of stem bark extracts Erythrina indica in normal and alloxan-induced diabetic rats.Saudi Pharm. J.2011191354210.1016/j.jsps.2010.10.00123960740
    [Google Scholar]
  59. ZenginG. A study on in vitro enzyme inhibitory properties of Asphodeline anatolica: New sources of natural inhibitors for public health problems.Ind. Crops Prod.201683394310.1016/j.indcrop.2015.12.033
    [Google Scholar]
  60. BuenoF.G. PanizzonG.P. MelloE.V.S.L. LechtenbergM. PetereitF. MelloJ.C.P. HenselA. Hydrolyzable tannins from hydroalcoholic extract from Poincianella pluviosa stem bark and its wound-healing properties: Phytochemical investigations and influence on in vitro cell physiology of human keratinocytes and dermal fibroblasts.Fitoterapia20149925226010.1016/j.fitote.2014.10.00725454458
    [Google Scholar]
  61. SousaA.D. MaiaA.I.V. RodriguesT.H.S. CanutoK.M. RibeiroP.R.V. de Cassia Alves PereiraR. VieiraR.F. de BritoE.S. Ultrasound-assisted and pressurized liquid extraction of phenolic compounds from Phyllanthus amarus and its composition evaluation by UPLC-QTOF.Ind. Crops Prod.2016799110310.1016/j.indcrop.2015.10.045
    [Google Scholar]
  62. ZhangL. TuZ. YuanT. WangH. XieX. FuZ. Antioxidants and α-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships.Food Chem.2016208616710.1016/j.foodchem.2016.03.07927132824
    [Google Scholar]
  63. ChangS.K. AlasalvarC. ShahidiF. Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits.J. Funct. Foods20162111313210.1016/j.jff.2015.11.034
    [Google Scholar]
  64. PratapC. NishanthK.S. ManjuS AbdulK.S. DileepK.B. In vitro α-glucosidase inhibition, antioxidant, anticancer, and antimycobacterial properties of ethyl acetate extract of aegle tamilnadensis abdul kader (Rutaceae) leaf.Appl. Biochem. Biotechnol.201517521247126110.1007/s12010‑014‑1335‑y
    [Google Scholar]
  65. Leroux-StewartJ. Rabasa-LhoretR. ChiassonJ-L. α-Glucosidase inhibitors.International Textbook of Diabetes Mellitus, Fourth EditionWiley201510.1002/9781118387658.ch45
    [Google Scholar]
  66. JoY.H. LeeS. YeonS.W. TurkA. LeeJ.H. HongS.M. HanY.K. LeeK.Y. HwangB.Y. KimS.Y. LeeM.K. Anti-diabetic potential of Masclura tricuspidata leaves: Prenylated isoflavonoids with α-glucosidase inhibitory and anti-glycation activity.Bioorg. Chem.202111410509810.1016/j.bioorg.2021.10509834153812
    [Google Scholar]
  67. FanJ. KuangY. DongZ. YiY. ZhouY. LiB. QiaoX. YeM. Prenylated phenolic compounds from the aerial parts of glycyrrhiza uralensis as PTP1B and α-Glucosidase inhibitors.J. Nat. Prod.202083481482410.1021/acs.jnatprod.9b0026232196343
    [Google Scholar]
  68. XiangH. XuP. WenW. QiuH. ChuC. ShaoQ. TongS. Screening, characterization of trace α-glucosidase inhibitors from the root of Pueraria lobata and evaluation of their hypoglycemic activity.Food Biosci.20235310264110.1016/j.fbio.2023.102641
    [Google Scholar]
  69. SeongS.H. RoyA. JungH.A. JungH.J. ChoiJ.S. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory activities of Pueraria lobata root and its constituents.J. Ethnopharmacol.201619470671610.1016/j.jep.2016.10.00727769948
    [Google Scholar]
  70. MuhariniR. DíazA. EbrahimW. MándiA. KurtánT. RehbergN. KalscheuerR. HartmannR. OrfaliR.S. LinW. LiuZ. ProkschP. Antibacterial and cytotoxic phenolic metabolites from the fruits of Amorpha fruticosa.J. Nat. Prod.201780116918010.1021/acs.jnatprod.6b0080928075580
    [Google Scholar]
  71. DoL.T.M. SichaemJ. New flavonoid derivatives from melodorum fruticosum and their α-glucosidase inhibitory and cytotoxic activities.Molecules20222713402310.3390/molecules2713402335807266
    [Google Scholar]
  72. MouffokS. HabaH. LavaudC. LongC. BenkhaledM. Chemical constituents of Centaurea omphalotricha Coss. & Durieu ex Batt. & Trab.Rec. Nat. Prod.201263292295
    [Google Scholar]
  73. LeT.K.D. DanovaA. AreeT. DuongT.H. KoketsuM. NinomiyaM. SawadaY. KamsriP. PungpoP. ChavasiriW. α-Glucosidase inhibitors from the stems of knema globularia.J. Nat. Prod.202285477678610.1021/acs.jnatprod.1c0076535262352
    [Google Scholar]
  74. SomtedsA. KanokmedhakulK. ChaiyosangB. YahuafaiJ. LaphookhieoS. PhukhatmuenP. PornpongrungruengP. KanokmedhakulS. Cytotoxic and α-glucosidase inhibitory metabolites from twigs and leaves of Phyllanthus mirabilis, a species endemic to limestone mountains.Phytochemistry202219411302810.1016/j.phytochem.2021.11302834847377
    [Google Scholar]
  75. FuG. LiW. HuangX. ZhangR. TianK. HouS. LiY. Antioxidant and alpha-glucosidase inhibitory activities of isoflavonoids from the rhizomes of Ficus tikoua Bur.Nat. Prod. Res.201832439940510.1080/14786419.2017.131239128423925
    [Google Scholar]
  76. DaiJ. ShenD. YoshidaW. ParrishS. WilliamsP. Isoflavonoids from Ficus benjamina and their inhibitory activity on BACE1.Planta Med.201278121357136210.1055/s‑0032‑131500122763739
    [Google Scholar]
  77. LiT. KongstadK.T. StaerkD. Identification of α-glucosidase inhibitors in Machilus litseifolia by combined use of high-resolution α-glucosidase inhibition profiling and HPLC-PDA-HRMS-SPE-NMR.J. Nat. Prod.201982224925810.1021/acs.jnatprod.8b0060930668111
    [Google Scholar]
  78. WangG.J. TsaiT.H. LinL.C. Prenylflavonol, acylated flavonol glycosides and related compounds from Epimedium sagittatum.Phytochemistry200768192455246410.1016/j.phytochem.2007.05.03517618659
    [Google Scholar]
  79. YangN.Y. TaoW.W. DuanJ.A. Antithrombotic flavonoids from the faeces of Trogopterus xanthipes.Nat. Prod. Res.201024191843184910.1080/14786419.2010.48205721104530
    [Google Scholar]
  80. HuangH.C. YangC.P. WangS.Y. ChangC.I. SungP.J. HuangG.J. ChienS.C. KuoY.H. Anti-inflammatory flavonol acylglycosides from the aerial part of Lindera akoensis Hayata.RSC Advances2017780508685087410.1039/C7RA09063C
    [Google Scholar]
  81. MalikA. ArdalaniH. AnamS. McNairL.M. KromphardtK.J.K. FrandsenR.J.N. FranzykH. StaerkD. KongstadK.T. Antidiabetic xanthones with α-glucosidase inhibitory activities from an endophytic Penicillium canescens.Fitoterapia202014210452210.1016/j.fitote.2020.10452232088281
    [Google Scholar]
  82. BelofskyG.N. GloerK.B. GloerJ.B. WicklowD.T. DowdP.F. New p-terphenyl and polyketide metabolites from the sclerotia of Penicillium raistrickii.J. Nat. Prod.19986191115111910.1021/np980188o9748377
    [Google Scholar]
  83. RaksatA. PhukhatmuenP. YangJ. ManeeratW. CharoensupR. AndersenR.J. WangY.A. PyneS.G. LaphookhieoS. Phloroglucinol Benzophenones and Xanthones from the Leaves of Garcinia cowa and Their Nitric Oxide Production and α-Glucosidase Inhibitory Activities.J. Nat. Prod.202083116416810.1021/acs.jnatprod.9b0084931860303
    [Google Scholar]
  84. TrisuwanK. RitthiwigromT. Benzophenone and xanthone derivatives from the inflorescences of Garcinia cowa.Arch. Pharm. Res.201235101733173810.1007/s12272‑012‑1004‑z23139123
    [Google Scholar]
  85. HouZ.W. ChenC.H. KeJ.P. ZhangY.Y. QiY. LiuS.Y. YangZ. NingJ.M. BaoG.H. α-Glucosidase inhibitory activities and the interaction mechanism of novel spiro-flavoalkaloids from yingde green tea.J. Agric. Food Chem.202270113614810.1021/acs.jafc.1c0610634964344
    [Google Scholar]
  86. RoyS. NandiR.K. GanaiS. MajumdarK.C. DasT.K. Binding interaction of phosphorus heterocycles with bovine serum albumin: A biochemical study.J. Pharm. Anal.201771192610.1016/j.jpha.2016.05.00929404014
    [Google Scholar]
  87. SuthiphasilpV. ManeeratW. RujanapunN. DuangyodT. CharoensupR. DeachathaiS. AndersenR.J. PatrickB.O. PyneS.G. LaphookhieoS. α-Glucosidase inhibitory and nitric oxide production inhibitory activities of alkaloids isolated from a twig extract of Polyalthia cinnamomea.Bioorg. Med. Chem.2020281011546210.1016/j.bmc.2020.11546232247751
    [Google Scholar]
  88. LuikingY.C. EngelenM.P.K.J. DeutzN.E.P. Regulation of nitric oxide production in health and disease.Curr. Opin. Clin. Nutr. Metab. Care20101319710410.1097/MCO.0b013e328332f99d19841582
    [Google Scholar]
  89. TihR.G. SondengamB.L. MartinM.T. BodoB. Structure of lophirones B and C, biflavonoids from the bark of Lophira lanceolata.Phytochemistry19892851557155910.1016/S0031‑9422(00)97794‑X
    [Google Scholar]
  90. MessangaB. TihR.G. SondengamB.L. MartinM.T. BodoB. Biflavonoids from Ochna calodendron.Phytochemistry199435379179410.1016/S0031‑9422(00)90607‑1
    [Google Scholar]
  91. LiangC. KjaerulffL. HansenP.R. KongstadK.T. StaerkD. Dual high-resolution α-glucosidase and PTP1B inhibition profiling combined with HPLC-PDA-HRMS-SPE-NMR analysis for the identification of potentially antidiabetic chromene meroterpenoids from Rhododendron capitatum.J. Nat. Prod.20218492454246710.1021/acs.jnatprod.1c0045434460246
    [Google Scholar]
  92. JohnsonT.O. ErmolieffJ. JirousekM.R. Protein tyrosine phosphatase 1B inhibitors for diabetes.Nat. Rev. Drug Discov.20021969670910.1038/nrd89512209150
    [Google Scholar]
  93. LiuB.R. ZhengH.R. JiangX.J. ZhangP.Z. WeiG.Z. Serratene triterpenoids from Lycopodium cernuum L. as α-glucosidase inhibitors: Identification, structure–activity relationship and molecular docking studies.Phytochemistry202219511305610.1016/j.phytochem.2021.11305634953266
    [Google Scholar]
  94. HongD.F. HuG.L. PengX.R. WangX.Y. WangY.B. Al-RomaimaA. LiZ.R. QiuM.H. Unusual ent-Kaurane Diterpenes from the coffea cultivar S288 coffee beans and molecular docking to α-glucosidase.J. Agric. Food Chem.202270261562510.1021/acs.jafc.1c0652435005957
    [Google Scholar]
  95. ZhangJ.S. XuD.F. WangY.Y. MaR.F. ZhangH. Clerodane furanoditerpenoids from the stems of Tinospora sinensis.Arch. Pharm. Res.202245532833910.1007/s12272‑022‑01383‑535478401
    [Google Scholar]
  96. KılıncH. MasulloM. LauroG. D’UrsoG. AlankusO. BifulcoG. PiacenteS. Scabiosa atropurpurea: A rich source of iridoids with α-glucosidase inhibitory activity evaluated by in vitro and in silico studies.Phytochemistry202320511347110.1016/j.phytochem.2022.11347136241054
    [Google Scholar]
  97. LiangC. NdiC. KjaerulffL. SempleS. BuirchellB. CorianiS. MøllerB.L. StaerkD. Characterization of serrulatane diterpenoids in eremophila phyllopoda subsp. phyllopoda by triple high-resolution α-glucosidase/PTP1B/Radical scavenging profiling, NMR spectroscopy, DFT-GIAO NMR, and electronic circular dichroism calculations.J. Nat. Prod.202386469470910.1021/acs.jnatprod.2c0069236880726
    [Google Scholar]
  98. FangD.S. ChengC.R. QiuM.H. PengX.R. Diverse meroterpenoids with α-glucosidase inhibitory activity from Ganoderma cochlear.Fitoterapia202316510542010.1016/j.fitote.2022.10542036586625
    [Google Scholar]
  99. GuoR. MengY.T. CaoX.J. WangC.L. QiaoX. ZhangQ. Triterpenoids from the fruits of Melia toosendan Sieb. et Zucc. with α-glucosidase inhibitory activities.Fitoterapia202316810555010.1016/j.fitote.2023.10555037244502
    [Google Scholar]
  100. WuS.B. BaoQ.Y. WangW.X. ZhaoY. XiaG. ZhaoZ. ZengH. HuJ.F. Cytotoxic triterpenoids and steroids from the bark of Melia azedarach.Planta Med.201177992292810.1055/s‑0030‑125067321243584
    [Google Scholar]
  101. VanP.C.P. Ngo VanH. QuangM.B. Duong ThanhN. Nguyen VanD. ThanhT.D. Tran MinhN. Thi ThuH.N. QuangT.N. Thao DoT. ThanhL.P. Do Thi ThuH. Le TuanA.H. Stigmastane-type steroid saponins from the leaves of Vernonia amygdalina and their α -glucosidase and xanthine oxidase inhibitory activities.Nat. Prod. Res.20231610.1080/14786419.2023.218858936924396
    [Google Scholar]
  102. ThiC.N. AnhB.N. HuuT.B. XuanY.N. HaiY.P. ThiH.Y.D. ThiT.H.T. ThiH.L. VanK.P. Five new oleanane triterpene saponins from Camellia petelotii and Their Alpha‐glucosidase Inhibitory Activity.Chem. Biodivers.2023204e20230009310.1002/cbdv.202300093
    [Google Scholar]
  103. ChoucryM.A. ShalabiA.A. El HalawanyA.M. El-SakhawyF.S. ZaiterA. MoritaH. ChaimbaultP. Abdel-SattarE. New pregnane glycosides isolated from Caralluma hexagona lavranos as inhibitors of α-glucosidase, pancreatic lipase, and advanced glycation end products formation.ACS Omega2021629188811888910.1021/acsomega.1c0205634337228
    [Google Scholar]
  104. ErionD.M. ShulmanG.I. Diacylglycerol-mediated insulin resistance.Nat. Med.201016440040210.1038/nm0410‑40020376053
    [Google Scholar]
  105. RuizH.H. RamasamyR. SchmidtA.M. Advanced glycation end products: Building on the concept of the “common soil” in metabolic disease.Endocrinology20201611bqz00610.1210/endocr/bqz00631638645
    [Google Scholar]
  106. FengJ. HeF. HuangY. ZhouM. LiuX. YeX. YangR. TianW. ChenH. Inhibitory effects of phenolic glycosides from Trollius chinensis Bunge on α-glucosidase: inhibition kinetics and mechanisms.Food Funct.20221352857286410.1039/D1FO03347F35179535
    [Google Scholar]
  107. ZhengX.K. LiuY.B. LiJ. FengW.S. [One new phenylethanoid glycoside from Corallodiscus flabellata].Yao Xue Xue Bao200439971671815606020
    [Google Scholar]
  108. ChenJ. ZhaoM. ZhangX.H. ZhaoC.J. ZhaoZ.Y. TangY.Y. ZhouH.J. ShaoJ.H. ZhaoC.C. LC–MS guided isolation of phenolic glycosides from Viburnum luzonicum Rolfe leaves and their α ‑amylase and α -glucosidase inhibitory activities.Nat. Prod. Res.20243814234956010.1080/14786419.2023.217319036722769
    [Google Scholar]
  109. ZhangX.H. ChenJ. TangY.Y. ZhaoZ.Y. ShaoJ.H. ZhaoC.C. A new phenolic glycoside with α-glucosidase inhibitory activity from Viburnum cylindricum leaves.Chem. Nat. Compd.202359227527710.1007/s10600‑023‑03975‑z
    [Google Scholar]
  110. HeX.F. ChenJ.J. LiT.Z. ZhangX.K. GuoY.Q. ZhangX.M. HuJ. GengC.A. Nineteen new flavanol–fatty alcohol hybrids with α-glucosidase and PTP1B dual inhibition: One unusual type of antidiabetic constituent from Amomum tsao-ko.J. Agric. Food Chem.20206841114341144810.1021/acs.jafc.0c0461532965110
    [Google Scholar]
  111. SchuppeA.W. ZhaoY. LiuY. NewhouseT.R. Total synthesis of (+)-Granatumine A and related bislactone limonoid alkaloids via a pyran to pyridine interconversion.J. Am. Chem. Soc.2019141239191919610.1021/jacs.9b0450831117671
    [Google Scholar]
  112. NiuS.L. TongZ.F. ZhangY. LiuT.L. TianC.L. ZhangD.X. LiuM.C. LiB. TianJ.L. Novel protein tyrosine phosphatase 1B inhibitor-geranylated flavonoid from mulberry leaves ameliorates insulin resistance.J. Agric. Food Chem.202068318223823110.1021/acs.jafc.0c0272032650643
    [Google Scholar]
  113. WuC. CuiX. SunL. LuJ. LiF. SongM. ZhangY. HaoX. TianC. SongM. LiuX. Aspulvinones suppress postprandial hyperglycemia as potent α-glucosidase inhibitors from Aspergillus terreus ASM-1.Front Chem.2021973607010.3389/fchem.2021.73607034485249
    [Google Scholar]
  114. NagiaM.M.S. El-MetwallyM.M. ShaabanM. El-ZalabaniS.M. HannaA.G. Four butyrolactones and diverse bioactive secondary metabolites from terrestrial Aspergillus flavipes MM2: Isolation and structure determination.Org. Med. Chem. Lett.201221910.1186/2191‑2858‑2‑922380482
    [Google Scholar]
  115. SunK. ZhuG. HaoJ. WangY. ZhuW. Chemical-epigenetic method to enhance the chemodiversity of the marine algicolous fungus, Aspergillus terreus OUCMDZ-2739.Tetrahedron2018741838710.1016/j.tet.2017.11.039
    [Google Scholar]
  116. MachadoF.P. KumlaD. PereiraJ.A. SousaE. DethoupT. Freitas-SilvaJ. CostaP.M. MistryS. SilvaA.M.S. KijjoaA. Prenylated phenylbutyrolactones from cultures of a marine sponge-associated fungus Aspergillus flavipes KUFA1152.Phytochemistry202118511270910.1016/j.phytochem.2021.11270933636575
    [Google Scholar]
  117. LeeS.K. RyuS.H. TurkA. YeonS.W. JoY.H. HanY.K. HwangB.Y. LeeK.Y. LeeM.K. Characterization of α-glucosidase inhibitory constituents of the fruiting body of lion’s mane mushroom (Hericium erinaceus).J. Ethnopharmacol.202026211319710.1016/j.jep.2020.11319732738392
    [Google Scholar]
  118. LiW. BangS.H. LeeC. MaJ.Y. ShimS.H. KimY.H. Sterols, aromatic compounds, and cerebrosides from the Hericium erinaceus fruiting body.Biochem. Syst. Ecol.20177025425910.1016/j.bse.2016.12.011
    [Google Scholar]
  119. MaB.J. YuH.Y. ShenJ.W. RuanY. ZhaoX. ZhouH. WuT.T. Cytotoxic aromatic compounds from Hericium erinaceum.J. Antibiot.2010631271371510.1038/ja.2010.11220924382
    [Google Scholar]
  120. LiuM. HuangX. LiuQ. LiX. ChenM. ZhuY. ChenX. Separation of α ‐glucosidase inhibitors from Potentilla kleiniana Wight et Arn using solvent and flow‐rate gradient high‐speed counter‐current chromatography target‐guided by ultrafiltration HPLC‐MS screening.Phytochem. Anal.201930666166810.1002/pca.283931059189
    [Google Scholar]
  121. DoT.H. DuongT.H. Nguyen Minh AnT. VoT.P.G. DoV.M. NguyenN.H. SichaemJ. Two new α ‐glucosidase inhibitory depsidones from the lichen Parmotrema cristiferum (Taylor) hale.Chem. Biodivers.2023203e20220121310.1002/cbdv.20220121336775801
    [Google Scholar]
  122. DuongT.H. AnT.N.M. LeT.K.D. TranT.M.D. NguyenH.T. NguyenT.H.A. NguyenN.H. SichaemJ. ParmoferoneA. Parmoferone A, a new depsidone from the lichen Parmotrema cristiferum.Nat. Prod. Res.20231610.1080/14786419.2023.219374636999530
    [Google Scholar]
  123. NguyenT.H.T. NguyenT.M.N. NguyenT.T. NguyenH.H. NguyenN.H. MaiD.T. HuynhB.L.C. TranC.L. DuongT.H. ParmosidoneK. Parmosidone K, a new meta -depsidone from the lichen Parmotrema tsavoense.Nat. Prod. Res.20223682037204210.1080/14786419.2020.184469733213224
    [Google Scholar]
  124. LeH.T.T. NguyenL.H. NguyenT.H. NguyenV.K. DanovaA. TruongT.N. ChavasiriW. GagonesA-F. Gagones A–F: Six prenylated chalcones from the heartwood of Mansonia gagei.Phytochemistry202320611351610.1016/j.phytochem.2022.11351636395879
    [Google Scholar]
  125. YanM. XianX. ZhouX. LiangC. Two new cyclopeptides from Stachys geobombycis C. Y. Wu.Nat. Prod. Res.20231810.1080/14786419.2023.220188337086473
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673272908231115101520
Loading
/content/journals/cmc/10.2174/0109298673272908231115101520
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test