Skip to content
2000
Volume 32, Issue 11
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Several investigations have revealed that nasopharyngeal carcinoma (NPC), earlier known as lymphoepithelioma, originates from the nasopharynx epithelium (NPE). The global NPC incidence and mortality distribution reports have reported very high rates (more than 20-30 men per 100,000 men and 10 women per 100,000). Genetic background susceptibilities, Epstein-Barr virus (EBV), and their complex interaction are expressed as the pathophysiology. Also, radiotherapy of locoregional lesions is the main treatment for NPC because of the extremely radiosensitive feature of the non-keratinizing variety. On the other hand, surgical intervention might be used for recurrent situations, while simultaneous radiation and chemotherapy for advanced stages are preferable. Since specific disease symptoms do not appear early, biomarkers should be identified to facilitate diagnosis. As overexpression of heat shock proteins (HSPs) has been observed in various cancers, they can be a promising candidate biomarker for many malignancies. The purpose of this study was to peruse different pathogenic roles of a panel of HSPs, including their diagnostic, preventive, and remedial role in NPC, which may provide the basis for future discoveries of novel HSP-based biomarkers of NPC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0929867331666230821110418
2023-08-21
2025-06-17
Loading full text...

Full text loading...

References

  1. WeiP. NiuM. PanS. ZhouY. ShuaiC. WangJ. PengS. LiG. Cancer stem-like cell: A novel target for nasopharyngeal carcinoma therapy.Stem Cell Res. Ther.2014524410.1186/scrt43325158069
    [Google Scholar]
  2. ShahA.B. NagalliS. Nasopharyngeal CarcinomaTreasure Island, FLStatPearls Publishing LLC2022
    [Google Scholar]
  3. YuH. YinX. MaoY. ChenM. TangQ. YanS. The global burden of nasopharyngeal carcinoma from 2009 to 2019: An observational study based on the Global Burden of Disease Study 2019.Eur. Arch. Otorhinolaryngol.202227931519153310.1007/s00405‑021‑06922‑234146150
    [Google Scholar]
  4. BakkalciD. JiaY. WinterJ.R. LewisJ.E.A. TaylorG.S. StaggH.R. Risk factors for Epstein Barr virus-associated cancers: A systematic review, critical appraisal, and mapping of the epidemiological evidence.J. Glob. Health202010101040510.7189/jogh.10.01040532257153
    [Google Scholar]
  5. ChenY.P. ChanA.T.C. LeQ.T. BlanchardP. SunY. MaJ. Nasopharyngeal carcinoma.Lancet201939410192648010.1016/S0140‑6736(19)30956‑031178151
    [Google Scholar]
  6. RenJ.T. LiM.Y. WangX.W. XueW.Q. RenZ.F. JiaW.H. Potential factors associated with clinical stage of nasopharyngeal carcinoma at diagnosis: A case-control study.Chin. J. Cancer20173617110.1186/s40880‑017‑0239‑y28870229
    [Google Scholar]
  7. ChenS. YangD. LiaoX. LuY. YuB. XuM. BinY. ZhouP. YangZ. LiuK. WangR. ZhaoT. KangM. Failure patterns of recurrence and metastasis after intensity-modulated radiotherapy in patients with nasopharyngeal carcinoma: Results of a multicentric clinical study.Front. Oncol.20221169319910.3389/fonc.2021.69319935223448
    [Google Scholar]
  8. WuL. LiC. PanL. Nasopharyngeal carcinoma: A review of current updates.Exp. Ther. Med.20181543687369210.3892/etm.2018.587829556258
    [Google Scholar]
  9. SzyllerJ. Bil-LulaI. Heat shock proteins in oxidative stress and ischemia/reperfusion injury and benefits from physical exercises: A review to the current knowledge.Oxid. Med. Cell. Longev.2021202111210.1155/2021/667845733603951
    [Google Scholar]
  10. EastonD.P. KanekoY. SubjeckJ.R. The Hsp110 and Grp170 stress proteins: Newly recognized relatives of the Hsp70s.Cell Stress Chaperones20005427629010.1379/1466‑1268(2000)005<0276:THAGSP>2.0.CO;211048651
    [Google Scholar]
  11. JavidH. HashemianP. YazdaniS. Sharbaf MashhadA. Karimi-ShahriM. The role of heat shock proteins in metastatic colorectal cancer: A review.J. Cell. Biochem.2022123111704173510.1002/jcb.3032636063530
    [Google Scholar]
  12. Peinado-RuizI.C. Burgos-MolinaA.M. Sendra-PorteroF. Ruiz-GómezM.J. Relationship between heat shock proteins and cellular resistance to drugs and ageing.Exp. Gerontol.202216711189610.1016/j.exger.2022.11189635870754
    [Google Scholar]
  13. WuJ. LiuT. RiosZ. MeiQ. LinX. CaoS. Heat shock proteins and cancer.Trends Pharmacol. Sci.201738322625610.1016/j.tips.2016.11.00928012700
    [Google Scholar]
  14. YunC.W. KimH.J. LimJ.H. LeeS.H. Heat shock proteins: Agents of cancer development and therapeutic targets in anti-cancer therapy.Cells2019916010.3390/cells901006031878360
    [Google Scholar]
  15. LianosG.D. AlexiouG.A. ManganoA. ManganoA. RauseiS. BoniL. DionigiG. RoukosD.H. The role of heat shock proteins in cancer.Cancer Lett.2015360211411810.1016/j.canlet.2015.02.02625721081
    [Google Scholar]
  16. CioccaD.R. CalderwoodS.K. Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications.Cell Stress Chaperones20051028610310.1379/CSC‑99r.116038406
    [Google Scholar]
  17. JiangW. PanX. YanH. WangG. Prognostic significance of the Hsp70 gene family in colorectal cancer.Med. Sci. Monit.202127e92835210.12659/MSM.92835233600380
    [Google Scholar]
  18. WangX. XieL. ZhuL. Clinicopathological significance of HSP70 expression in gastric cancer: A systematic review and meta-analysis.BMC Gastroenterol.202121143710.1186/s12876‑021‑01990‑434809574
    [Google Scholar]
  19. MishraM.K. GurshaneyS. AdagunodoY. GageE. QadriS. SharmaM. MalikS. ManneU. SinghU.P. SinghR. MishraM.K. Hsp70 and gama-Semino protein as possible prognostic marker of prostate cancer.Front. Biosci.201823111987200010.2741/468429772540
    [Google Scholar]
  20. QiaoX.J. GuY. DuH. XingZ.W. MaB.H. SunW.T. YuJ.F. LiuC.X. Co-expression of CD24 and Hsp70 as a prognostic biomarker for lung cancer.Neoplasma20216851023103210.4149/neo_2021_210118N8134427097
    [Google Scholar]
  21. LiX.F. HuaT. LiY. TianY.J. HuoY. KangS. The HSP70 gene predicts prognosis and response to chemotherapy in epithelial ovarian cancer.Ann. Transl. Med.20219980610.21037/atm‑21‑208734268419
    [Google Scholar]
  22. JinY. KimS.C. KimH.J. JuW. KimY.H. KimH.J. Use of autoantibodies against tumor-associated antigens as serum biomarkers for primary screening of cervical cancer.Oncotarget201786210542510543910.18632/oncotarget.2223129285261
    [Google Scholar]
  23. LingX. WanJ. PengB. ChenJ. Hsp70 promotes SUMO of HIF-1α and promotes lung cancer invasion and metastasis.J. Oncol.2021202111210.1155/2021/787308534868316
    [Google Scholar]
  24. KabakovA.E. GabaiV.L. HSP70s in breast cancer: Promoters of tumorigenesis and potential targets/tools for therapy.Cells20211012344610.3390/cells1012344634943954
    [Google Scholar]
  25. GaoS. PuN. YinH. LiJ. ChenQ. YangM. LouW. ChenY. ZhouG. LiC. LiG. YanZ. LiuL. YuJ. WangX. Radiofrequency ablation in combination with an mTOR inhibitor restrains pancreatic cancer growth induced by intrinsic HSP70.Ther. Adv. Med. Oncol.202012175883592095372810.1177/175883592095372832973929
    [Google Scholar]
  26. MustikaningtyasE. JuniatiS.H. RomdhoniA.C. Intracell heat shock protein 70 expression and nasopharyngeal carcinoma stage.Indian J. Otolaryngol. Head Neck Surg.201971S132132610.1007/s12070‑018‑1299‑231741980
    [Google Scholar]
  27. CaiM.B. WangX.P. ZhangJ.X. HanH.Q. LiuC.C. BeiJ.X. PengR.J. LiangY. FengQ.S. WangH.Y. ChenL.Z. FuS. KangT. ShaoJ.Y. ZengY.X. Expression of heat shock protein 70 in nasopharyngeal carcinomas: Different expression patterns correlate with distinct clinical prognosis.J. Transl. Med.20121019610.1186/1479‑5876‑10‑9622591702
    [Google Scholar]
  28. ChengY. SunJ. ChenH. AdamA. TangS. KemperN. HartungJ. BaoE. Expression and location of HSP60 and HSP10 in the heart tissue of heat-stressed rats.Exp. Ther. Med.20161242759276510.3892/etm.2016.365027698781
    [Google Scholar]
  29. WardelmannK. RathM. CastroJ.P. BlümelS. SchellM. HauffeR. SchumacherF. FloreT. RitterK. WernitzA. HosoiT. OzawaK. KleuserB. WeißJ. SchürmannA. KleinriddersA. Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism, and insulin sensitivity in the hypothalamus.Antioxidants202110571110.3390/antiox1005071133946318
    [Google Scholar]
  30. HöhfeldJ. HartlF.U. Role of the chaperonin cofactor Hsp10 in protein folding and sorting in yeast mitochondria.J. Cell Biol.1994126230531510.1083/jcb.126.2.3057913473
    [Google Scholar]
  31. FanW. FanS.S. FengJ. XiaoD. FanS. LuoJ. Elevated expression of HSP10 protein inhibits apoptosis and associates with poor prognosis of astrocytoma.PLoS One20171210e018556310.1371/journal.pone.018556329028811
    [Google Scholar]
  32. CappelloF. CzarneckaA.M. La RoccaG. Di StefanoA. ZummoG. MacarioA.J.L. Hsp60 and Hsp10 as antitumour molecular agents.Cancer Biol. Ther.20076448748910.4161/cbt.6.4.408717457039
    [Google Scholar]
  33. CorraoS. CampanellaC. AnzaloneR. FarinaF. ZummoG. Conway de MacarioE. MacarioA.J.L. CappelloF. La RoccaG. Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: Current knowledge and perspectives.Life Sci.2010865-614515210.1016/j.lfs.2009.11.00419913561
    [Google Scholar]
  34. FucarinoA. PitruzzellaA. Role of HSP60/HSP10 in lung cancer: Simple biomarkers or leading actors?J. Oncol.202020201810.1155/2020/470186832318107
    [Google Scholar]
  35. FengJ. ZhanY. ZhangY. ZhengH. WangW. FanS. Increased expression of heat shock protein (HSP) 10 and HSP70 correlates with poor prognosis of nasopharyngeal carcinoma.Cancer Manag. Res.2019118219822710.2147/CMAR.S21842731564980
    [Google Scholar]
  36. XuQ. TuJ. DouC. ZhangJ. YangL. LiuX. LeiK. LiuZ. WangY. LiL. BaoH. WangJ. TuK. HSP90 promotes cell glycolysis, proliferation and inhibits apoptosis by regulating PKM2 abundance via Thr-328 phosphorylation in hepatocellular carcinoma.Mol. Cancer201716117810.1186/s12943‑017‑0748‑y29262861
    [Google Scholar]
  37. LazaroI. OguizaA. RecioC. MallaviaB. Madrigal-MatuteJ. BlancoJ. EgidoJ. Martin-VenturaJ.L. Gomez-GuerreroC. Targeting HSP90 ameliorates nephropathy and atherosclerosis through suppression of NF-κB and STAT signaling pathways in diabetic mice.Diabetes201564103600361310.2337/db14‑192626116697
    [Google Scholar]
  38. LiuH. LuZ. ShiX. LiuL. ZhangP. GolemisE.A. TuZ. HSP90 inhibition downregulates DNA replication and repair genes via E2F1 repression.J. Biol. Chem.2021297210099610.1016/j.jbc.2021.10099634302809
    [Google Scholar]
  39. LiT. ChenX. DaiX.Y. WeiB. WengQ.J. ChenX. OuyangD.F. YanR. HuangZ.J. JiangH.L. ZhuH. LuJ.J. Novel Hsp90 inhibitor platycodin D disrupts Hsp90/Cdc37 complex and enhances the anticancer effect of mTOR inhibitor.Toxicol. Appl. Pharmacol.2017330657310.1016/j.taap.2017.07.00628711525
    [Google Scholar]
  40. LiuF. WangL. YiS. LiuQ. XuX. SuM. Clinical and biological significances of heat shock protein 90 (Hsp90) in human nasopharyngeal carcinoma cells and anti-cancer effects of Hsp90 inhibitor.Biomed. Pharmacother.201912010953310.1016/j.biopha.2019.10953331634779
    [Google Scholar]
  41. MiyataY. NakamotoH. NeckersL. The therapeutic target Hsp90 and cancer hallmarks.Curr. Pharm. Des.201319334736510.2174/13816121380414372522920906
    [Google Scholar]
  42. FengJ. XieG. ZhanY. LuJ. XuL. FanS. WangW. Elevated HSP90 associates with expression of HIF-1α and p-AKT and is predictive of poor prognosis in nasopharyngeal carcinoma.Histopathology201975220221210.1111/his.1386230882922
    [Google Scholar]
  43. XuM. ZhaoC. ZhuB. WangL. ZhouH. YanD. GuQ. XuJ. Discovering high potent Hsp90 inhibitors as antinasopharyngeal carcinoma agents through fragment assembling approach.J. Med. Chem.20216442010202310.1021/acs.jmedchem.0c0152133543615
    [Google Scholar]
  44. YeM. HuangW. WuW. LiuY. YeS. XuJ. FM807, a curcumin analogue, shows potent antitumor effects in nasopharyngeal carcinoma cells by heat shock protein 90 inhibition.Oncotarget201789153641537610.18632/oncotarget.1497028157708
    [Google Scholar]
  45. PengZ. LiuN. HuangD. DuanC. LiY. TangX. MeiW. ZhuF. TangF. N,N′-dinitrosopiperazine--mediated heat-shock protein 70-2 expression is involved in metastasis of nasopharyngeal carcinoma.PLoS One201385e6290810.1371/journal.pone.006290823667540
    [Google Scholar]
  46. RohdeM. DaugaardM. JensenM.H. HelinK. NylandstedJ. JäätteläM. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms.Genes Dev.200519557058210.1101/gad.30540515741319
    [Google Scholar]
  47. DaugaardM. JäätteläM. RohdeM. Hsp70-2 is required for tumor cell growth and survival.Cell Cycle20054787788010.4161/cc.4.7.183815970673
    [Google Scholar]
  48. JagadishN. AgarwalS. GuptaN. FatimaR. DeviS. KumarV. SuriV. KumarR. SuriV. SadasukhiT.C. GuptaA. AnsariA.S. LohiyaN.K. SuriA. Heat shock protein 70-2 (HSP70-2) overexpression in breast cancer.J. Exp. Clin. Cancer Res.201635115010.1186/s13046‑016‑0425‑927658496
    [Google Scholar]
  49. HuangW.J. XiaL.M. ZhuF. HuangB. ZhouC. ZhuH.F. WangB. ChenB. LeiP. ShenG.X. De-AnTian transcriptional upregulation of HSP70-2 by HIF-1 in cancer cells in response to hypoxia.Int. J. Cancer2009124229830510.1002/ijc.2390618844219
    [Google Scholar]
  50. TangF. TangF. TangG. ChenG. XiaoJ. Hsp70-2 is highly expressed in nasopharyngeal carcinoma and involved in nasopharyngeal carcinoma invasiveness.Clin. Oncol. Res.20201610.31487/j.COR.2020.03.02
    [Google Scholar]
  51. ShibataT. ArisawaT. TaharaT. YoshiokaD. MaruyamaN. FujitaH. KamiyaY. NakamuraM. NagasakaM. IwataM. TakahamaK. WatanabeM. HirataI. NakanoH. Protective role of genetic polymorphism of heat shock protein 70-2 for gastric cancer risk.Dig. Dis. Sci.2009541707410.1007/s10620‑008‑0313‑z18478330
    [Google Scholar]
  52. JalboutM. BouaouinaN. GargouriJ. CorbexM. Ben AhmedS. ChouchaneL. Polymorphism of the stress protein HSP70-2 gene is associated with the susceptibility to the nasopharyngeal carcinoma.Cancer Lett.20031931758110.1016/S0304‑3835(02)00697‑312691826
    [Google Scholar]
  53. AjalyakeenH. AlmoharebM. Al-AssafM. Overexpression of heat shock protein 27 (HSP-27) is associated with bad prognosis in oral squamous cell carcinoma.Dent. Med. Probl.202057322723110.17219/dmp/11985532926599
    [Google Scholar]
  54. ChoiS.K. KamH. KimK.Y. ParkS.I. LeeY.S. Targeting heat shock protein 27 in cancer: A druggable target for cancer treatment?Cancers2019118119510.3390/cancers1108119531426426
    [Google Scholar]
  55. OkunoM. YasudaI. AdachiS. NakashimaM. KawaguchiJ. DoiS. IwashitaT. HiroseY. KozawaO. YoshimiN. ShimizuM. MoriwakiH. The significance of phosphorylated heat shock protein 27 on the prognosis of pancreatic cancer.Oncotarget2016712142911429910.18632/oncotarget.742426895107
    [Google Scholar]
  56. KilicciogluI. KonacE. DikmenA.U. SozenS. BilenC.Y. Hsp-27 and NF-κB pathway is associated with AR/AR-V7 expression in prostate cancer cells.Gene201969713814310.1016/j.gene.2019.02.05530807779
    [Google Scholar]
  57. AğınA. KiratliH. GuresciS. BabaogluB. KarakayaJ. SoylemezogluF. Evaluation of HSP-27, BAP1, BRAF V600E, CCR7, and PD-L1 expression in uveal melanoma on enucleated eyes and metastatic liver tumors.Int. J. Biol. Markers202237220020910.1177/0393615522108888635341390
    [Google Scholar]
  58. HeH. LinK. ZouC. PanJ. FuW. ZhouY. LinH. ChenC. SuY. Knockdown of annexin A2 enhances radiosensitivity by increasing G2/M-phase arrest, apoptosis and activating the p38 MAPK-HSP27 pathway in nasopharyngeal carcinoma.Front. Oncol.20221276954410.3389/fonc.2022.76954435371986
    [Google Scholar]
  59. SungF.L. PangR.T.K. MaB.B.Y. LeeM.M.L. ChowS.M. PoonT.C.W. ChanA.T.C. Pharmacoproteomics study of cetuximab in nasopharyngeal carcinoma.J. Proteome Res.20065123260326710.1021/pr050452g17137327
    [Google Scholar]
  60. ZhangB. QuJ.Q. XiaoL. YiH. ZhangP.F. LiM.Y. HuR. WanX.X. HeQ.Y. LiJ.H. YeX. XiaoZ.Q. FengX.P. Identification of heat shock protein 27 as a radioresistance-related protein in nasopharyngeal carcinoma cells.J. Cancer Res. Clin. Oncol.2012138122117212510.1007/s00432‑012‑1293‑022847231
    [Google Scholar]
  61. XuL. LinX. ZhengY. ZhouH. Silencing of heat shock protein 27 increases the radiosensitivity of non-small cell lung carcinoma cells.Mol. Med. Rep.201920161362110.3892/mmr.2019.1026331115576
    [Google Scholar]
  62. LisiL. ChengfengX. YanlingT. Detection and its implication of heat stress protein 27 and P21 in nasopharyngeal carcinoma.J. Tongji Med. Univ.2000204336337, 34210.1007/BF0288819712840929
    [Google Scholar]
  63. PantzartziC.N. KourtidisA. DrosopoulouE. YiangouM. ScourasZ.G. Isolation and characterization of two cytoplasmic hsp90s from Mytilus galloprovincialis (Mollusca: Bivalvia) that contain a complex promoter with a p53 binding site.Gene20094311-2475410.1016/j.gene.2008.10.02819061940
    [Google Scholar]
  64. ZuoD.S. DaiJ. BoA.H. FanJ. XiaoX.Y. Significance of expression of heat shock protein90α in human gastric cancer.World J. Gastroenterol.20039112616261810.3748/wjg.v9.i11.261614606110
    [Google Scholar]
  65. WangX. SongX. ZhuoW. FuY. ShiH. LiangY. TongM. ChangG. LuoY. The regulatory mechanism of Hsp90α secretion and its function in tumor malignancy.Proc. Natl. Acad. Sci.200910650212882129310.1073/pnas.090815110619965370
    [Google Scholar]
  66. ZhongB. ShenJ. ZhangC. ZhouG. YuY. QinE. TangJ. WuD. LiangX. Plasma heat shock protein 90 alpha: A valuable predictor of early chemotherapy effectiveness in advanced non-small-cell lung cancer.Med. Sci. Monit.202127e92477810.12659/MSM.92477833419959
    [Google Scholar]
  67. MaoM. WangX. ShengH. LiH. LiuW. HanR. WenW. LiuW. Heat shock protein 90α provides an effective and novel diagnosis strategy for nasopharyngeal carcinoma.Adv. Ther.202138141342210.1007/s12325‑020‑01518‑433141414
    [Google Scholar]
  68. AdhamM. KurniawanA.N. MuhtadiA.I. RoezinA. HermaniB. GondhowiardjoS. TanI.B. MiddeldorpJ.M. Nasopharyngeal carcinoma in indonesia: Epidemiology, incidence, signs, and symptoms at presentation.Chin. J. Cancer201231418519610.5732/cjc.011.1032822313595
    [Google Scholar]
  69. YeQ. GuoJ. ChenY. CuiZ. ChenY. Performance of plasma HSP90α, Serum EBV VCA IgA antibody and plasma EBV DNA for the diagnosis and prognosis prediction of nasopharyngeal carcinoma.Cancer Manag. Res.2021135793580210.2147/CMAR.S32054134321926
    [Google Scholar]
  70. SignorileA. SgaramellaG. BellomoF. De RasmoD. Prohibitins: A critical role in mitochondrial functions and implication in diseases.Cells2019817110.3390/cells801007130669391
    [Google Scholar]
  71. JavidH. HashemyI. ShahidsalesS. Mohammadian RoshanN. KianooshT. Zahedi AvvalF. Tissue expression of prohibition-I and its relationship with prognostic factors in breast cancer.Iran. J. Pathol.201813223724410.30699/ijp.13.2.23730697295
    [Google Scholar]
  72. YangJ. LiB. HeQ.Y. Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment.Cell Death Dis.20189658010.1038/s41419‑018‑0661‑329784973
    [Google Scholar]
  73. LiaoQ. GuoX. LiX. XiongW. LiX. YangJ. ChenP. ZhangW. YuH. TangH. DengM. LiangF. WuM. LuoZ. WangR. ZengX. ZengZ. LiG. Prohibitin is an important biomarker for nasopharyngeal carcinoma progression and prognosis.Eur. J. Cancer Prev.2013221687610.1097/CEJ.0b013e328354d35122728421
    [Google Scholar]
  74. MkrtchianS. FangC. HellmanU. Ingelman-SundbergM. A stress-inducible rat liver endoplasmic reticulum protein, ERp29.Eur. J. Biochem.19982511-230431310.1046/j.1432‑1327.1998.2510304.x9492298
    [Google Scholar]
  75. ZhangD. RichardsonD.R. Endoplasmic reticulum protein 29 (ERp29): An emerging role in cancer.Int. J. Biochem. Cell Biol.2011431333610.1016/j.biocel.2010.09.01920920593
    [Google Scholar]
  76. ChenZ.T. LiangZ.G. ZhuX.D. ReviewA. A review: Proteomics in nasopharyngeal carcinoma.Int. J. Mol. Sci.20151612154971553010.3390/ijms16071549726184160
    [Google Scholar]
  77. LamprosM. VlachosN. VoulgarisS. AlexiouG.A. The role of Hsp27 in chemotherapy resistance.Biomedicines202210489710.3390/biomedicines1004089735453647
    [Google Scholar]
  78. QiL. WuP. ZhangX. QiuY. JiangW. HuangD. LiuY. TanP. TianY. Inhibiting ERp29 expression enhances radiosensitivity in human nasopharyngeal carcinoma cell lines.Med. Oncol.201229272172810.1007/s12032‑011‑9929‑521479953
    [Google Scholar]
  79. WangS. MoY. MidorikawaK. ZhangZ. HuangG. MaN. ZhaoW. HirakuY. OikawaS. MurataM. The potent tumor suppressor miR-497 inhibits cancer phenotypes in nasopharyngeal carcinoma by targeting ANLN and HSPA4L.Oncotarget2015634358933590710.18632/oncotarget.565126486082
    [Google Scholar]
  80. FukumotoI. KikkawaN. MatsushitaR. KatoM. KurozumiA. NishikawaR. GotoY. KoshizukaK. HanazawaT. EnokidaH. NakagawaM. OkamotoY. SekiN. Tumor-suppressive microRNAs (miR-26a/b, miR-29a/b/c and miR-218) concertedly suppressed metastasis-promoting LOXL2 in head and neck squamous cell carcinoma.J. Hum. Genet.201661210911810.1038/jhg.2015.12026490187
    [Google Scholar]
  81. ItoS. NagataK. Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone.Semin. Cell Dev. Biol.20176214215110.1016/j.semcdb.2016.11.00527838364
    [Google Scholar]
  82. SongX. LiaoZ. ZhouC. LinR. LuJ. CaiL. TanX. ZengW. LuX. ZhengW. ChenJ. SuZ. HSP47 is associated with the prognosis of laryngeal squamous cell carcinoma by inhibiting cell via bility and invasion and promoting apoptosis.Oncol. Rep.20173842444245210.3892/or.2017.589328849239
    [Google Scholar]
  83. NagataK. Hsp47: A collagen-specific molecular chaperone.Trends Biochem. Sci.1996211232610.1016/S0968‑0004(06)80023‑X8848834
    [Google Scholar]
  84. WangY. HuY. ChenL. WuJ. WuK. DuJ. XueH. ShenB. Molecular mechanisms and prognostic markers in head and neck squamous cell carcinoma: A bioinformatic analysis.Int. J. Clin. Exp. Pathol.202013337138132269674
    [Google Scholar]
  85. WangY. YanQ. MoY. LiuY. WangY. ZhangS. GuoC. WangF. LiG. ZengZ. XiongW. Splicing factor derived circular RNA circCAMSAP1 accelerates nasopharyngeal carcinoma tumorigenesis via a SERPINH1/c-Myc positive feedback loop.Mol. Cancer20222116210.1186/s12943‑022‑01502‑235227262
    [Google Scholar]
  86. CaiZ.R. HuY. LiaoK. LiH. ChenD.L. JuH.Q. Circular RNAs: Emerging regulators of glucose metabolism in cancer.Cancer Lett.202355221597810.1016/j.canlet.2022.21597836283584
    [Google Scholar]
  87. MarzecM. ElettoD. ArgonY. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum.Biochim. Biophys. Acta Mol. Cell Res.20121823377478710.1016/j.bbamcr.2011.10.01322079671
    [Google Scholar]
  88. WuB.X. HongF. ZhangY. Ansa-AddoE. LiZ. GRP94/gp96 in Cancer.Adv. Cancer Res.201612916519010.1016/bs.acr.2015.09.00126916005
    [Google Scholar]
  89. LinC.Y. LinT.Y. WangH.M. HuangS.F. FanK.H. LiaoC.T. ChenI.H. LeeL.Y. LiY.L. ChenY.J. ChengA.J. ChangJ.T. GP96 is over-expressed in oral cavity cancer and is a poor prognostic indicator for patients receiving radiotherapy.Radiat. Oncol.20116113610.1186/1748‑717X‑6‑13621992474
    [Google Scholar]
  90. ChangJ.T.C. ChanS.H. LinC.Y. LinT.Y. WangH.M. LiaoC.T. WangT.H. LeeL.Y. ChengA.J. Differentially expressed genes in radioresistant nasopharyngeal cancer cells: gp96 and GDF15.Mol. Cancer Ther.2007682271227910.1158/1535‑7163.MCT‑06‑080117671084
    [Google Scholar]
  91. ZhouJ. XiaoX. YiH. WangJ. WangX. ZhangQ. Upregulation of Gp96 correlates with the radiosensitivity and five-year survival rate of nasopharyngeal carcinoma.ORL J. Otorhinolaryngol. Relat. Spec.201274316417110.1159/00033861322653265
    [Google Scholar]
  92. WangR. QinH.M. QinL. WeiJ.X. WeiY.X. WangJ.L. Genetic association of promoter in GRP78 gene with nasopharyngeal carcinoma in a Chinese population.Int. J. Clin. Oncol.201924435936510.1007/s10147‑018‑1366‑430413914
    [Google Scholar]
/content/journals/cmc/10.2174/0929867331666230821110418
Loading
/content/journals/cmc/10.2174/0929867331666230821110418
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test