Skip to content
2000
Volume 32, Issue 11
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

ATP-binding cassette transporter A1 (ABCA1) is one of the key proteins regulating cholesterol homeostasis and playing a crucial role in atherosclerosis development. ABCA1 regulates the rate-limiting step of reverse cholesterol transport, facilitates the efflux of surplus intracellular cholesterol and phospholipids, and suppresses inflammation through several signalling pathways. At the same time, many mutations and Single Nucleotide Polymorphisms (SNPs) have been identified in the gene, which affects its biological function and is associated with several hereditary diseases (such as familial hypo-alpha-lipoproteinaemia and Tangier disease) and increased risk of cardiovascular diseases (CVDs). This review summarises recently identified mutations and SNPs in their connection to atherosclerosis and associated CVDs. Also, we discuss the recently described application of various plant-derived compounds to modulate expression in different and models. Herein, we present a comprehensive overview of the association of ABCA1 mutations and SNPs with CVDs and as a pharmacological target for different natural-derived compounds and highlight the potential application of these phytochemicals for treating atherosclerosis through modulation of expression.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673291917240315113845
2024-03-25
2025-06-12
Loading full text...

Full text loading...

References

  1. LucianiM.F. DenizotF. SavaryS. MatteiM.G. ChiminiG. Cloning of two novel ABC transporters mapping on human chromosome 9.Genomics199421115015910.1006/geno.1994.12378088782
    [Google Scholar]
  2. SchmitzG. KaminskiW.E. ÖzcürümezP.M. KluckenJ. OrsóE. BodziochM. BüchlerC. DrobnikW. ATP-binding cassette transporter A1 (ABCA1) in macrophages: A dual function in inflammation and lipid metabolism?Pathobiology1999675-623624010.1159/00002810010725792
    [Google Scholar]
  3. PhillipsM.C. Is ABCA1 a lipid transfer protein?J. Lipid Res.201859574976310.1194/jlr.R08231329305383
    [Google Scholar]
  4. QianH. ZhaoX. CaoP. LeiJ. YanN. GongX. Structure of the human lipid exporter ABCA1.Cell2017169712281239.e1010.1016/j.cell.2017.05.02028602350
    [Google Scholar]
  5. SegrestJ.P. TangC. SongH.D. JonesM.K. DavidsonW.S. AllerS.G. HeineckeJ.W. ABCA1 is an extracellular phospholipid translocase.Nat. Commun.2022131481210.1038/s41467‑022‑32437‑335974019
    [Google Scholar]
  6. SunY. LiX. Cholesterol efflux mechanism revealed by structural analysis of human ABCA1 conformational states.Nat. Cardiovasc. Res.20221323824510.1038/s44161‑022‑00022‑y37181814
    [Google Scholar]
  7. AltmannS.W. DavisH.R.Jr ZhuL. YaoX. HoosL.M. TetzloffG. IyerS.P.N. MaguireM. GolovkoA. ZengM. WangL. MurgoloN. GrazianoM.P. Niemann-pick C1 like 1 protein is critical for intestinal cholesterol absorption.Science200430356611201120410.1126/science.109313114976318
    [Google Scholar]
  8. JuhlA.D. WüstnerD. Pathways and mechanisms of cellular cholesterol efflux-insight from imaging.Front. Cell Dev. Biol.20221083440810.3389/fcell.2022.83440835300409
    [Google Scholar]
  9. FeingoldK.R. Lipid and lipoprotein metabolism.Endocrinol. Metab. Clin. North Am.202251343745810.1016/j.ecl.2022.02.00835963623
    [Google Scholar]
  10. SacherS. MukherjeeA. RayA. Deciphering structural aspects of reverse cholesterol transport: Mapping the knowns and unknowns.Biol. Rev. Camb. Philos. Soc.20239841160118310.1111/brv.1294836880422
    [Google Scholar]
  11. AhmedH.M. MillerM. NasirK. McEvoyJ.W. HerringtonD. BlumenthalR.S. BlahaM.J. Primary low level of high-density lipoprotein cholesterol and risks of coronary heart disease, cardiovascular disease, and death: Results from the multi-ethnic study of atherosclerosis.Am. J. Epidemiol.20161831087588310.1093/aje/kwv30527189327
    [Google Scholar]
  12. HirataA. SugiyamaD. WatanabeM. TamakoshiA. IsoH. KotaniK. KiyamaM. YamadaM. IshikawaS. MurakamiY. MiuraK. UeshimaH. OkamuraT. UeshimaH. OkamuraT. UeshimaH. ImaiY. OhkuboT. IrieF. IsoH. KitamuraA. NinomiyaT. KiyoharaY. MiuraK. MurakamiY. NakagawaH. NakayamaT. OkayamaA. SairenchiT. SaitohS. SakataK. TamakoshiA. TsujiI. YamadaM. KiyamaM. MiyamotoY. IshikawaS. YatsuyaH. OkamuraT. Association of extremely high levels of high-density lipoprotein cholesterol with cardiovascular mortality in a pooled analysis of 9 cohort studies including 43,407 individuals: The Epoch–Japan study.J. Clin. Lipidol.2018123674684.e510.1016/j.jacl.2018.01.01429506864
    [Google Scholar]
  13. FanJ. WatanabeT. Atherosclerosis: Known and unknown.Pathol. Int.202272315116010.1111/pin.1320235076127
    [Google Scholar]
  14. MezentsevA. BezsonovE. KashirskikhD. BaigM.S. EidA.H. OrekhovA. Proatherogenic sialidases and desialylated lipoproteins: 35 years of research and current state from bench to bedside.Biomedicines20219660010.3390/biomedicines906060034070542
    [Google Scholar]
  15. LibbyP. The changing landscape of atherosclerosis.Nature2021592785552453310.1038/s41586‑021‑03392‑833883728
    [Google Scholar]
  16. WHOCVDs fact sheets cardiovascular diseases (CVDs).Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 2021
  17. StamatikosA. DronadulaN. NgP. PalmerD. KnightE. WackerB.K. TangC. KimF. DichekD.A. ABCA1 overexpression in endothelial cells in vitro enhances ApoAI-mediated cholesterol efflux and decreases inflammation.Hum. Gene Ther.201930223624810.1089/hum.2018.12030079772
    [Google Scholar]
  18. OguraM. HDL, cholesterol efflux, and ABCA1: Free from good and evil dualism.J. Pharmacol. Sci.20221502818910.1016/j.jphs.2022.07.00436055755
    [Google Scholar]
  19. FredricksonD.S. Tangier disease.Ann. Intern. Med.1961556101610.7326/0003‑4819‑55‑6‑1016
    [Google Scholar]
  20. Brooks-WilsonA. MarcilM. CleeS.M. ZhangL.H. RoompK. van DamM. YuL. BrewerC. CollinsJ.A. MolhuizenH.O.F. LoubserO. OueletteB.F.F. FichterK. ExcoffonA.K.J.D. SensenC.W. SchererS. MottS. DenisM. MartindaleD. FrohlichJ. MorganK. KoopB. PimstoneS. KasteleinJ.J.P. GenestJ.Jr HaydenM.R. Mutations in ABC1 in tangier disease and familial high-density lipoprotein deficiency.Nat. Genet.199922433634510.1038/1190510431236
    [Google Scholar]
  21. BodziochM. OrsóE. KluckenJ. LangmannT. BöttcherA. DiederichW. DrobnikW. BarlageS. BüchlerC. ÖzcürümezP.M. KaminskiW.E. HahmannH.W. OetteK. RotheG. AslanidisC. LacknerK.J. SchmitzG. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease.Nat. Genet.199922434735110.1038/1191410431237
    [Google Scholar]
  22. RustS. RosierM. FunkeH. RealJ. AmouraZ. PietteJ.C. DeleuzeJ.F. BrewerH.B. DuvergerN. DenèfleP. AssmannG. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1.Nat. Genet.199922435235510.1038/1192110431238
    [Google Scholar]
  23. HooperA.J. McCormickS.P.A. HegeleR.A. BurnettJ.R. Clinical utility gene card for: Tangier disease.Eur. J. Hum. Genet.2017257e1e310.1038/ejhg.2017.7228537273
    [Google Scholar]
  24. KosekiM. YamashitaS. OguraM. IshigakiY. OnoK. TsukamotoK. HoriM. MatsukiK. YokoyamaS. Harada-ShibaM. Current diagnosis and management of tangier disease.J. Atheroscler. Thromb.202128880281010.5551/jat.RV1705333994407
    [Google Scholar]
  25. PuntoniM. SbranaF. BigazziF. SampietroT. Tangier disease.Am. J. Cardiovasc. Drugs201212530331110.1007/BF0326183922913675
    [Google Scholar]
  26. ZyssJ. BéhinA. CouvertP. BouhourF. SassolasA. KolevI. DenysV. VialC. LacourA. CarriéA. StojkovicT. Clinical and electrophysiological characteristics of neuropathy associated with Tangier disease.J. Neurol.201225961222122610.1007/s00415‑011‑6340‑222179783
    [Google Scholar]
  27. HooperA.J. HegeleR.A. BurnettJ.R. Tangier disease: Update for 2020.Curr. Opin. Lipidol.2020312808410.1097/MOL.000000000000066932022754
    [Google Scholar]
  28. KosekiM. MatsuyamaA. NakataniK. InagakiM. NakaokaH. KawaseR. KawaseY.M. YamamotoT.K. MasudaD. SandovalJ.C. OhamaT. ToyamaN.Y. MatsuuraF. NishidaM. IshigamiM. HiranoK. SakaneN. KumonY. SuehiroT. NakamuraT. ShimomuraI. YamashitaS. Impaired insulin secretion in four Tangier disease patients with ABCA1 mutations.JAT200916329229610.5551/jat.E59919556721
    [Google Scholar]
  29. MuratsuJ. KosekiM. MasudaD. YasugaY. TomoyamaS. AtakaK. YagiY. NakagawaA. HamadaH. FujitaS. HattoriH. OhamaT. NishidaM. HiraokaH. MatsuzawaY. YamashitaS. Accelerated atherogenicity in tangier disease.J. Atheroscler. Thromb.201825101076108510.5551/jat.4325729563393
    [Google Scholar]
  30. KinoshitaM. YokoteK. AraiH. IidaM. IshigakiY. IshibashiS. UmemotoS. EgusaG. OhmuraH. OkamuraT. KiharaS. KobaS. SaitoI. ShojiT. DaidaH. TsukamotoK. DeguchiJ. DohiS. DobashiK. HamaguchiH. HaraM. HiroT. BiroS. FujiokaY. MaruyamaC. MiyamotoY. MurakamiY. YokodeM. YoshidaH. RakugiH. WakatsukiA. YamashitaS. Japan Atherosclerosis Society (JAS) guidelines for prevention of atherosclerotic cardiovascular diseases 2017.J. Atheroscler. Thromb.201825984698410.5551/jat.GL201730135334
    [Google Scholar]
  31. ChoiH.Y. ChoiS. IatanI. RuelI. GenestJ. Biomedical advances in ABCA1 transporter: From bench to bedside.Biomedicines202311256110.3390/biomedicines1102056136831097
    [Google Scholar]
  32. MatsuoM. ABCA1 and ABCG1 as potential therapeutic targets for the prevention of atherosclerosis.J. Pharmacol. Sci.2022148219720310.1016/j.jphs.2021.11.00535063134
    [Google Scholar]
  33. RozhkovaA.V. DmitrievaV.G. NosovaE.V. DergunovA.D. LimborskaS.A. DergunovaL.V. Genomic variants and multilevel regulation of ABCA1, ABCG1, and SCARB1 expression in atherogenesis.J. Cardiovasc. Dev. Dis.202181217010.3390/jcdd812017034940525
    [Google Scholar]
  34. WangJ. XiaoQ. WangL. WangY. WangD. DingH. Role of ABCA1 in cardiovascular disease.J. Pers. Med.2022126101010.3390/jpm1206101035743794
    [Google Scholar]
  35. ZhangS. LiL. WangJ. ZhangT. YeT. WangS. XingD. ChenW. Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs.Clin. Chim. Acta202151610011010.1016/j.cca.2021.01.01933545111
    [Google Scholar]
  36. NordestgaardL.T. ChristoffersenM. AfzalS. NordestgaardB.G. HansenT.A. SchmidtF.R. Genetic variants in the adenosine triphosphate-binding cassette transporter A1 and risk of age-related macular degeneration.Eur. J. Epidemiol.202338998599410.1007/s10654‑023‑01021‑437335386
    [Google Scholar]
  37. WuA. MazurkiewiczE. DonizyP. KotowskiK. PieniazekM. MazurA.J. CzogallaA. TrombikT. ABCA1 transporter promotes the motility of human melanoma cells by modulating their plasma membrane organization.Biol. Res.20235613210.1186/s40659‑023‑00443‑437312227
    [Google Scholar]
  38. SanliF. KaratasO.F. The roles of ATP-binding cassette transporter A1 and its substrate cholesterol in head and neck cancers.Cell Biol. Int.20234771151116010.1002/cbin.1201636934420
    [Google Scholar]
  39. ChenQ. LiangB. WangZ. ChengX. HuangY. LiuY. HuangZ. Influence of four polymorphisms in ABCA1 and PTGS2 genes on risk of Alzheimer’s disease: A meta-analysis.Neurol. Sci.20163781209122010.1007/s10072‑016‑2579‑927215623
    [Google Scholar]
  40. BabashamsiM.M. KoukhalooS.Z. HalalkhorS. SalimiA. BabashamsiM. ABCA1 and metabolic syndrome; a review of the ABCA1 role in HDL-VLDL production, insulin-glucose homeostasis, inflammation and obesity.Diabetes Metab. Syndr.20191321529153410.1016/j.dsx.2019.03.00431336517
    [Google Scholar]
  41. KjeldsenE.W. ThomassenJ.Q. Frikke-SchmidtR. HDL cholesterol concentrations and risk of atherosclerotic cardiovascular disease – Insights from randomized clinical trials and human genetics.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20221867115906310.1016/j.bbalip.2021.15906334637926
    [Google Scholar]
  42. BarterP. GenestJ. HDL cholesterol and ASCVD risk stratification: A debate.Atherosclerosis201928371210.1016/j.atherosclerosis.2019.01.00130771558
    [Google Scholar]
  43. GanjaliS. WattsG.F. BanachM. ReinerŽ. NachtigalP. SahebkarA. The yin and yang of high-density lipoprotein and atherosclerotic cardiovascular disease: Focusing on functionality and cholesterol efflux to reframe the HDL hypothesis.Curr. Med. Chem.202128296066608110.2174/092986732866621020818232633563147
    [Google Scholar]
  44. MuranoT. YamaguchiT. TatsunoI. SuzukiM. NoikeH. TakanamiT. YoshidaT. SuzukiM. HashimotoR. MaenoT. TeraiK. TokuyamaW. HirutaN. SchneiderW.J. BujoH. Subfraction analysis of circulating lipoproteins in a patient with Tangier disease due to a novel ABCA1 mutation.Clin. Chim. Acta201645216717210.1016/j.cca.2015.11.02126616730
    [Google Scholar]
  45. CeccantiM. CambieriC. FrascaV. OnestiE. BiasiottaA. GiordanoC. BrunoS.M. TestinoG. LucarelliM. ArcaM. InghilleriM. A novel mutation in ABCA1 gene causing tangier disease in an Italian family with uncommon neurological presentation.Front. Neurol.2016718510.3389/fneur.2016.0018527853448
    [Google Scholar]
  46. RazekA.O. SadanandaS.N. LiX. CermakovaL. FrohlichJ. BrunhamL.R. Increased prevalence of clinical and subclinical atherosclerosis in patients with damaging mutations in ABCA1 or APOA1.J. Clin. Lipidol.201812111612110.1016/j.jacl.2017.10.01029150341
    [Google Scholar]
  47. MinuzP. MeneguzziA. FemiaE.A. FavaC. CalabriaS. ScavoneM. BenatiD. PoliG. ZancanaroC. CalandraS. LucchiT. CattaneoM. Reduced platelet count, but no major platelet function abnormalities, are associated with loss-of-function ATP-binding cassette-1 gene mutations.Clin. Sci.2017131162095210710.1042/CS2017019528634189
    [Google Scholar]
  48. GellerA.S. PoliseckiE.Y. DiffenderferM.R. AsztalosB.F. KarathanasisS.K. HegeleR.A. SchaeferE.J. Genetic and secondary causes of severe HDL deficiency and cardiovascular disease.J. Lipid Res.201859122421243510.1194/jlr.M08820330333156
    [Google Scholar]
  49. DronJ.S. WangJ. BerberichA.J. IacoccaM.A. CaoH. YangP. KnollJ. TremblayK. BrissonD. NetzerC. BertholdG.I. GaudetD. HegeleR.A. Large-scale deletions of the ABCA1 gene in patients with hypoalphalipoproteinemia.J. Lipid Res.20185981529153510.1194/jlr.P08628029866657
    [Google Scholar]
  50. LiangZ. LiW. YangS. LiuZ. SunX. GaoX. YuG. Tangier disease may cause early onset of atherosclerotic cerebral infarction.Medicine20189739e1247210.1097/MD.000000000001247230278532
    [Google Scholar]
  51. MaranghiM. TruglioG. GalloA. GriecoE. VerrientiA. MontaliA. GalloP. AlesiniF. ArcaM. LucarelliM. A novel splicing mutation in the ABCA1 gene, causing Tangier disease and familial HDL deficiency in a large family.Biochem. Biophys. Res. Commun.2019508248749310.1016/j.bbrc.2018.11.06430503498
    [Google Scholar]
  52. El KhouryP. CouvertP. ElbitarS. GhalebY. Abou-KhalilY. AzarY. AyoubC. SupervilleA. GuérinM. RabèsJ.P. VarretM. BoileauC. JambartS. GiralP. CarriéA. Le GoffW. AbifadelM. Identification of the first Tangier disease patient in Lebanon carrying a new pathogenic variant in ABCA1.J. Clin. Lipidol.20181261374138210.1016/j.jacl.2018.08.01330361172
    [Google Scholar]
  53. PosZ. KhedrM. RadvanszkyJ. PenesovaA. HekelR. SzemesT. RanganathL.R. ZatkovaA. APOC3 and ABCA1 variants in unusual combined hypolipidaemia showing premature peripheral vascular disease.Bratisl. Med. J.2023124535135510.4149/BLL_2023_05336876364
    [Google Scholar]
  54. CarcoraY. BrookR.D. FarhatL. WillerC.J. RubenfireM. KimD.S. A novel homozygous ABCA1 variant in an asymptomatic man with profound hypoalphalipoproteinemia.J. Clin. Lipidol.201812487888210.1016/j.jacl.2018.04.00529773422
    [Google Scholar]
  55. GouveiaB.S. CrespoF.S. IglesiasL.H. QuintelaG.A. AgraV.N. AmeijeirasH.Á. Association of a novel homozygous variant in ABCA1 gene with tangier disease.J. Clin. Med.2023127259610.3390/jcm1207259637048678
    [Google Scholar]
  56. UrbánekR. TichýL. FreibergerT. Tangier disease in family with the phenotype of familial hypercholesterolemia.Vnitr. Lek.202066744344610.36290/vnl.2020.12533380124
    [Google Scholar]
  57. LiJ. WenM. ZhangZ. QiuZ. SunY. The R219K polymorphism of the ATP binding cassette subfamily A member 1 gene and susceptibility to ischemic stroke in Chinese population.Open Med.202015127428210.1515/med‑2020‑003932292824
    [Google Scholar]
  58. CyrusC. VatteC. Al-NafieA. ChathothS. AliA.R. ShehriA.A. AkhtarM.S. AlmansoriM. MuhannaA.F. KeatingB. AliA.A. The impact of common polymorphisms in CETP and ABCA1 genes with the risk of coronary artery disease in Saudi Arabians.Hum. Genomics2016101810.1186/s40246‑016‑0065‑326936456
    [Google Scholar]
  59. GhaznaviH. AaliE. SoltanpourM.S. Association study of the ATP - binding cassette transporter A1 (ABCA1) Rs2230806 genetic variation with lipid profile and coronary artery disease risk in an Iranian population.Open Access Maced. J. Med. Sci.20186227427910.3889/oamjms.2018.06329531587
    [Google Scholar]
  60. KarimianM. MomeniA. FarmohammadiA. BehjatiM. JafariM. RayganF. Common gene polymorphism in ATP-binding cassette transporter A1 and coronary artery disease: A genetic association study and a structural analysis.J. Cell. Biochem.20201215-63345335710.1002/jcb.2960631943326
    [Google Scholar]
  61. FanQ. ZhuY. ZhaoF. Association of rs2230806 in ABCA1 with coronary artery disease.Medicine2020994e1866210.1097/MD.000000000001866231977856
    [Google Scholar]
  62. BogariN.M. BabalghithA.O. BouazzaouiA. AljohaniA. DannounA. ElkhateebO. AminA.A. BogariM.K. MazharA.A. PorquedduM. KhanI.A. Assessment of genetic polymorphism associated with ATP-binding cassette transporter A1 (ABCA1) gene and fluctuations in serum lipid profile levels in patients with coronary artery disease.Saudi Pharm. J.202129121458146510.1016/j.jsps.2021.11.00735002384
    [Google Scholar]
  63. Balcerzyk-MatićA. NowakT. StecM.K. IwanickaJ. IwanickiT. BańkaP. JaroszA. FilipeckiA. ŻakI. KrauzeJ. NiemiecP. Polymorphic variants of AGT, ABCA1, and CYBA genes influence the survival of patients with coronary artery disease: A prospective cohort study.Genes20221311214810.3390/genes1311214836421822
    [Google Scholar]
  64. YuanT. WangY. LiuX. Relationship between single nucleotide polymorphism of ABCA1 gene and susceptibility of coronary heart disease in mongolian/han population.Int. J. Clin. Exp. Med.20171034783485
    [Google Scholar]
  65. LuZ. LuoZ. JiaA. MuhammadI. ZengW. ShiganmoA. ChenX. SongY. Effects of ABCA1 gene polymorphisms on risk factors, susceptibility and severity of coronary artery disease.Postgrad. Med. J.202096114166667310.1136/postgradmedj‑2019‑13691731911446
    [Google Scholar]
  66. WangF. JiY. ChenX. SongY. HuangS. ZhouC. HuangC. ChenZ. ZhangL. GeJ. ABCA1 variants rs2230806 (R219K), rs4149313 (M8831I), and rs9282541 (R230C) are associated with susceptibility to coronary heart disease.J. Clin. Lab. Anal.2019336e2289610.1002/jcla.2289631006134
    [Google Scholar]
  67. FouladsereshtH. KhazaeeS. ZibaeenezhadJ.M. NikooH.M. KhosropanahS. DoroudchiM. Association of ABCA1 haplotypes with coronary artery disease.Lab. Med.201951215716810.1093/labmed/lmz03131150543
    [Google Scholar]
  68. MahmoodiK. KamaliK. GhaznaviH. SoltanpourM.S. The C-565T polymorphism (rs2422493) of the ATP-binding cassette transporter A1 gene contributes to the development and severity of coronary artery disease in an iranian population.Oman Med. J.201833430931510.5001/omj.2018.5730038730
    [Google Scholar]
  69. RenY. TongE. DiC. ZhangY. XuL. TanX. YangL. Association between ABCA1 gene polymorphisms and the risk of hypertension in the Chinese han population.Front. Public Health20221087861010.3389/fpubh.2022.87861035669754
    [Google Scholar]
  70. CaoX.L. YinR.X. HuangF. WuJ.Z. ChenW.X. Chromosome 9p21 and ABCA1 genetic variants and their interactions on coronary heart disease and ischemic stroke in a Chinese han population.Int. J. Mol. Sci.201617458610.3390/ijms1704058627096864
    [Google Scholar]
  71. ZhaoT.Y. LeiS. HuangL. WangY.N. WangX.N. ZhouP.P. XuX.J. ZhangL. XuL.W. YangL. Associations of genetic variations in ABCA1 and lifestyle factors with coronary artery disease in a Southern Chinese population with dyslipidemia: A nested case-control study.Int. J. Environ. Res. Public Health201916578610.3390/ijerph1605078630836684
    [Google Scholar]
  72. SameemM. RaniA. ArshadM. Association of rs146292819 polymorphism in ABCA1 gene with the risk of coronary artery disease in pakistani population.Biochem. Genet.201957562363710.1007/s10528‑019‑09915‑330945099
    [Google Scholar]
  73. RosenbergN.A. VanLiereJ.M. Replication of genetic associations as pseudoreplication due to shared genealogy.Genet. Epidemiol.200933647948710.1002/gepi.2040019191270
    [Google Scholar]
  74. HickeyD.A. GoldingG.B. The advantage of recombination when selection is acting at many genetic Loci.J. Theor. Biol.201844212312810.1016/j.jtbi.2018.01.01829355539
    [Google Scholar]
  75. YangX. ShangD. The role of peroxisome proliferator-activated receptor γ in lipid metabolism and inflammation in atherosclerosis.Cell Biol. Int.20234791469148710.1002/cbin.1206537369936
    [Google Scholar]
  76. BawaC.F.N. GopojuR. XuY. HuS. ZhuY. ChenS. JadhavK. ZhangY. Retinoic Acid Receptor Alpha (RARα) in macrophages protects from diet-induced atherosclerosis in mice.Cells20221120318610.3390/cells1120318636291054
    [Google Scholar]
  77. PetkovichM. ChambonP. Retinoic acid receptors at 35 years.J. Mol. Endocrinol.2022694T13T2410.1530/JME‑22‑009736149754
    [Google Scholar]
  78. JungC.G. HorikeH. ChaB.Y. UhmK.O. YamauchiR. YamaguchiT. HosonoT. IidaK. WooJ.T. MichikawaM. Honokiol increases ABCA1 expression level by activating retinoid X receptor beta.Biol. Pharm. Bull.20103371105111110.1248/bpb.33.110520606297
    [Google Scholar]
  79. SavlaS.R. PrabhavalkarK.S. BhattL.K. LiverX. Liver X receptor: A potential target in the treatment of atherosclerosis.Expert Opin. Ther. Targets202226764565810.1080/14728222.2022.211761036003057
    [Google Scholar]
  80. ZhangL.H. KamannaV.S. GanjiS.H. XiongX.M. KashyapM.L. Niacin increases HDL biogenesis by enhancing DR4-dependent transcription of ABCA1 and lipidation of apolipoprotein A-I in HepG2 cells.J. Lipid Res.201253594195010.1194/jlr.M02091722389325
    [Google Scholar]
  81. GaoJ.H. HeL.H. YuX.H. ZhaoZ.W. WangG. ZouJ. WenF.J. ZhouL. WanX.J. ZhangD.W. TangC.K. CXCL12 promotes atherosclerosis by downregulating ABCA1 expression via the CXCR4/GSK3β/β-cateninT120/TCF21 pathway.J. Lipid Res.201960122020203310.1194/jlr.RA11900010031662443
    [Google Scholar]
  82. RaynerK.J. SuárezY. DávalosA. ParathathS. FitzgeraldM.L. TamehiroN. FisherE.A. MooreK.J. HernandoF.C. MiR-33 contributes to the regulation of cholesterol homeostasis.Science201032859851570157310.1126/science.118986220466885
    [Google Scholar]
  83. IwamotoN. Abe-DohmaeS. AyaoriM. TanakaN. KusuharaM. OhsuzuF. YokoyamaS. ATP-binding cassette transporter A1 gene transcription is downregulated by activator protein 2α. Doxazosin inhibits activator protein 2α and increases high-density lipoprotein biogenesis independent of α1-adrenoceptor blockade.Circ. Res.2007101215616510.1161/CIRCRESAHA.107.15174617556657
    [Google Scholar]
  84. ZengL. LiaoH. LiuY. LeeT.S. ZhuM. WangX. StemermanM.B. ZhuY. ShyyJ.Y.J. Sterol-responsive element-binding protein (SREBP) 2 down-regulates ATP-binding cassette transporter A1 in vascular endothelial cells: A novel role of SREBP in regulating cholesterol metabolism.J. Biol. Chem.200427947488014880710.1074/jbc.M40781720015358760
    [Google Scholar]
  85. MaW. DingH. GongX. LiuZ. LinY. ZhangZ. LinG. Methyl protodioscin increases ABCA1 expression and cholesterol efflux while inhibiting gene expressions for synthesis of cholesterol and triglycerides by suppressing SREBP transcription and microRNA 33a/b levels.Atherosclerosis2015239256657010.1016/j.atherosclerosis.2015.02.03425733328
    [Google Scholar]
  86. HaidarB. DenisM. KrimbouL. MarcilM. GenestJ.Jr cAMP induces ABCA1 phosphorylation activity and promotes cholesterol efflux from fibroblasts.J. Lipid Res.200243122087209410.1194/jlr.M200235‑JLR20012454270
    [Google Scholar]
  87. IwamotoN. Abe-DohmaeS. LuR. YokoyamaS. Involvement of protein kinase D in phosphorylation and increase of DNA binding of activator protein 2 α to downregulate ATP-binding cassette transporter A1.Arterioscler. Thromb. Vasc. Biol.200828122282228710.1161/ATVBAHA.108.17471418845787
    [Google Scholar]
  88. SeidahN.G. GarçonD. Expanding biology of PCSK9: Roles in atherosclerosis and beyond.Curr. Atheroscler. Rep.2022241082183010.1007/s11883‑022‑01057‑z35904732
    [Google Scholar]
  89. TianK. XuY. SahebkarA. XuS. CD36 in atherosclerosis: Pathophysiological mechanisms and therapeutic implications.Curr. Atheroscler. Rep.202022105910.1007/s11883‑020‑00870‑832772254
    [Google Scholar]
  90. TanW.H. PengZ.L. YouT. SunZ.L. CTRP15 promotes macrophage cholesterol efflux and attenuates atherosclerosis by increasing the expression of ABCA1.J. Physiol. Biochem.202278365366610.1007/s13105‑022‑00885‑635286626
    [Google Scholar]
  91. ShenX. ZhangS. GuoZ. XingD. ChenW. The crosstalk of ABCA1 and ANXA1: A potential mechanism for protection against atherosclerosis.Mol. Med.20202618410.1186/s10020‑020‑00213‑y32894039
    [Google Scholar]
  92. XiaX.D. YuX.H. ChenL.Y. XieS. FengY.G. YangR.Z. ZhaoZ.W. LiH. WangG. TangC.K. Myocardin suppression increases lipid retention and atherosclerosis via downregulation of ABCA1 in vascular smooth muscle cells.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20211866415882410.1016/j.bbalip.2020.15882433035679
    [Google Scholar]
  93. MaréchalL. LavioletteM. WayR.A. SowB. BrochuM. CaronV. TremblayA. The CD36-PPARγ pathway in metabolic disorders.Int. J. Mol. Sci.2018195152910.3390/ijms1905152929883404
    [Google Scholar]
  94. WangD. YeungA.W.K. AtanasovA.G. A review: Molecular mechanism of regulation of ABCA1 expression.Curr. Protein Pept. Sci.202223317019110.2174/138920372366622042908375335848568
    [Google Scholar]
  95. WangD. HieblV. XuT. LadurnerA. AtanasovA.G. HeissE.H. DirschV.M. Impact of natural products on the cholesterol transporter ABCA1.J. Ethnopharmacol.202024911244410.1016/j.jep.2019.11244431805338
    [Google Scholar]
  96. WuM. LiuM. GuoG. ZhangW. LiuL. Polydatin inhibits formation of macrophage-derived foam cells.Evid. Based Complement. Alternat. Med.201520151810.1155/2015/72901726557864
    [Google Scholar]
  97. WeiZ. WangJ. ShiM. LiuW. YangZ. FuY. Saikosaponin a inhibits LPS-induced inflammatory response by inducing liver X receptor alpha activation in primary mouse macrophages.Oncotarget2016731489954900710.18632/oncotarget.986327285988
    [Google Scholar]
  98. JuS. ChangX. WangJ. ZouX. ZhaoZ. HuangZ. WangY. YuB. Sini decoction intervention on atherosclerosis via PPARγ-LXRα-ABCA1 pathway in rabbits.Open Life Sci.201813144645510.1515/biol‑2018‑005333817113
    [Google Scholar]
  99. YangY. LiX. PengL. AnL. SunN. HuX. ZhouP. XuY. LiP. ChenJ. TanshindiolC. Inhibits oxidized low-density lipoprotein induced macrophage foam cell formation via a peroxiredoxin 1 dependent pathway.Biochim. Biophys. Acta Mol. Basis Dis.2018186488289010.1016/j.bbadis.2017.12.03329287777
    [Google Scholar]
  100. TangY. WuH. ShaoB. WangY. LiuC. GuoM. Celosins inhibit atherosclerosis in ApoE-/- mice and promote autophagy flow.J. Ethnopharmacol.2018215748210.1016/j.jep.2017.12.03129292046
    [Google Scholar]
  101. ZhouX. RenQ. WangB. FangG. LingY. LiX. Alisol a 24-acetate isolated from the alismatis rhizoma improves hepatic lipid deposition in hyperlipidemic mice by ABCA1/ABCG1 pathway.J. Nanosci. Nanotechnol.2019195496550210.1166/jnn.2019.16592
    [Google Scholar]
  102. ChenM. HuangR. FuW. OuL. MenL. ZhangZ. YangS. LiuQ. LuanJ. Xiaoyaosan (Tiaogan-Liqi therapy) protects peritoneal macrophages from corticosterone-induced stress by regulating the interaction between glucocorticoid receptor and ABCA1.Ann. Transl. Med.20208221506150610.21037/atm‑20‑650533313251
    [Google Scholar]
  103. ZhangZ. ZhaiL. LuJ. SunS. WangD. ZhaoD. SunL. ZhaoW. LiX. ChenY. Shen-hong-tong-luo formula attenuates macrophage inflammation and lipid accumulation through the activation of the PPAR-γ/LXR-α/ABCA1 pathway.Oxid. Med. Cell. Longev.2020202011910.1155/2020/342692533082908
    [Google Scholar]
  104. LiuS. GaoJ. HeL. ZhaoZ. WangG. ZouJ. ZhouL. WanX. TangS. TangC. promotes ABCA1 expression and cholesterol efflux in THP-1-derived macrophages.Acta Biochim. Biophys. Sin. (Shanghai)2021531637110.1093/abbs/gmaa14633434281
    [Google Scholar]
  105. ZhengS. HuangH. LiY. WangY. ZhengY. LiangJ. ZhangS. LiuM. FangZ. Yin-xing-tong-mai decoction attenuates atherosclerosis via activating PPARγ-LXRα-ABCA1/ABCG1 pathway.Pharmacol. Res.202116910563910.1016/j.phrs.2021.10563933932607
    [Google Scholar]
  106. SongJ. QiuH. DuP. MouF. NieZ. ZhengY. WangM. Polyphenols extracted from Shanxi-aged vinegar exert hypolipidemic effects on OA-induced HepG2 cells via the PPARα-LXRα-ABCA1 pathway.J. Food Biochem.2022462e1402910.1111/jfbc.1402935023169
    [Google Scholar]
  107. XieJ. PengL. wangT. YangC. ChenN. FengX. WuT. XuT. ChenY. QiShenYiQi pill inhibits atherosclerosis by promoting reverse cholesterol transport PPARγ-LXRα/β-ABCA1 pathway.J. Ethnopharmacol.202331511668410.1016/j.jep.2023.11668437230281
    [Google Scholar]
  108. ShiY. JiangS. ZhaoT. GongY. LiaoD. QinL. Celastrol suppresses lipid accumulation through LXRα/ABCA1 signaling pathway and autophagy in vascular smooth muscle cells.Biochem. Biophys. Res. Commun.2020532346647410.1016/j.bbrc.2020.08.07632892949
    [Google Scholar]
  109. WangL. EftekhariP. SchachnerD. IgnatovaI.D. PalmeV. SchilcherN. LadurnerA. HeissE.H. StanglH. DirschV.M. AtanasovA.G. Novel interactomics approach identifies ABCA1 as direct target of evodiamine, which increases macrophage cholesterol efflux.Sci. Rep.2018811106110.1038/s41598‑018‑29281‑130038271
    [Google Scholar]
  110. LvO. WangL. LiJ. MaQ. ZhaoW. Effects of pomegranate peel polyphenols on lipid accumulation and cholesterol metabolic transformation in L-02 human hepatic cells via the PPARγ-ABCA1/CYP7A1 pathway.Food Funct.20167124976498310.1039/C6FO01261B27845788
    [Google Scholar]
  111. ZhaoS. LiJ. WangL. WuX. Pomegranate peel polyphenols inhibit lipid accumulation and enhance cholesterol efflux in raw264.7 macrophages.Food Funct.2016773201321010.1039/C6FO00347H27334099
    [Google Scholar]
  112. DuF. GesangQ. CaoJ. QianM. MaL. WuD. YuH. Isoliquiritigenin attenuates atherogenesis in apolipoprotein E-deficient mice.Int. J. Mol. Sci.20161711193210.3390/ijms1711193227869741
    [Google Scholar]
  113. LiX. GuoJ. LiangN. JiangX. SongY. OuS. HuY. JiaoR. BaiW. 6-Gingerol regulates hepatic cholesterol metabolism by up-regulation of LDLR and cholesterol efflux-related genes in HepG2 cells.Front. Pharmacol.2018915910.3389/fphar.2018.0015929535632
    [Google Scholar]
  114. WangD. HieblV. LadurnerA. LatkolikS.L. BucarF. HeißE.H. DirschV.M. AtanasovA.G. 6-Dihydroparadol, a ginger constituent, enhances cholesterol efflux from THP-1-derived macrophages.Mol. Nutr. Food Res.20186214180001110.1002/mnfr.20180001129802792
    [Google Scholar]
  115. TengI.J. TsaiM.C. ShihS.F. TsueiB.F. ChangH. ChuangY.P. LinC.S. ChernC.Y. ChenS.J. Chalcone derivatives enhance ATP-binding cassette transporters A1 in human THP-1 macrophages.Molecules2018237162010.3390/molecules2307162029970865
    [Google Scholar]
  116. GuoT. LiuQ. HouP. LiF. GuoS. SongW. ZhangH. LiuX. ZhangS. ZhangJ. HoC.T. BaiN. Stilbenoids and cannabinoids from the leaves of Cannabis sativa f. sativa with potential reverse cholesterol transport activity.Food Funct.20189126608661710.1039/C8FO01896K30500001
    [Google Scholar]
  117. RenK. LiH. ZhouH.F. LiangY. TongM. ChenL. ZhengX.L. ZhaoG.J. Mangiferin promotes macrophage cholesterol efflux and protects against atherosclerosis by augmenting the expression of ABCA1 and ABCG1.Aging20191123109921100910.18632/aging.10249831790366
    [Google Scholar]
  118. FranceschelliS. De CeccoF. PesceM. RipariP. GuagnanoM.T. NuevoA.B. GrilliA. SancilioS. SperanzaL. Hydroxytyrosol reduces foam cell formation and endothelial inflammation regulating the PPARγ/LXRα/ABCA1 pathway.Int. J. Mol. Sci.2023243205710.3390/ijms2403205736768382
    [Google Scholar]
  119. SáenzJ. AlbaG. QuirozR.M.E. GenizI. JiménezJ. SobrinoF. MaríaS.C. Curcumin enhances LXRα in an AMP-activated protein kinase-dependent manner in human macrophages.J. Nutr. Biochem.201854485610.1016/j.jnutbio.2017.11.00629242172
    [Google Scholar]
  120. ZhongY. FengJ. FanZ. LiJ. Curcumin increases cholesterol efflux via heme oxygenase-1-mediated ABCA1 and SR-BI expression in macrophages.Mol. Med. Rep.20181746138614310.3892/mmr.2018.857729436680
    [Google Scholar]
  121. TanC. ZhouL. WenW. XiaoN. Curcumin promotes cholesterol efflux by regulating ABCA1 expression through miR-125a-5p/SIRT6 axis in THP-1 macrophage to prevent atherosclerosis.J. Toxicol. Sci.202146520922210.2131/jts.46.20933952798
    [Google Scholar]
  122. GuiY. YaoS. YanH. HuL. YuC. GaoF. XiC. LiH. YeY. WangY. A novel small molecule liver X receptor transcriptional regulator, nagilactone B, suppresses atherosclerosis in apoE-deficient mice.Cardiovasc. Res.2016112150251410.1093/cvr/cvw18327460841
    [Google Scholar]
  123. LinH.C. LiiC.K. ChenH.C. LinA.H. YangY.C. ChenH.W. Andrographolide inhibits oxidized LDL-induced cholesterol accumulation and foam cell formation in macrophages.Am. J. Chin. Med.20184618710610.1142/S0192415X1850005229298513
    [Google Scholar]
  124. ZhangC. WuX. ShiP. MaH. FangF. FengQ. ZhaoS. ZhangR. HuangJ. XuX. XiaoW. CaoG. JiX. Diterpenoids inhibit ox-LDL-induced foam cell formation in RAW264.7 cells by promoting ABCA1 mediated cholesterol efflux.Front. Pharmacol.202314106675810.3389/fphar.2023.106675836713845
    [Google Scholar]
  125. GuiY. YanH. GaoF. XiC. LiH. WangY. Betulin attenuates atherosclerosis in apoE−/− mice by up-regulating ABCA1 and ABCG1.Acta Pharmacol. Sin.201637101337134810.1038/aps.2016.4627374487
    [Google Scholar]
  126. WangL. WesemannS. KrennL. LadurnerA. HeissE.H. DirschV.M. AtanasovA.G. Erythrodiol, an olive oil constituent, increases the half-life of ABCA1 and enhances cholesterol efflux from THP-1-derived macrophages.Front. Pharmacol.2017837510.3389/fphar.2017.0037528659806
    [Google Scholar]
  127. LiC. GongD. ChenL. ZhangM. XiaX. ChengH. HuangC. ZhaoZ. ZhengX.L. TangX. TangC. Puerarin promotes ABCA1-mediated cholesterol efflux and decreases cellular lipid accumulation in THP-1 macrophages.Eur. J. Pharmacol.2017811748610.1016/j.ejphar.2017.05.05528576406
    [Google Scholar]
  128. LiuX.X. ZhangX.W. WangK. WangX.Y. MaW.L. CaoW. MoD. SunY. LiX.Q. KuwanonG. Kuwanon G attenuates atherosclerosis by upregulation of LXRα-ABCA1/ABCG1 and inhibition of NFκB activity in macrophages.Toxicol. Appl. Pharmacol.2018341566310.1016/j.taap.2018.01.00729355567
    [Google Scholar]
  129. ZengY. PengY. TangK. WangY.Q. ZhaoZ.Y. WeiX.Y. XuX.L. Dihydromyricetin ameliorates foam cell formation via LXRα-ABCA1/ABCG1-dependent cholesterol efflux in macrophages.Biomed. Pharmacother.201810154355210.1016/j.biopha.2018.02.12429505925
    [Google Scholar]
  130. RenK. JiangT. ZhouH.F. LiangY. ZhaoG.J. Apigenin retards atherogenesis by promoting ABCA1-mediated cholesterol efflux and suppressing inflammation.Cell. Physiol. Biochem.20184752170218410.1159/00049152829975943
    [Google Scholar]
  131. TsuboiT. LuR. YonezawaT. WatanabeA. WooJ.T. Abe-DohmaeS. YokoyamaS. Molecular mechanism for nobiletin to enhance ABCA1/G1 expression in mouse macrophages.Atherosclerosis2020297323910.1016/j.atherosclerosis.2020.01.02432062137
    [Google Scholar]
  132. ZhaoZ.W. ZhangM. WangG. ZouJ. GaoJ.H. ZhouL. WanX.J. ZhangD.W. YuX.H. TangC.K. Astragalin retards atherosclerosis by promoting cholesterol efflux and inhibiting the inflammatory response via upregulating ABCA1 and ABCG1 expression in macrophages.J. Cardiovasc. Pharmacol.202177221722710.1097/FJC.000000000000094433165140
    [Google Scholar]
  133. LuY. JiaY-P. Quercetin upregulates ABCA1 expression through liver X receptor alpha signaling pathway in THP-1 macrophages.Eur. Rev. Med. Pharmacol. Sci.201620183945395227735019
    [Google Scholar]
  134. LiS. CaoH. ShenD. JiaQ. ChenC. XingS. Quercetin protects against ox-LDL-induced injury via regulation of ABCAl, LXR-α and PCSK9 in RAW264.7 macrophages.Mol. Med. Rep.201818179980610.3892/mmr.2018.904829845234
    [Google Scholar]
  135. LiS. CaoH. ShenD. ChenC. XingS. DouF. JiaQ. Effect of quercetin on atherosclerosis based on expressions of ABCA1, LXR-α and PCSK9 in ApoE-/- mice.Chin. J. Integr. Med.202026211412110.1007/s11655‑019‑2942‑931144159
    [Google Scholar]
  136. JiaQ. CaoH. ShenD. LiS. YanL. ChenC. XingS. DouF. Quercetin protects against atherosclerosis by regulating the expression of PCSK9, CD36, PPARγ, LXRα and ABCA1.Int. J. Mol. Med.201944389390210.3892/ijmm.2019.426331524223
    [Google Scholar]
  137. JiangT. RenK. ChenQ. LiH. YaoR. HuH. LvY.C. ZhaoG.J. Leonurine prevents atherosclerosis via promoting the expression of ABCA1 and ABCG1 in a Pparγ/Lxrα signaling pathway-dependent manner.Cell. Physiol. Biochem.20174341703171710.1159/00048403129045950
    [Google Scholar]
  138. WangL. PalmeV. RotterS. SchilcherN. CukajM. WangD. LadurnerA. HeissE.H. StanglH. DirschV.M. AtanasovA.G. Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP-1-derived macrophages.Mol. Nutr. Food Res.2017614150096010.1002/mnfr.20150096027862930
    [Google Scholar]
  139. NiJ. LiY. LiW. GuoR. Salidroside protects against foam cell formation and apoptosis, possibly via the MAPK and AKT signaling pathways.Lipids Health Dis.201716119810.1186/s12944‑017‑0582‑729017559
    [Google Scholar]
  140. WangS. ZhangX. LiX. LiuQ. ZhouY. GuoP. DongZ. WuC. Phenylpropanoid glucosides from Tadehagi triquetrum inhibit oxLDL-evoked foam cell formation through modulating cholesterol homeostasis in RAW264.7 macrophages.Nat. Prod. Res.201933689389610.1080/14786419.2017.141081329199477
    [Google Scholar]
  141. JiaX. LiuB. XueJ. LiuY. ZhangJ. QinS. ZhangY. Phenylethanoid glycosides extract from Cistanche deserticola ameliorates atherosclerosis in apolipoprotein E-deficient mice and regulates intestinal PPARγ-LXRα-ABCA1 pathway.J. Pharm. Pharmacol.202375567768510.1093/jpp/rgad01536840643
    [Google Scholar]
  142. MukherjeeV. RamakrishnaP. BoraS. KotteazethS. Phytosteroid 28-homobrassinolide targets cholesterol and glucose homeostasis implicating ABCA1 and SREBP role in regulation.Steroids202116510875610.1016/j.steroids.2020.10875633171131
    [Google Scholar]
  143. WangL. PalmeV. SchilcherN. LadurnerA. HeissE.H. StanglH. BauerR. DirschV.M. AtanasovA.G. The dietary constituent falcarindiol promotes cholesterol efflux from THP-1 macrophages by increasing ABCA1 gene transcription and protein stability.Front. Pharmacol.2017859610.3389/fphar.2017.0059628919859
    [Google Scholar]
  144. GaoH. LiL. LiL. GongB. DongP. FordjourP.A. ZhuY. FanG. Danshensu promotes cholesterol efflux in RAW264.7 macrophages.Lipids20165191083109210.1007/s11745‑016‑4178‑127514857
    [Google Scholar]
  145. WangL. LadurnerA. LatkolikS. SchwaigerS. LinderT. HošekJ. PalmeV. SchilcherN. PolanskýO. HeissE.H. StanglH. MihovilovicM.D. StuppnerH. DirschV.M. AtanasovA.G. Leoligin, the major lignan from edelweiss ( Leontopodium nivale subsp. alpinum ), promotes cholesterol efflux from THP-1 macrophages.J. Nat. Prod.20167961651165710.1021/acs.jnatprod.6b0022727220065
    [Google Scholar]
  146. GuoS. LiL. YinH. Cholesterol homeostasis and liver X receptor (LXR) in atherosclerosis.Cardiovasc. Hematol. Disord. Drug Targets2018181273310.2174/1871529X1866618030211371329512473
    [Google Scholar]
  147. NiM. ZhangB. ZhaoJ. FengQ. PengJ. HuY. ZhaoY. Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease.Biomed. Pharmacother.201911310877810.1016/j.biopha.2019.10877830897538
    [Google Scholar]
  148. VenkateswaranA. LaffitteB.A. JosephS.B. MakP.A. WilpitzD.C. EdwardsP.A. TontonozP. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRα.Proc. Natl. Acad. Sci.20009722120971210210.1073/pnas.20036769711035776
    [Google Scholar]
  149. CostetP. LuoY. WangN. TallA.R. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor.J. Biol. Chem.200027536282402824510.1074/jbc.M00333720010858438
    [Google Scholar]
  150. RepaJ.J. TurleyS.D. LobaccaroJ.M.A. MedinaJ. LiL. LustigK. ShanB. HeymanR.A. DietschyJ.M. MangelsdorfD.J. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers.Science200028954841524152910.1126/science.289.5484.152410968783
    [Google Scholar]
  151. SchwartzK. LawnR.M. WadeD.P. ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR.Biochem. Biophys. Res. Commun.2000274379480210.1006/bbrc.2000.324310924356
    [Google Scholar]
  152. XuP. ZhaiY. WangJ. The role of PPAR and its cross-talk with CAR and LXR in obesity and atherosclerosis.Int. J. Mol. Sci.2018194126010.3390/ijms1904126029690611
    [Google Scholar]
  153. TontonozP. NagyL. AlvarezJ.G.A. ThomazyV.A. EvansR.M. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL.Cell199893224125210.1016/S0092‑8674(00)81575‑59568716
    [Google Scholar]
  154. ChinettiG. LestavelS. BocherV. RemaleyA.T. NeveB. TorraI.P. TeissierE. MinnichA. JayeM. DuvergerN. BrewerH.B. FruchartJ.C. ClaveyV. StaelsB. PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway.Nat. Med.200171535810.1038/8334811135616
    [Google Scholar]
  155. HaoD. DanbinW. MaojuanG. ChunS. BinL. LinY. YingxinS. GuanweiF. YefeiC. QingG. XijuanJ. Ethanol extracts of Danlou tablet attenuate atherosclerosis via inhibiting inflammation and promoting lipid effluent.Pharmacol. Res.201914610430610.1016/j.phrs.2019.10430631181336
    [Google Scholar]
  156. YangR. YinD. YangD. LiuX. ZhouQ. PanY. LiJ. LiS. Xinnaokang improves cecal microbiota and lipid metabolism to target atherosclerosis.Lett. Appl. Microbiol.202173677979210.1111/lam.1357334596907
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673291917240315113845
Loading
/content/journals/cmc/10.2174/0109298673291917240315113845
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test