Skip to content
2000
Volume 32, Issue 11
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Conventional therapeutic modalities against the cancers such as surgery, chemotherapy (CT) and radiotherapy (RT) have limited efficacy due to drug resistance, and adverse effects. Recent developments in nanoscience emphasized novel approaches to overcome the aforementioned limitations and subsequently improve overall clinical outcomes in cancer patients. Photodynamic therapy (PDT), photothermal therapy (PTT), and radiodynamic therapy (RDT) can be used as cancer treatments due to their high selectivity, low drug resistance, and low toxicity. Mitocans are the therapeutic molecules that can produce anti-cancer effects by modulating mitochondria functions and they have significant implications in cancer therapy. Mitochondria- targeted therapy is a promising strategy in cancer treatment as these organelles play a crucial function in the regulation of apoptosis and metabolism in tumor cells and are more vulnerable to hyperthermia and oxidative damage. The aim of this review is used to explore the targeting efficacy of mitocans in the nanotherapeutic formulation when combined with therapies like PDT, PTT, RDT. We searched several databases include Pubmed, relemed, scopus, google scholar, Embase and collected the related information to the efficacy of mitocans in nanotherapeutics when combined with photo-radiotherapy to target chemo/radio-resisant tumor cells. In this review, we vividly described research reports pertinent to the selective delivery of chemotherapy molecules into specific sub-organelles which can significantly improve the efficiency of cancer treatment by targeting tumor cell metabolism. Furthermore, the rational design, functionalization and application of various mitochondrial targeting units, including organic phosphine/sulfur salts, quaternary ammonium salts, transition metal complexes, and mitochondria-targeted cancer therapy such as PDT, PTT, RDT, and others were summarized. Mainly, the efficacy of these modalities against mtDNA and additional nanotherapeutic strategies with photosensitizers, or radiotherapy to target mitochondrial metabolism in tumor cells with chemo/radio-resistance were delineated. This review can benefit nanotechnologists, oncologists, and radiation oncologists to develop rational designs and application of novel mitochondrial targeting drugs mainly to target metabolism in chemo/radio-resistant cancer cells in cancer therapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673259347231019121757
2023-11-24
2025-06-22
Loading full text...

Full text loading...

References

  1. KhachoM. HarrisR. SlackR.S. Mitochondria as central regulators of neural stem cell fate and cognitive function.Nat. Rev. Neurosci.2019201344810.1038/s41583‑018‑0091‑330464208
    [Google Scholar]
  2. GuoX. YangN. JiW. ZhangH. DongX. ZhouZ. LiL. ShenH.M. YaoS.Q. HuangW. Mito-Bomb: Targeting Mitochondria for Cancer Therapy.Adv. Mater.20213343200777810.1002/adma.20200777834510563
    [Google Scholar]
  3. PathaniaD. MillardM. NeamatiN. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism.Adv. Drug Deliv. Rev.200961141250127510.1016/j.addr.2009.05.01019716393
    [Google Scholar]
  4. BattogtokhG. ChoY.Y. LeeJ.Y. LeeH.S. KangH.C. Mitochondrial-targeting anticancer agent conjugates and nanocarrier systems for cancer treatment.Front. Pharmacol.2018992210.3389/fphar.2018.0092230174604
    [Google Scholar]
  5. WallaceD. Mitochondria and cancer: Warburg addressed.Cold Spring Harbor symposia on quantitative biology: 2005.New York, United States2005363374
    [Google Scholar]
  6. HellerA. BrockhoffG. GoepferichA. Targeting drugs to mitochondria.Eur. J. Pharm. Biopharm.201282111810.1016/j.ejpb.2012.05.01422687572
    [Google Scholar]
  7. NeuzilJ. DongL.F. RohlenaJ. TruksaJ. RalphS.J. Classification of mitocans, anti-cancer drugs acting on mitochondria.Mitochondrion201313319920810.1016/j.mito.2012.07.11222846431
    [Google Scholar]
  8. WangH. XuW. Mito-methyl coumarin, a novel mitochondria-targeted drug with great antitumor potential was synthesized.Biochem. Biophys. Res. Commun.201748911710.1016/j.bbrc.2017.05.11628546001
    [Google Scholar]
  9. ZielonkaJ. JosephJ. SikoraA. HardyM. OuariO. Vasquez-VivarJ. ChengG. LopezM. KalyanaramanB. Mitochondria-targeted triphenylphosphonium-based compounds: Syntheses, mechanisms of action, and therapeutic and diagnostic applications.Chem. Rev.201711715100431012010.1021/acs.chemrev.7b0004228654243
    [Google Scholar]
  10. GanjiC. MuppalaV. KhanM. NagarajuG.P. FarranB. Mitochondrial-targeted nanoparticles: Delivery and therapeutic agents in cancer.Drug Discov. Today202328310346910.1016/j.drudis.2022.10346936529353
    [Google Scholar]
  11. ZhuC.N. WangZ.J. LiX.P. ChenS.Y. ZhengD.Y. LiuC. LiuX.J. ChengD.B. QiaoZ.Y. Site-specific activation of mitochondria-targeting peptide nanomaterials for treatment of drug-resistant tumors.ACS Appl. Nano Mater.2023617156411565010.1021/acsanm.3c02465
    [Google Scholar]
  12. NikraveshH. KhodayarM.J. BehmaneshB. MahdaviniaM. TeimooriA. AlboghobeishS. ZeidooniL. The combined effect of dichloroacetate and 3-bromopyruvate on glucose metabolism in colorectal cancer cell line, HT-29; the mitochondrial pathway apoptosis.BMC Cancer202121190310.1186/s12885‑021‑08564‑334364387
    [Google Scholar]
  13. HrkachJ. LangerR. From micro to nano: Evolution and impact of drug delivery in treating disease.Drug Deliv. Transl. Res.202010356757010.1007/s13346‑020‑00769‑632385828
    [Google Scholar]
  14. MaedaH. WuJ. SawaT. MatsumuraY. HoriK. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review.J. Control. Release2000651-227128410.1016/S0168‑3659(99)00248‑510699287
    [Google Scholar]
  15. FangX. LuiK.H. LiS. LoW.S. LiX. GuY. WongW. Multifunctional nanotheranostic gold nanocage/selenium core-shell for PAI-guided chemo-photothermal synergistic therapy in vivo.Int. J. Nanomedicine202015102711028410.2147/IJN.S27584633364758
    [Google Scholar]
  16. KangS. LeeS. ParkS. iRGD peptide as a tumor-penetrating enhancer for tumor-targeted drug delivery.Polymers (Basel)2020129190610.3390/polym1209190632847045
    [Google Scholar]
  17. ChenY. WangW. LianG. QianC. WangL. ZengL. LiaoC. LiangB. HuangB. HuangK. ShuaiX. Development of an MRI-visible nonviral vector for siRNA delivery targeting gastric cancer.Int. J. Nanomedicine2012735936822848158
    [Google Scholar]
  18. PanQ. LiK. ChengX. ChenL. YuQ. FanH. ZhengL. YangZ. NiF. A photoactivatable antibody–Chlorin e6 conjugate enabling singlet oxygen production for tumor-targeting photodynamic therapy.Biomed. Mater.202116404500310.1088/1748‑605X/ab9f5732584266
    [Google Scholar]
  19. TangY. LiuH. ChenH. ChenZ. LiuY. JinL. DengY. LiS. HeN. Advances in aptamer screening and drug delivery.J. Biomed. Nanotechnol.202016676378810.1166/jbn.2020.294333187576
    [Google Scholar]
  20. TianL. PeiR. ZhongL. JiY. ZhouD. ZhouS. Enhanced targeting of 3D pancreatic cancer spheroids by aptamer-conjugated polymeric micelles with deep tumor penetration.Eur. J. Pharmacol.202189417381410.1016/j.ejphar.2020.17381433352182
    [Google Scholar]
  21. XiaB. ZhangW. ShiJ. LiJ. ChenZ. ZhangQ. NIR light-triggered gelling in situ of porous silicon nanoparticles/PEGDA hybrid hydrogels for localized combinatorial therapy of cancer cells.J. Appl. Polym. Sci.2019136174744310.1002/app.47443
    [Google Scholar]
  22. XiaB. ZhangW. ShiJ. XiaoS. A novel strategy to fabricate doxorubicin/bovine serum albumin/porous silicon nanocomposites with pH-triggered drug delivery for cancer therapy in vitro.J. Mater. Chem. B Mater. Biol. Med.20142325280528610.1039/C4TB00307A32261669
    [Google Scholar]
  23. GaoD. ShengZ. LiuY. HuD. ZhangJ. ZhangX. ZhengH. YuanZ. Protein-modified CuS nanotriangles: A potential multimodal nanoplatform for in vivo tumor photoacoustic/magnetic resonance dual-modal imaging.Adv. Healthc. Mater.201761160109410.1002/adhm.20160109427976529
    [Google Scholar]
  24. XiaB. LiJ. ShiJ. ZhangY. ZhangQ. ChenZ. WangB. Biodegradable and magnetic-fluorescent porous silicon@ iron oxide nanocomposites for fluorescence/magnetic resonance bimodal imaging of tumor in vivo.ACS Biomater. Sci. Eng.20173102579258710.1021/acsbiomaterials.7b0046733465914
    [Google Scholar]
  25. QiT. ChenB. WangZ. DuH. LiuD. YinQ. LiuB. ZhangQ. WangY. A pH-Activatable nanoparticle for dual-stage precisely mitochondria-targeted photodynamic anticancer therapy.Biomaterials201921311921910.1016/j.biomaterials.2019.05.03031132647
    [Google Scholar]
  26. JinL. ZengX. LiuM. DengY. HeN. Theranostics 2014, 4, 240; d) SS Lucky, KC Soo, Y. Zhang.Chem. Rev.20151151990
    [Google Scholar]
  27. WenK. WuL. WuX. LuY. DuanT. MaH. PengA. ShiQ. HuangH. Precisely tuning photothermal and photodynamic effects of polymeric nanoparticles by controlled copolymerization.Angew. Chem. Int. Ed.20205931127561276110.1002/anie.20200418132343868
    [Google Scholar]
  28. MerazI.M. MelendezB. GuJ. WongS.T.C. LiuX. AnderssonH.A. SerdaR.E. Activation of the inflammasome and enhanced migration of microparticle-stimulated dendritic cells to the draining lymph node.Mol. Pharm.2012972049206210.1021/mp300129222680980
    [Google Scholar]
  29. SecretE. SmithK. DubljevicV. MooreE. MacardleP. DelalatB. RogersM.L. JohnsT.G. DurandJ.O. CuninF. VoelckerN.H. Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs.Adv. Healthc. Mater.20132571872710.1002/adhm.20120033523203914
    [Google Scholar]
  30. JeanbartL. SwartzM.A. Engineering opportunities in cancer immunotherapy.Proc. Natl. Acad. Sci. USA201511247144671447210.1073/pnas.150851611226598681
    [Google Scholar]
  31. MurphyM Drug delivery to mitochondria: The key to mitochondrial medicine.Adv. Drug Deliv. Res.2000412235250
    [Google Scholar]
  32. HarisaG.I. FarisT.M. Direct drug targeting into intracellular compartments: Issues, limitations, and future outlook.J. Membr. Biol.2019252652753910.1007/s00232‑019‑00082‑531375855
    [Google Scholar]
  33. GaoY. TongH. LiJ. LiJ. HuangD. ShiJ. XiaB. Mitochondria-targeted nanomedicine for enhanced efficacy of cancer therapy.Front. Bioeng. Biotechnol.2021972050810.3389/fbioe.2021.72050834490227
    [Google Scholar]
  34. WeissigV. LaschJ. ErdosG. MeyerH.W. RoweT.C. HughesJ. DQAsomes: A novel potential drug and gene delivery system made from Dequalinium.Pharm. Res.199815233433710.1023/A:10119913076319523323
    [Google Scholar]
  35. BennsJ.M. MaheshwariA. FurgesonD.Y. MahatoR.I. KimS.W. Folate-PEG-folate-graft-polyethylenimine-based gene delivery.J. Drug Target.20019212313910.3109/1061186010899792311697107
    [Google Scholar]
  36. D’SouzaG.G.M. RammohanR. ChengS.M. TorchilinV.P. WeissigV. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells.J. Control. Release2003921-218919710.1016/S0168‑3659(03)00297‑914499196
    [Google Scholar]
  37. WangZ GuoW KuangX HouS LiuH Nanopreparations for mitochondria targeting drug delivery system: Current strategies and future prospective.Asian J. Pharmaceut. Sci.201712649850810.1016/j.ajps.2017.05.006
    [Google Scholar]
  38. ZhangX. FryknäsM. HernlundE. FayadW. De MilitoA. OlofssonM.H. GogvadzeV. DangL. PåhlmanS. SchughartL.A.K. RickardsonL. D’ArcyP. GullboJ. NygrenP. LarssonR. LinderS. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments.Nat. Commun.201451329510.1038/ncomms429524548894
    [Google Scholar]
  39. BattogtokhG. ChoiY.S. KangD.S. ParkS.J. ShimM.S. HuhK.M. ChoY.Y. LeeJ.Y. LeeH.S. KangH.C. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: Current strategies and future perspectives.Acta Pharm. Sin. B20188686288010.1016/j.apsb.2018.05.00630505656
    [Google Scholar]
  40. CalitreeB. DonnellyD.J. HoltJ.J. GannonM.K. NygrenC.L. SukumaranD.K. AutschbachJ. DettyM.R. Tellurium analogues of rosamine and rhodamine dyes: Synthesis, structure, 125Te NMR, and heteroatom contributions to excitation energies.Organometallics200726256248625710.1021/om700846m
    [Google Scholar]
  41. HeL. WangK.N. ZhengY. CaoJ.J. ZhangM.F. TanC.P. JiL.N. MaoZ.W. Cyclometalated iridium( iii ) complexes induce mitochondria-derived paraptotic cell death and inhibit tumor growth in vivo.Dalton Trans.201847206942695310.1039/C8DT00783G29721561
    [Google Scholar]
  42. LongL. HuangM. WangN. WuY. WangK. GongA. ZhangZ. SesslerJ.L. A mitochondria-specific fluorescent probe for visualizing endogenous hydrogen cyanide fluctuations in neurons.J. Am. Chem. Soc.201814051870187510.1021/jacs.7b1254529337546
    [Google Scholar]
  43. MomcilovicM. JonesA. BaileyS.T. WaldmannC.M. LiR. LeeJ.T. AbdelhadyG. GomezA. HollowayT. SchmidE. StoutD. FishbeinM.C. StilesL. DabirD.V. DubinettS.M. ChristofkH. ShirihaiO. KoehlerC.M. SadeghiS. ShackelfordD.B. In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer.Nature2019575778238038410.1038/s41586‑019‑1715‑031666695
    [Google Scholar]
  44. MaycotteP. Marín-HernándezA. Goyri-AguirreM. Anaya-RuizM. Reyes-LeyvaJ. Cortés-HernándezP. Mitochondrial dynamics and cancer.Tumour Biol.201739510.1177/101042831769839128468591
    [Google Scholar]
  45. YouleR.J. van der BliekA.M. Mitochondrial fission, fusion, and stress.Science201233760981062106510.1126/science.121985522936770
    [Google Scholar]
  46. ZhaoH. YinR. WangY. LeeY.H. LuoT. ZhangJ. QiuH. AmbroseS. WangL. RenJ. YaoJ. ChenD. WangY. LiangZ. ZhenJ. WuS. YeZ. ZengJ. HuangN. GuY. Modulating mitochondrial morphology enhances antitumor effect of 5-ALA-mediated photodynamic therapy both in vivo and in vivo.J. Photochem. Photobiol. B2017176819110.1016/j.jphotobiol.2017.09.01728964889
    [Google Scholar]
  47. HuangM. MyersC.R. WangY. YouM. Mitochondria as a novel target for cancer chemoprevention: Emergence of mitochondrial-targeting agents.Cancer Prev. Res. (Phila.)202114328530610.1158/1940‑6207.CAPR‑20‑042533303695
    [Google Scholar]
  48. KimS. PalanikumarL. ChoiH. JeenaM.T. KimC. RyuJ.H. Intra-mitochondrial biomineralization for inducing apoptosis of cancer cells.Chem. Sci. (Camb.)2018992474247910.1039/C7SC05189A29732123
    [Google Scholar]
  49. KolbD. KolishettiN. SurnarB. SarkarS. GuinS. ShahA.S. DharS. Metabolic modulation of the tumor microenvironment leads to multiple checkpoint inhibition and immune cell infiltration.ACS Nano2020149110551106610.1021/acsnano.9b1003732706241
    [Google Scholar]
  50. LinR.Y. VeraJ.C. ChagantiR.S.K. GoldeD.W. Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter.J. Biol. Chem.199827344289592896510.1074/jbc.273.44.289599786900
    [Google Scholar]
  51. VégranF. BoidotR. MichielsC. SonveauxP. FeronO. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis.Cancer Res.20117172550256010.1158/0008‑5472.CAN‑10‑282821300765
    [Google Scholar]
  52. LuciakovaK. BarathP. PoliakovaD. PerssonA. NelsonB.D. Repression of the human adenine nucleotide translocase-2 gene in growth-arrested human diploid cells: The role of nuclear factor-1.J. Biol. Chem.200327833306243063310.1074/jbc.M30353020012777383
    [Google Scholar]
  53. ChevrollierA. LoiseauD. ReynierP. StepienG. Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism.Biochim. Biophys. Acta Bioenerg.20111807656256710.1016/j.bbabio.2010.10.00820950584
    [Google Scholar]
  54. JangJ.Y. JeonY.K. KimC.W. Degradation of HER2/neu by ANT2 shRNA suppresses migration and invasiveness of breast cancer cells.BMC Cancer201010139110.1186/1471‑2407‑10‑39120650008
    [Google Scholar]
  55. WenS. ZhuD. HuangP. Targeting cancer cell mitochondria as a therapeutic approach.Future Med. Chem.201351536710.4155/fmc.12.19023256813
    [Google Scholar]
  56. BurnsR.J. SmithR.A.J. MurphyM.P. Synthesis and characterization of thiobutyltriphenylphosphonium bromide, a novel thiol reagent targeted to the mitochondrial matrix.Arch. Biochem. Biophys.19953221606810.1006/abbi.1995.14367574695
    [Google Scholar]
  57. LinF. BaoY.W. WuF.G. Improving the phototherapeutic efficiencies of molecular and nanoscale materials by targeting mitochondria.Molecules20182311301610.3390/molecules2311301630453692
    [Google Scholar]
  58. YangL. GaoP. HuangY. LuX. ChangQ. PanW. LiN. TangB. Boosting the photodynamic therapy efficiency with a mitochondria-targeted nanophotosensitizer.Chin. Chem. Lett.20193061293129610.1016/j.cclet.2019.03.032
    [Google Scholar]
  59. LiuC. ZhouL. WeiF. LiL. ZhaoS. GongP. CaiL. WongK.M.C. Versatile strategy to generate a rhodamine triplet state as mitochondria-targeting visible-light photosensitizers for efficient photodynamic therapy.ACS Appl. Mater. Interfaces20191198797880610.1021/acsami.8b2022430730131
    [Google Scholar]
  60. LiX. ZhaoY. ZhangT. XingD. Mitochondria-specific agents for photodynamic cancer therapy: A key determinant to boost the efficacy.Adv. Healthc. Mater.2021103200124010.1002/adhm.20200124033236531
    [Google Scholar]
  61. ThomasA.P. PalanikumarL. JeenaM.T. KimK. RyuJ.H. Cancer-mitochondria-targeted photodynamic therapy with supramolecular assembly of HA and a water soluble NIR cyanine dye.Chem. Sci. (Camb.)20178128351835610.1039/C7SC03169F29619181
    [Google Scholar]
  62. McKenzieL.K. SazanovichI.V. BaggaleyE. BonneauM. GuerchaisV. WilliamsJ.A.G. WeinsteinJ.A. BryantH.E. Metal Complexes for Two-Photon Photodynamic Therapy: A Cyclometallated Iridium Complex Induces Two-Photon Photosensitization of Cancer Cells under Near-IR Light.Chemistry201723223423810.1002/chem.20160479227740703
    [Google Scholar]
  63. LvW. ZhangZ. ZhangK.Y. YangH. LiuS. XuA. GuoS. ZhaoQ. HuangW. A mitochondria-targeted photosensitizer showing improved photodynamic therapy effects under hypoxia.Angew. Chem. Int. Ed.201655349947995110.1002/anie.20160413027381490
    [Google Scholar]
  64. ChakraborttyS. AgrawallaB.K. StumperA. VegiN.M. FischerS. ReichardtC. KöglerM. DietzekB. Feuring-BuskeM. BuskeC. RauS. WeilT. Mitochondria targeted protein-ruthenium photosensitizer for efficient photodynamic applications.J. Am. Chem. Soc.201713962512251910.1021/jacs.6b1339928097863
    [Google Scholar]
  65. LiJ. ChenT. Transition metal complexes as photosensitizers for integrated cancer theranostic applications.Coord. Chem. Rev.202041821335510.1016/j.ccr.2020.213355
    [Google Scholar]
  66. GuoZ. ZhouX. HouC. DingZ. WenC. ZhangL.J. JiangB.P. ShenX.C. A chloroplast-inspired nanoplatform for targeting cancer and synergistic photodynamic/photothermal therapy.Biomater. Sci.2019793886389710.1039/C9BM00762H31313766
    [Google Scholar]
  67. KangJ.H. KoY.T. Dual-selective photodynamic therapy with a mitochondria-targeted photosensitizer and fiber optic cannula for malignant brain tumors.Biomater. Sci.2019772812282510.1039/C9BM00403C31066391
    [Google Scholar]
  68. Satrialdi TakanoY. HirataE. UshijimaN. HarashimaH. YamadaY. An effective in vivo mitochondria-targeting nanocarrier combined with a π-extended porphyrin-type photosensitizer.Nanoscale Adv.20213205919592710.1039/D1NA00427A36132667
    [Google Scholar]
  69. WangY. XuS. ShiL. TehC. QiG. LiuB. Cancer-cell-activated in situ synthesis of mitochondria-targeting AIE photosensitizer for precise photodynamic therapy.Angew. Chem. Int. Ed.20216027149451495310.1002/anie.20201735033887096
    [Google Scholar]
  70. Wu KlinglerW. GigerN. SchneiderL. BabuV. KönigC. SpielmannP. WengerR.H. FerrariS. SpinglerB. Low-dose near-infrared light-activated mitochondria-targeting photosensitizers for PDT cancer therapy.Int. J. Mol. Sci.20222317952510.3390/ijms2317952536076920
    [Google Scholar]
  71. HsuC.C. TsengL.M. LeeH.C. Role of mitochondrial dysfunction in cancer progression.Exp. Biol. Med. (Maywood)2016241121281129510.1177/153537021664178727022139
    [Google Scholar]
  72. ReddyC.A. SomepalliV. GolakotiT. KanugulaA.K. KarnewarS. RajendiranK. VasagiriN. PrabhakarS. KuppusamyP. KotamrajuS. KutalaV.K. Mitochondrial-targeted curcuminoids: A strategy to enhance bioavailability and anticancer efficacy of curcumin.PLoS One201493e8935110.1371/journal.pone.008935124622734
    [Google Scholar]
  73. NedopekinaD.A. GubaidullinR.R. OdinokovV.N. MaximchikP.V. ZhivotovskyB. Bel’skiiY.P. KhazanovV.A. ManuylovaA.V. GogvadzeV. SpivakA.Y. Mitochondria-targeted betulinic and ursolic acid derivatives: Synthesis and anticancer activity.Med. Chem. Comm.20178101934194510.1039/C7MD00248C30108714
    [Google Scholar]
  74. YuH. LiJ.M. DengK. ZhouW. WangC.X. WangQ. LiK.H. ZhaoH.Y. HuangS.W. Tumor acidity activated triphenylphosphonium-based mitochondrial targeting nanocarriers for overcoming drug resistance of cancer therapy.Theranostics20199237033705010.7150/thno.3574831660085
    [Google Scholar]
  75. RossM.F. PrimeT.A. AbakumovaI. JamesA.M. PorteousC.M. SmithR.A.J. MurphyM.P. Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells.Biochem. J.2008411363364510.1042/BJ2008006318294140
    [Google Scholar]
  76. ChengG. ZielonkaJ. OuariO. LopezM. McAllisterD. BoyleK. BarriosC.S. WeberJ.J. JohnsonB.D. HardyM. DwinellM.B. KalyanaramanB. Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radiosensitizing effects in pancreatic cancer cells.Cancer Res.201676133904391510.1158/0008‑5472.CAN‑15‑253427216187
    [Google Scholar]
  77. RautioJ. KumpulainenH. HeimbachT. OliyaiR. OhD. JärvinenT. SavolainenJ. Prodrugs: Design and clinical applications.Nat. Rev. Drug Discov.20087325527010.1038/nrd246818219308
    [Google Scholar]
  78. MaedaH. NakamuraH. FangJ. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo.Adv. Drug Deliv. Rev.2013651717910.1016/j.addr.2012.10.00223088862
    [Google Scholar]
  79. FinkM.P. MaciasC.A. XiaoJ. TyurinaY.Y. JiangJ. BelikovaN. DeludeR.L. GreenbergerJ.S. KaganV.E. WipfP. Hemigramicidin–TEMPO conjugates: Novel mitochondria-targeted anti-oxidants.Biochem. Pharmacol.200774680180910.1016/j.bcp.2007.05.01917601494
    [Google Scholar]
  80. JiangJ. KurnikovI. BelikovaN.A. XiaoJ. ZhaoQ. AmoscatoA.A. BraslauR. StuderA. FinkM.P. GreenbergerJ.S. WipfP. KaganV.E. Structural requirements for optimized delivery, inhibition of oxidative stress, and antiapoptotic activity of targeted nitroxides.J. Pharmacol. Exp. Ther.200732031050106010.1124/jpet.106.11476917179468
    [Google Scholar]
  81. KrainzT. LamadeA.M. DuL. MaskreyT.S. CalderonM.J. WatkinsS.C. EpperlyM.W. GreenbergerJ.S. BayırH. WipfP. ClarkR.S.B. Bayır Hl, Wipf P: Synthesis and evaluation of a mitochondria-targeting poly (ADP-ribose) polymerase-1 inhibitor.ACS Chem. Biol.201813102868287910.1021/acschembio.8b0042330184433
    [Google Scholar]
  82. MaJ. LimC. SacherJ.R. Van HoutenB. QianW. WipfP. Mitochondrial targeted β-lapachone induces mitochondrial dysfunction and catastrophic vacuolization in cancer cells.Bioorg. Med. Chem. Lett.201525214828483310.1016/j.bmcl.2015.06.07326159482
    [Google Scholar]
  83. HortonK.L. KelleyS.O. Engineered apoptosis-inducing peptides with enhanced mitochondrial localization and potency.J. Med. Chem.200952103293329910.1021/jm900178n19397319
    [Google Scholar]
  84. ZhaoK. LuoG. GiannelliS. SzetoH.H. Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines.Biochem. Pharmacol.200570121796180610.1016/j.bcp.2005.08.02216216225
    [Google Scholar]
  85. XingL. LyuJ.Y. YangY. CuiP.F. GuL.Q. QiaoJ.B. HeY.J. ZhangT.Q. SunM. LuJ.J. XuX. LiuY. JiangH.L. pH-Responsive de-PEGylated nanoparticles based on triphenylphosphine–quercetin self-assemblies for mitochondria-targeted cancer therapy.Chem. Commun. (Camb.)201753628790879310.1039/C7CC04058J28736782
    [Google Scholar]
  86. FelsherD.W. Cancer revoked: Oncogenes as therapeutic targets.Nat. Rev. Cancer20033537537910.1038/nrc107012724735
    [Google Scholar]
  87. GuanY. LuH. LiW. ZhengY. JiangZ. ZouJ. GaoH. Near-infrared triggered upconversion polymeric nanoparticles based on aggregation-induced emission and mitochondria targeting for photodynamic cancer therapy.ACS Appl. Mater. Interfaces2017932267312673910.1021/acsami.7b0776828745482
    [Google Scholar]
  88. HuQ. GaoM. FengG. LiuB. Mitochondria-targeted cancer therapy using a light-up probe with aggregation-induced-emission characteristics.Angew. Chem. Int. Ed.20145351142251422910.1002/anie.20140889725318447
    [Google Scholar]
  89. WangK. QianM. QiH. GaoQ. ZhangC. Multifunctional zeolitic imidazolate framework-8 for real-time monitoring ATP fluctuation in mitochondria during photodynamic therapy.Nanoscale20201229156631566910.1039/D0NR02149K32672322
    [Google Scholar]
  90. LiM. LongS. KangY. GuoL. WangJ. FanJ. DuJ. PengX. De novo design of phototheranostic sensitizers based on structure-inherent targeting for enhanced cancer ablation.J. Am. Chem. Soc.201814046158201582610.1021/jacs.8b0911730380856
    [Google Scholar]
  91. SinghH. SareenD. GeorgeJ.M. BhardwajV. RhaS. LeeS.J. SharmaS. SharmaA. KimJ.S. Mitochondria targeted fluorogenic theranostic agents for cancer therapy.Coord. Chem. Rev.202245221428310.1016/j.ccr.2021.214283
    [Google Scholar]
  92. TianN. SunW. GuoX. LuJ. LiC. HouY. WangX. ZhouQ. Mitochondria targeted and NADH triggered photodynamic activity of chloromethyl modified Ru( ii ) complexes under hypoxic conditions.Chem. Commun. (Camb.)201955182676267910.1039/C8CC09186B30747181
    [Google Scholar]
  93. BurkeC.S. ByrneA. KeyesT.E. Highly selective mitochondrial targeting by a ruthenium (II) peptide conjugate: Imaging and photoinduced damage of mitochondrial DNA.Angew. Chem. Int. Ed.20185738124201242410.1002/anie.20180600230016579
    [Google Scholar]
  94. ChengY. YangF. ZhangK. ZhangY. CaoY. LiuC. LuH. DongH. ZhangX. Non-fenton-type hydroxyl radical generation and photothermal effect by mitochondria-targeted WSSe/MnO2 nanocomposite loaded with isoniazid for synergistic anticancer treatment.Adv. Funct. Mater.20192945190385010.1002/adfm.201903850
    [Google Scholar]
  95. JungH.S. VerwilstP. SharmaA. ShinJ. SesslerJ.L. KimJ.S. Organic molecule-based photothermal agents: An expanding photothermal therapy universe.Chem. Soc. Rev.20184772280229710.1039/C7CS00522A29528360
    [Google Scholar]
  96. SongX. ChenQ. LiuZ. Recent advances in the development of organic photothermal nano-agents.Nano Res.20158234035410.1007/s12274‑014‑0620‑y
    [Google Scholar]
  97. WangH. ChangJ. ShiM. PanW. LiN. TangB. A dual-targeted organic photothermal agent for enhanced photothermal therapy.Angew. Chem. Int. Ed.20195841057106110.1002/anie.20181127330397990
    [Google Scholar]
  98. LinK. LinZ. LiY. ZhengY. ZhangD. Ultrasound-induced reactive oxygen species generation and mitochondria-specific damage by sonodynamic agent/metal ion-doped mesoporous silica.RSC Advances2019968399243993110.1039/C9RA08142A35541381
    [Google Scholar]
  99. ZhangL. YiH. SongJ. HuangJ. YangK. TanB. WangD. YangN. WangZ. LiX. Mitochondria-targeted and ultrasound-activated nanodroplets for enhanced deep-penetration sonodynamic cancer therapy.ACS Appl. Mater. Interfaces20191199355936610.1021/acsami.8b2196830734551
    [Google Scholar]
  100. BeggA.C. StewartF.A. VensC. Strategies to improve radiotherapy with targeted drugs.Nat. Rev. Cancer201111423925310.1038/nrc300721430696
    [Google Scholar]
  101. MoellerB.J. RichardsonR.A. DewhirstM.W. Hypoxia and radiotherapy: Opportunities for improved outcomes in cancer treatment.Cancer Metastasis Rev.200726224124810.1007/s10555‑007‑9056‑017440683
    [Google Scholar]
  102. MohiuddinM. ThomasC.R.Jr Will there be a future role for radiation in the neo-adjuvant therapy for rectal cancer?Int. J. Radiat. Oncol. Biol. Phys.201180364364410.1016/j.ijrobp.2011.01.05721621118
    [Google Scholar]
  103. WangP ZhangJ ZhangL ZhuZ FanJ ChenL ZhuangL LuoJ ChenH LiuL MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cell.Gastroenterology2013145511331134
    [Google Scholar]
  104. YuC.Y.Y. XuH. JiS. KwokR.T.K. LamJ.W.Y. LiX. KrishnanS. DingD. TangB.Z. Mitochondrion-anchoring photosensitizer with aggregation-induced emission characteristics synergistically boosts the radiosensitivity of cancer cells to ionizing radiation.Adv. Mater.20172915160616710.1002/adma.20160616728195448
    [Google Scholar]
  105. LiN. YuL. WangJ. GaoX. ChenY. PanW. TangB. A mitochondria-targeted nanoradiosensitizer activating reactive oxygen species burst for enhanced radiation therapy.Chem. Sci. (Camb.)20189123159316410.1039/C7SC04458E29732098
    [Google Scholar]
  106. LiuY. ZhuangD. WangJ. HuangH. LiR. WuC. DengY. HuG. GuoB. Recent Advances in Small Molecular Near-Infrared Fluorescence Probes for Targeted Diagnosis of Alzheimer’s Disease.Analyst (Lond.)2022
    [Google Scholar]
  107. ZhangL. LiuY. HuangH. XieH. ZhangB. XiaW. GuoB. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors.Adv. Drug Deliv. Rev.202219011453610.1016/j.addr.2022.11453636108792
    [Google Scholar]
  108. HuQ. HeC. LuZ. HeY. XieH. LiJ. FuZ. GuoB. Engineering of small molecular organic nanoparticles for mitochondria-targeted mild photothermal therapy of malignant breast cancers.Biomater. Sci.202210206013602310.1039/D2BM01239A36069330
    [Google Scholar]
  109. HuQ. XuM. FengJ. XieH. LiJ. HeY. TangG. GuoB. Hyperthermia-induced stellate cell deactivation to enhance dual chemo and pH-responsive photothermal therapy for pancreatic cancers.Nanoscale20221442157351574810.1039/D2NR04235E36205175
    [Google Scholar]
  110. HeZ. HanX. YanZ. GuoB. CaiQ. YaoY. Backbone flexibility/amphiphilicity modulation of AIE active polyelectrolytes for mitochondria- and nucleus-targeted synergistic photodynamic therapy of cancer cells.Mater. Chem. Front.20226243678369010.1039/D2QM00761D
    [Google Scholar]
  111. GuoB. WuM. ShiQ. DaiT. XuS. JiangJ. LiuB. All-in-one molecular aggregation-induced emission theranostics: Fluorescence image guided and mitochondria targeted chemo-and photodynamic cancer cell ablation.Chem. Mater.202032114681469110.1021/acs.chemmater.0c01187
    [Google Scholar]
  112. XiangH. XueF. YiT. ThamH.P. LiuJ.G. ZhaoY. Cu 2– x S Nanocrystals Cross-Linked with Chlorin e6-Functionalized Polyethylenimine for Synergistic Photodynamic and Photothermal Therapy of Cancer.ACS Appl. Mater. Interfaces20181019163441635110.1021/acsami.8b0477929697957
    [Google Scholar]
  113. SongY. ShiQ. ZhuC. LuoY. LuQ. LiH. YeR. DuD. LinY. Mitochondrial-targeted multifunctional mesoporous Au@Pt nanoparticles for dual-mode photodynamic and photothermal therapy of cancers.Nanoscale2017941158131582410.1039/C7NR04881E29018855
    [Google Scholar]
  114. YangX. WangD. ZhuJ. XueL. OuC. WangW. LuM. SongX. DongX. Functional black phosphorus nanosheets for mitochondria-targeting photothermal/photodynamic synergistic cancer therapy.Chem. Sci. (Camb.)201910133779378510.1039/C8SC04844D30996966
    [Google Scholar]
  115. ChenX. LiY. LiS. GaoM. RenL. TangB.Z. Mitochondria-and lysosomes-targeted synergistic chemo-photodynamic therapy associated with self-monitoring by dual light-up fluorescence.Adv. Funct. Mater.20182844180436210.1002/adfm.201804362
    [Google Scholar]
  116. LiuH.W. HuX.X. LiK. LiuY. RongQ. ZhuL. YuanL. QuF.L. ZhangX.B. TanW. A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy.Chem. Sci. (Camb.)20178117689769510.1039/C7SC03454G29619164
    [Google Scholar]
  117. NiK. LanG. VeroneauS.S. DuanX. SongY. LinW. Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy.Nat. Commun.201891432110.1038/s41467‑018‑06655‑730333489
    [Google Scholar]
  118. ChamberlainG.R. TulumelloD.V. KelleyS.O. Targeted delivery of doxorubicin to mitochondria.ACS Chem. Biol.2013871389139510.1021/cb400095v23590228
    [Google Scholar]
  119. HanM. VakiliM.R. Soleymani AbyanehH. MolaviO. LaiR. LavasanifarA. Mitochondrial delivery of doxorubicin via triphenylphosphine modification for overcoming drug resistance in MDA-MB-435/DOX cells.Mol. Pharm.20141182640264910.1021/mp500038g24811541
    [Google Scholar]
  120. YoongS.L. WongB.S. ZhouQ.L. ChinC.F. LiJ. VenkatesanT. HoH.K. YuV. AngW.H. PastorinG. Enhanced cytotoxicity to cancer cells by mitochondria-targeting MWCNTs containing platinum(IV) prodrug of cisplatin.Biomaterials201435274875910.1016/j.biomaterials.2013.09.03624140044
    [Google Scholar]
  121. NitissJ.L. Targeting DNA topoisomerase II in cancer chemotherapy.Nat. Rev. Cancer20099533835010.1038/nrc260719377506
    [Google Scholar]
  122. ZhouM. LiL. LiL. LinX. WangF. LiQ. HuangY. Overcoming chemotherapy resistance via simultaneous drug-efflux circumvention and mitochondrial targeting.Acta Pharm. Sin. B20199361562510.1016/j.apsb.2018.11.00531193791
    [Google Scholar]
  123. LiW.Q. WangZ. HaoS. HeH. WanY. ZhuC. SunL.P. ChengG. ZhengS.Y. Mitochondria-targeting polydopamine nanoparticles to deliver doxorubicin for overcoming drug resistance.ACS Appl. Mater. Interfaces2017920167931680210.1021/acsami.7b0154028481505
    [Google Scholar]
  124. CluntunA.A. LukeyM.J. CerioneR.A. LocasaleJ.W. Glutamine metabolism in cancer: Understanding the heterogeneity.Trends Cancer20173316918010.1016/j.trecan.2017.01.00528393116
    [Google Scholar]
  125. DeBerardinisR ChandelN Fundamentals of cancer metabolism.Sci Adv.201625e1600200
    [Google Scholar]
  126. GentricG. MieuletV. Mechta-GrigoriouF. Heterogeneity in cancer metabolism: New concepts in an old field.Antioxid. Redox Signal.201726946248510.1089/ars.2016.675027228792
    [Google Scholar]
  127. BokilA. SanchoP. Mitochondrial determinants of chemoresistance.Cancer Drug Resist.20192363464635582564
    [Google Scholar]
  128. WheatonWW WeinbergSE HamanakaRB SoberanesS SullivanLB AnsoE GlasauerA DufourE MutluGM BudignerGS Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis.Elife20143e022410.7554/eLife.02242
    [Google Scholar]
  129. JagustP. de Luxán-DelgadoB. Parejo-AlonsoB. SanchoP. Metabolism-based therapeutic strategies targeting cancer stem cells.Front. Pharmacol.20191020310.3389/fphar.2019.0020330967773
    [Google Scholar]
  130. HeeschenC. SanchoP. More challenges ahead- metabolic heterogeneity of pancreatic cancer stem cells.Mol. Cell. Oncol.201632e110535310.1080/23723556.2015.110535327308630
    [Google Scholar]
  131. Corazao-RozasP. GuerreschiP. JendoubiM. AndréF. JonneauxA. ScalbertC. GarçonG. Malet-MartinoM. BalayssacS. RocchiS. SavinaA. FormstecherP. MortierL. KluzaJ. MarchettiP. Mitochondrial oxidative stress is the achille’s heel of melanoma cells resistant to Braf-mutant inhibitor.Oncotarget20134111986199810.18632/oncotarget.142024161908
    [Google Scholar]
  132. XuY. GaoW. ZhangY. WuS. LiuY. DengX. XieL. YangJ. YuH. SuJ. SunL. ABT737 reverses cisplatin resistance by targeting glucose metabolism of human ovarian cancer cells.Int. J. Oncol.20185331055106810.3892/ijo.2018.447630015875
    [Google Scholar]
  133. SartoriusU.A. KrammerP.H. Upregulation of bcl-2 is involved in the mediation of chemotherapy resistance in human small cell lung cancer cell lines.Int. J. Cancer200297558459210.1002/ijc.1009611807782
    [Google Scholar]
  134. RealP.J. SierraA. de JuanA. SegoviaJ.C. Lopez-VegaJ.M. Fernandez-LunaJ.L. Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells.Oncogene200221507611761810.1038/sj.onc.120600412400004
    [Google Scholar]
  135. BauerJ.J. SesterhennI.A. MostofiF.K. McLeodD.G. SrivastavaS. MoulJ.W. Elevated levels of apoptosis regulator proteins p53 and bcl-2 are independent prognostic biomarkers in surgically treated clinically localized prostate cancer.J. Urol.199615641511151610.1016/S0022‑5347(01)65641‑68808919
    [Google Scholar]
  136. ChoH.J. KimJ.K. KimK.D. YoonH.K. ChoM.Y. ParkY.P. JeonJ.H. LeeE.S. ByunS.S. LimH.M. SongE.Y. LimJ.S. YoonD.Y. LeeH.G. ChoeY.K. Upregulation of Bcl-2 is associated with cisplatin-resistance via inhibition of Bax translocation in human bladder cancer cells.Cancer Lett.20062371566610.1016/j.canlet.2005.05.03916009487
    [Google Scholar]
  137. SpringB.Q. RizviI. XuN. HasanT. The role of photodynamic therapy in overcoming cancer drug resistance.Photochem. Photobiol. Sci.20151481476149110.1039/c4pp00495g25856800
    [Google Scholar]
  138. PereiraP.M.R. SilvaS. BispoM. ZuzarteM. GomesC. GirãoH. CavaleiroJ.A.S. RibeiroC.A.F. ToméJ.P.C. FernandesR. Mitochondria-targeted photodynamic therapy with a galactodendritic chlorin to enhance cell death in resistant bladder cancer cells.Bioconjug. Chem.201627112762276910.1021/acs.bioconjchem.6b0051927750007
    [Google Scholar]
  139. Masliah-PlanchonJ. BiècheI. GuinebretièreJ.M. BourdeautF. DelattreO. SWI/SNF chromatin remodeling and human malignancies.Annu. Rev. Pathol.201510114517110.1146/annurev‑pathol‑012414‑04044525387058
    [Google Scholar]
  140. JonesS. WangT.L. ShihI.M. MaoT.L. NakayamaK. RodenR. GlasR. SlamonD. DiazL.A.Jr VogelsteinB. KinzlerK.W. VelculescuV.E. PapadopoulosN. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma.Science2010330600122823110.1126/science.119633320826764
    [Google Scholar]
  141. WiegandK.C. ShahS.P. Al-AghaO.M. ZhaoY. TseK. ZengT. SenzJ. McConechyM.K. AnglesioM.S. KallogerS.E. YangW. Heravi-MoussaviA. GiulianyR. ChowC. FeeJ. ZayedA. PrenticeL. MelnykN. TurashviliG. DelaneyA.D. MadoreJ. YipS. McPhersonA.W. HaG. BellL. FeredayS. TamA. GallettaL. ToninP.N. ProvencherD. MillerD. JonesS.J.M. MooreR.A. MorinG.B. OloumiA. BoydN. AparicioS.A. ShihI.M. Mes-MassonA.M. BowtellD.D. HirstM. GilksB. MarraM.A. HuntsmanD.G. ARID1A mutations in endometriosis-associated ovarian carcinomas.N. Engl. J. Med.2010363161532154310.1056/NEJMoa100843320942669
    [Google Scholar]
  142. RamosP. KarnezisA.N. CraigD.W. SekulicA. RussellM.L. HendricksW.P.D. CorneveauxJ.J. BarrettM.T. ShumanskyK. YangY. ShahS.P. PrenticeL.M. MarraM.A. KieferJ. ZismannV.L. McEachronT.A. SalhiaB. PratJ. D’AngeloE. ClarkeB.A. PresseyJ.G. FarleyJ.H. AnthonyS.P. RodenR.B.S. CunliffeH.E. HuntsmanD.G. TrentJ.M. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4.Nat. Genet.201446542742910.1038/ng.292824658001
    [Google Scholar]
  143. JelinicP. MuellerJ.J. OlveraN. DaoF. ScottS.N. ShahR. GaoJ. SchultzN. GonenM. SoslowR.A. BergerM.F. LevineD.A. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary.Nat. Genet.201446542442610.1038/ng.292224658004
    [Google Scholar]
  144. EmmingsE. MullanyS. ChangZ. LandenC.N.Jr LinderS. BazzaroM. Targeting mitochondria for treatment of chemoresistant ovarian cancer.Int. J. Mol. Sci.201920122910.3390/ijms2001022930626133
    [Google Scholar]
  145. Lissanu DeribeY. SunY. TerranovaC. KhanF. Martinez-LedesmaJ. GayJ. GaoG. MullinaxR.A. KhorT. FengN. LinY.H. WuC.C. ReyesC. PengQ. RobinsonF. InoueA. KochatV. LiuC.G. AsaraJ.M. MoranC. MullerF. WangJ. FangB. PapadimitrakopoulouV. WistubaI.I. RaiK. MarszalekJ. FutrealP.A. Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer.Nat. Med.20182471047105710.1038/s41591‑018‑0019‑529892061
    [Google Scholar]
  146. SunY. YangQ. XiaX. LiX. RuanW. ZhengM. ZouY. ShiB. Polymeric nanoparticles for mitochondria targeting mediated robust cancer therapy.Front. Bioeng. Biotechnol.2021975572710.3389/fbioe.2021.75572734692665
    [Google Scholar]
  147. RupprechtR. PapadopoulosV. RammesG. BaghaiT.C. FanJ. AkulaN. GroyerG. AdamsD. SchumacherM. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders.Nat. Rev. Drug Discov.201091297198810.1038/nrd329521119734
    [Google Scholar]
  148. BatarsehA. PapadopoulosV. Regulation of translocator protein 18kDa (TSPO) expression in health and disease states.Mol. Cell. Endocrinol.20103271-211210.1016/j.mce.2010.06.01320600583
    [Google Scholar]
  149. BhoolaN. MbitaZ. HullR. DlaminiZ. Translocator protein (TSPO) as a potential biomarker in human cancers.Int. J. Mol. Sci.2018198217610.3390/ijms1908217630044440
    [Google Scholar]
  150. DenoraN. LaquintanaV. LopalcoA. IacobazziR.M. LopedotaA. CutrignelliA. IacobellisG. AnneseC. CascioneM. LeporattiS. FrancoM. In vitro targeting and imaging the translocator protein TSPO 18-kDa through G(4)-PAMAM–FITC labeled dendrimer.J. Control. Release201317231111112510.1016/j.jconrel.2013.09.02424096015
    [Google Scholar]
  151. SharmaA. LiawK. SharmaR. ThomasA.G. SlusherB.S. KannanS. KannanR.M. Targeting mitochondria in tumor-associated macrophages using a dendrimer-conjugated TSPO ligand that stimulates antitumor signaling in glioblastoma.Biomacromolecules20202193909392210.1021/acs.biomac.0c0103332786523
    [Google Scholar]
  152. XiJ. LiM. JingB. AnM. YuC. PinnockC.B. ZhuY. LamM.T. LiuH. Long-circulating amphiphilic doxorubicin for tumor mitochondria-specific targeting.ACS Appl. Mater. Interfaces20181050434824349210.1021/acsami.8b1739930479120
    [Google Scholar]
  153. Moreno-SánchezR. Rodríguez-EnríquezS. Marín-HernándezA. SaavedraE. Energy metabolism in tumor cells.FEBS J.200727461393141810.1111/j.1742‑4658.2007.05686.x17302740
    [Google Scholar]
  154. MaY. TemkinS.M. HawkridgeA.M. GuoC. WangW. WangX.Y. FangX. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer.Cancer Lett.20184359210010.1016/j.canlet.2018.08.00630102953
    [Google Scholar]
  155. Modica-NapolitanoJ.S. AprilleJ.R. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells.Adv. Drug Deliv. Rev.2001491-2637010.1016/S0169‑409X(01)00125‑911377803
    [Google Scholar]
  156. BaraccaA SgarbiG SolainiG LenazG Rhodamine 123 as a probe of mitochondrial membrane potential: Evaluation of proton flux through F0 during ATP synthesis.Biochimica. et Biophysica. Acta.200116061-313714610.1016/S0005‑2728(03)00110‑5
    [Google Scholar]
  157. RottenbergH. Membrane potential and surface potential in mitochondria: Uptake and binding of lipophilic cations.J. Membr. Biol.198481212713810.1007/BF018689776492133
    [Google Scholar]
  158. SmithR.A.J. PorteousC.M. GaneA.M. MurphyM.P. Delivery of bioactive molecules to mitochondria in vivo.Proc. Natl. Acad. Sci. USA200310095407541210.1073/pnas.093124510012697897
    [Google Scholar]
  159. PanJ. LeeY. ChengG. ZielonkaJ. ZhangQ. BajzikovaM. XiongD. TsaihS.W. HardyM. FlisterM. OlsenC.M. WangY. VangO. NeuzilJ. MyersC.R. KalyanaramanB. YouM. Mitochondria-targeted honokiol confers a striking inhibitory effect on lung cancer via inhibiting complex I activity.iScience2018319220710.1016/j.isci.2018.04.01330428319
    [Google Scholar]
  160. ChengG. ZhangQ. PanJ. LeeY. OuariO. HardyM. ZielonkaM. MyersC.R. ZielonkaJ. WehK. ChangA.C. ChenG. KrestyL. KalyanaramanB. YouM. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis.Nat. Commun.2019101220510.1038/s41467‑019‑10042‑131101821
    [Google Scholar]
  161. ChengG. HardyM. TopchyanP. ZanderR. VolberdingP. CuiW. KalyanaramanB. Potent inhibition of tumour cell proliferation and immunoregulatory function by mitochondria-targeted atovaquone.Sci. Rep.20201011787210.1038/s41598‑020‑74808‑033087770
    [Google Scholar]
  162. LuoX. GongX. SuL. LinH. YangZ. YanX. GaoJ. Activatable mitochondria-targeting organoarsenic prodrugs for bioenergetic cancer therapy.Angew. Chem. Int. Ed.20216031403141010.1002/anie.20201223733029903
    [Google Scholar]
  163. NiY. ZhangH. ChaiC. PengB. ZhaoA. ZhangJ. LiL. ZhangC. MaB. BaiH. LimK.L. HuangW. Mitochondria-targeted two-photon fluorescent photosensitizers for cancer cell apoptosis via spatial selectability.Adv. Healthc. Mater.2019814190021210.1002/adhm.20190021231081268
    [Google Scholar]
  164. ChenS. LeiQ. QiuW.X. LiuL.H. ZhengD.W. FanJ.X. RongL. SunY.X. ZhangX.Z. Mitochondria-targeting “Nanoheater” for enhanced photothermal/chemo-therapy.Biomaterials20171179210410.1016/j.biomaterials.2016.11.05627939904
    [Google Scholar]
  165. SongX.D. ChenB.B. HeS.F. PanN.L. LiaoJ.X. ChenJ.X. WangG.H. SunJ. Guanidine-modified cyclometalated iridium(III) complexes for mitochondria-targeted imaging and photodynamic therapy.Eur. J. Med. Chem.2019179263710.1016/j.ejmech.2019.06.04531233920
    [Google Scholar]
  166. MallickA. MoreP. GhoshS. ChippalkattiR. ChopadeB.A. LahiriM. BasuS. Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells.ACS Appl. Mater. Interfaces20157147584759810.1021/am509022625811662
    [Google Scholar]
  167. ChoD.Y. ChoH. KwonK. YuM. LeeE. HuhK.M. LeeD.H. KangH.C. Triphenylphosphonium-conjugated poly (ε-caprolactone)-based self-assembled nanostructures as nanosized drugs and drug delivery carriers for mitochondria-targeting synergistic anticancer drug delivery.Adv. Funct. Mater.201525345479549110.1002/adfm.201501422
    [Google Scholar]
  168. YuY. WangZ.H. ZhangL. YaoH.J. ZhangY. LiR.J. JuR.J. WangX.X. ZhouJ. LiN. LuW.L. Mitochondrial targeting topotecan-loaded liposomes for treating drug-resistant breast cancer and inhibiting invasive metastases of melanoma.Biomaterials20123361808182010.1016/j.biomaterials.2011.10.08522136714
    [Google Scholar]
  169. ZhouJ. ZhaoW.Y. MaX. JuR.J. LiX.Y. LiN. SunM.G. ShiJ.F. ZhangC.X. LuW.L. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer.Biomaterials201334143626363810.1016/j.biomaterials.2013.01.07823422592
    [Google Scholar]
  170. MillardM. GallagherJ.D. OlenyukB.Z. NeamatiN. A selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers.J. Med. Chem.201356229170917910.1021/jm401243824147900
    [Google Scholar]
  171. ChenW.H. XuX.D. LuoG.F. JiaH.Z. LeiQ. ChengS.X. ZhuoR.X. ZhangX.Z. Dual-targeting pro-apoptotic peptide for programmed cancer cell death via specific mitochondria damage.Sci. Rep.201331346810.1038/srep0346824336626
    [Google Scholar]
  172. ZhangS. YangL. LingX. ShaoP. WangX. EdwardsW.B. BaiM. Tumor mitochondria-targeted photodynamic therapy with a translocator protein (TSPO)-specific photosensitizer.Acta Biomater.20152816017010.1016/j.actbio.2015.09.03326432436
    [Google Scholar]
  173. TanY. ZhuY. ZhaoY. WenL. MengT. LiuX. YangX. DaiS. YuanH. HuF. Mitochondrial alkaline pH-responsive drug release mediated by Celastrol loaded glycolipid-like micelles for cancer therapy.Biomaterials201815416918110.1016/j.biomaterials.2017.07.03629128845
    [Google Scholar]
  174. MarracheS. TundupS. HarnD.A. DharS. Ex vivo programming of dendritic cells by mitochondria-targeted nanoparticles to produce interferon-gamma for cancer immunotherapy.ACS Nano2013787392740210.1021/nn403158n23899410
    [Google Scholar]
  175. HaynesB. ZhangY. LiuF. LiJ. PetitS. KothayerH. BaoX. WestwellA.D. MaoG. ShekharM.P.V. Gold nanoparticle conjugated Rad6 inhibitor induces cell death in triple negative breast cancer cells by inducing mitochondrial dysfunction and PARP-1 hyperactivation: Synthesis and characterization.Nanomedicine201612374575710.1016/j.nano.2015.10.01026563438
    [Google Scholar]
  176. HeH. LiD.W. YangL.Y. FuL. ZhuX.J. WongW.K. JiangF.L. LiuY. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells.Sci. Rep.2015511354310.1038/srep1354326337336
    [Google Scholar]
  177. KimK.Y. JinH. ParkJ. JungS.H. LeeJ.H. ParkH. KimS.K. BaeJ. JungJ.H. Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery.Nano Res.20181121082109810.1007/s12274‑017‑1728‑7
    [Google Scholar]
  178. BaeY. JungM.K. LeeS. SongS.J. MunJ.Y. GreenE.S. HanJ. KoK.S. ChoiJ.S. Dequalinium-based functional nanosomes show increased mitochondria targeting and anticancer effect.Eur. J. Pharm. Biopharm.201812410411510.1016/j.ejpb.2017.12.01329305141
    [Google Scholar]
  179. DongL.F. JamesonV.J.A. TillyD. ProchazkaL. RohlenaJ. ValisK. TruksaJ. ZobalovaR. MahdavianE. KluckovaK. StanticM. StursaJ. FreemanR. WittingP.K. NorbergE. GoodwinJ. SalvatoreB.A. NovotnaJ. TuranekJ. LedvinaM. HozakP. ZhivotovskyB. CosterM.J. RalphS.J. SmithR.A.J. NeuzilJ. Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm for effective cancer therapy.Free Radic. Biol. Med.201150111546155510.1016/j.freeradbiomed.2011.02.03221402148
    [Google Scholar]
  180. WuS. CaoQ. WangX. ChengK. ChengZ. Design, synthesis and biological evaluation of mitochondria targeting theranostic agents.Chem. Commun. (Camb.)201450648919892210.1039/C4CC03296A24976119
    [Google Scholar]
  181. BaeY. JungM.K. SongS.J. GreenE.S. LeeS. ParkH.S. JeongS.H. HanJ. MunJ.Y. KoK.S. ChoiJ.S. Functional nanosome for enhanced mitochondria-targeted gene delivery and expression.Mitochondrion201737274010.1016/j.mito.2017.06.00528669809
    [Google Scholar]
  182. WeiY. ZhouF. ZhangD. ChenQ. XingD. A graphene oxide based smart drug delivery system for tumor mitochondria-targeting photodynamic therapy.Nanoscale2016863530353810.1039/C5NR07785K26799192
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673259347231019121757
Loading
/content/journals/cmc/10.2174/0109298673259347231019121757
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test