Skip to content
2000
image of Amelioration of D-Galactose-induced Renal Injury by a Functional Food Mix through AGE/RAGE/NF-κB Dependent Mechanism in a Rat Model

Abstract

Background

Ageing entails a gradual decline of organ structure and function, including the kidneys. Chronic kidney disease is associated with cardiovascular complications, hyperlipidemia, and metabolic bone disease. Functional foods with antioxidant, anti-inflammatory, and anti-apoptotic properties protect kidney functions by influencing metabolism and immunity.

Objective

We studied the prophylactic effect of a functional food mix [amla, cinnamon, ginger, turmeric, and black pepper] on D-galactose-induced renal ageing.

Methods

Six-month-old female Wistar rats were divided into Control, D-galactose, and D-galactose + functional food groups and maintained for 90 days. The plasma lipid profile and renal function tests were assayed using spectrophotometry. The protein markers of the endoplasmic reticulum [ER] stress, inflammation, and apoptosis were analysed by immunoblotting.

Results

The results illustrate that the functional food prevented D-galactose-induced histological alterations, dyslipidemia, podocin loss, renal dysfunction, ER stress [GRP78, pIRE1, and CHOP], inflammation [NF-κB, and TNFα], and apoptosis [Bax, and caspase-3] in the kidney.

Conclusion

The antiglycation, antioxidant, and anti-inflammatory roles of functional food are the basis for preventing D-galactose-induced renal injury. Hence, it could be a prophylactic measure in individuals with chronic kidney disease.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629328687240926050822
2024-11-11
2025-01-24
Loading full text...

Full text loading...

References

  1. Grimley Evans J. Ageing and medicine. J. Intern. Med. 2000 247 2 159 167 10.1046/j.1365‑2796.2000.00621.x 10692078
    [Google Scholar]
  2. Choudhury D. Levi M. Kidney aging—inevitable or preventable? Nat. Rev. Nephrol. 2011 7 12 706 717 10.1038/nrneph.2011.104 21826079
    [Google Scholar]
  3. Jiang S. Li T. Yang Z. Yi W. Di S. Sun Y. Wang D. Yang Y. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res. Rev. 2017 38 18 27 10.1016/j.arr.2017.07.001 28709692
    [Google Scholar]
  4. Liu X. Zhang R. Huang L. Zheng Z. Vlassara H. Striker G. Zhang X. Guan Y. Zheng F. Excessive oxidative stress contributes to increased acute ER stress kidney injury in aged mice. Oxid. Med. Cell. Longev. 2019 2019 1 15 10.1155/2019/2746521 30809321
    [Google Scholar]
  5. Vlassara H. Torreggiani M. Post J.B. Zheng F. Uribarri J. Striker G.E. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging. Kidney Int. 2009 76 114 S3 S11 10.1038/ki.2009.401 19946325
    [Google Scholar]
  6. O’Sullivan E.D. Hughes J. Ferenbach D.A. Renal aging: Causes and consequences. J. Am. Soc. Nephrol. 2017 28 2 407 420 10.1681/ASN.2015121308 28143966
    [Google Scholar]
  7. Humphreys B.D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 2018 80 1 309 326 10.1146/annurev‑physiol‑022516‑034227 29068765
    [Google Scholar]
  8. Kale A. Sankrityayan H. Anders H.J. Gaikwad A.B. Klotho in kidney diseases: A crosstalk between the renin-angiotensin system and endoplasmic reticulum stress. Nephrol. Dial. Transplant. 2021 34850136
    [Google Scholar]
  9. Bikbov B. Purcell C.A. Levey A.S. Smith M. Abdoli A. Abebe M. Adebayo O.M. Afarideh M. Agarwal S.K. Agudelo-Botero M. Ahmadian E. Al-Aly Z. Alipour V. Almasi-Hashiani A. Al-Raddadi R.M. Alvis-Guzman N. Amini S. Andrei T. Andrei C.L. Andualem Z. Anjomshoa M. Arabloo J. Ashagre A.F. Asmelash D. Ataro Z. Atout M.M.W. Ayanore M.A. Badawi A. Bakhtiari A. Ballew S.H. Balouchi A. Banach M. Barquera S. Basu S. Bayih M.T. Bedi N. Bello A.K. Bensenor I.M. Bijani A. Boloor A. Borzì A.M. Cámera L.A. Carrero J.J. Carvalho F. Castro F. Catalá-López F. Chang A.R. Chin K.L. Chung S-C. Cirillo M. Cousin E. Dandona L. Dandona R. Daryani A. Das Gupta R. Demeke F.M. Demoz G.T. Desta D.M. Do H.P. Duncan B.B. Eftekhari A. Esteghamati A. Fatima S.S. Fernandes J.C. Fernandes E. Fischer F. Freitas M. Gad M.M. Gebremeskel G.G. Gebresillassie B.M. Geta B. Ghafourifard M. Ghajar A. Ghith N. Gill P.S. Ginawi I.A. Gupta R. Hafezi-Nejad N. Haj-Mirzaian A. Haj-Mirzaian A. Hariyani N. Hasan M. Hasankhani M. Hasanzadeh A. Hassen H.Y. Hay S.I. Heidari B. Herteliu C. Hoang C.L. Hosseini M. Hostiuc M. Irvani S.S.N. Islam S.M.S. Jafari Balalami N. James S.L. Jassal S.K. Jha V. Jonas J.B. Joukar F. Jozwiak J.J. Kabir A. Kahsay A. Kasaeian A. Kassa T.D. Kassaye H.G. Khader Y.S. Khalilov R. Khan E.A. Khan M.S. Khang Y-H. Kisa A. Kovesdy C.P. Kuate Defo B. Kumar G.A. Larsson A.O. Lim L-L. Lopez A.D. Lotufo P.A. Majeed A. Malekzadeh R. März W. Masaka A. Meheretu H.A.A. Miazgowski T. Mirica A. Mirrakhimov E.M. Mithra P. Moazen B. Mohammad D.K. Mohammadpourhodki R. Mohammed S. Mokdad A.H. Morales L. Moreno Velasquez I. Mousavi S.M. Mukhopadhyay S. Nachega J.B. Nadkarni G.N. Nansseu J.R. Natarajan G. Nazari J. Neal B. Negoi R.I. Nguyen C.T. Nikbakhsh R. Noubiap J.J. Nowak C. Olagunju A.T. Ortiz A. Owolabi M.O. Palladino R. Pathak M. Poustchi H. Prakash S. Prasad N. Rafiei A. Raju S.B. Ramezanzadeh K. Rawaf S. Rawaf D.L. Rawal L. Reiner R.C. Jr Rezapour A. Ribeiro D.C. Roever L. Rothenbacher D. Rwegerera G.M. Saadatagah S. Safari S. Sahle B.W. Salem H. Sanabria J. Santos I.S. Sarveazad A. Sawhney M. Schaeffner E. Schmidt M.I. Schutte A.E. Sepanlou S.G. Shaikh M.A. Sharafi Z. Sharif M. Sharifi A. Silva D.A.S. Singh J.A. Singh N.P. Sisay M.M.M. Soheili A. Sutradhar I. Teklehaimanot B.F. Tesfay B. Teshome G.F. Thakur J.S. Tonelli M. Tran K.B. Tran B.X. Tran Ngoc C. Ullah I. Valdez P.R. Varughese S. Vos T. Vu L.G. Waheed Y. Werdecker A. Wolde H.F. Wondmieneh A.B. Wulf Hanson S. Yamada T. Yeshaw Y. Yonemoto N. Yusefzadeh H. Zaidi Z. Zaki L. Zaman S.B. Zamora N. Zarghi A. Zewdie K.A. Ärnlöv J. Coresh J. Perico N. Remuzzi G. Murray C.J.L. Vos T. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020 395 10225 709 733 10.1016/S0140‑6736(20)30045‑3 32061315
    [Google Scholar]
  10. de Boer I.H. Katz R. Fried L.F. Ix J.H. Luchsinger J. Sarnak M.J. Shlipak M.G. Siscovick D.S. Kestenbaum B. Obesity and change in estimated GFR among older adults. Am. J. Kidney Dis. 2009 54 6 1043 1051 10.1053/j.ajkd.2009.07.018 19782454
    [Google Scholar]
  11. Lv J.C. Zhang L.X. Prevalence and disease burden of chronic kidney disease. Adv. Exp. Med. Biol. 2019 1165 3 15 10.1007/978‑981‑13‑8871‑2_1 31399958
    [Google Scholar]
  12. El-Far A.H. Lebda M.A. Noreldin A.E. Atta M.S. Elewa Y.H.A. Elfeky M. Mousa S.A. Quercetin attenuates pancreatic and renal d-galactose-induced aging-related oxidative alterations in rats. Int. J. Mol. Sci. 2020 21 12 4348 10.3390/ijms21124348 32570962
    [Google Scholar]
  13. Serafini M. Peluso I. Functional foods for health: The interrelated antioxidant and anti-inflammatory role of fruits, vegetables, herbs, spices and cocoa in humans. Curr. Pharm. Des. 2017 22 44 6701 6715 10.2174/1381612823666161123094235 27881064
    [Google Scholar]
  14. Saraswat M. Reddy P.Y. Muthenna P. Reddy G.B. Prevention of non-enzymic glycation of proteins by dietary agents: Prospects for alleviating diabetic complications. Br. J. Nutr. 2009 101 11 1714 1721 10.1017/S0007114508116270 18986599
    [Google Scholar]
  15. Muthenna P. Raghu G. Kumar P.A. Surekha M.V. Reddy G.B. Effect of cinnamon and its procyanidin-B2 enriched fraction on diabetic nephropathy in rats. Chem. Biol. Interact. 2014 222 68 76 10.1016/j.cbi.2014.08.013 25199697
    [Google Scholar]
  16. Muthenna P. Raghu G. Akileshwari C. Sinha S.N. Suryanarayana P. Reddy G.B. Inhibition of protein glycation by procyanidin-B2 enriched fraction of cinnamon: Delay of diabetic cataract in rats. IUBMB Life 2013 65 11 941 950 10.1002/iub.1214 24136906
    [Google Scholar]
  17. Saraswat M. Suryanarayana P. Reddy P.Y. Patil M.A. Balakrishna N. Reddy G.B. Antiglycating potential of Zingiber officinalis and delay of diabetic cataract in rats. Mol. Vis. 2010 16 1525 1537 20806076
    [Google Scholar]
  18. Suryanarayana P. Krishnaswamy K. Reddy G.B. Effect of curcumin on galactose-induced cataractogenesis in rats. Mol. Vis. 2003 9 223 230 12802258
    [Google Scholar]
  19. Suryanarayana P. Saraswat M. Mrudula T. Krishna T.P. Krishnaswamy K. Reddy G.B. Curcumin and turmeric delay streptozotocin-induced diabetic cataract in rats. Invest. Ophthalmol. Vis. Sci. 2005 46 6 2092 2099 10.1167/iovs.04‑1304 15914628
    [Google Scholar]
  20. Suryanarayana P. Satyanarayana A. Balakrishna N. Kumar P.U. Reddy G.B. Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat. Med. Sci. Monit. 2007 13 12 BR286 BR292 18049430
    [Google Scholar]
  21. Ramesh B. Karuna R. Sreenivasa R.S. Haritha K. Sai M.D. Sasis B.R.B. Saralakumari D. Effect of Commiphora mukul gum resin on hepatic marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart of streptozotocin induced diabetic rats. Asian Pac. J. Trop. Biomed. 2012 2 11 895 900 10.1016/S2221‑1691(12)60249‑4 23569867
    [Google Scholar]
  22. Nagaraju M. Kalahasti K.K. Reddy K.P. Addi U.R. Satyavani M. Reddy G.B. Reddy S.S. Anti-inflammatory potential of turmeric, amla, and black pepper mixture against sepsis-induced acute lung injury in rats. J. Food Sci. Technol. 2023 60 1 252 261 10.1007/s13197‑022‑05610‑1 36349282
    [Google Scholar]
  23. Kalahasti K.K. Kumar C.U. Nagaraju M. Petrash J.M. Reddy S.S. Reddy G.B. Mitigation of lens opacification by a functional food in a diabetic rodent model. Chem. Biol. Interact. 2024 390 110889 10.1016/j.cbi.2024.110889 38272248
    [Google Scholar]
  24. Suryanarayana P. Kumar P.A. Saraswat M. Petrash J.M. Reddy G.B. Inhibition of aldose reductase by tannoid principles of Emblica officinalis: Implications for the prevention of sugar cataract. Mol. Vis. 2004 10 148 154 15031705
    [Google Scholar]
  25. Muthenna P. Suryanarayana P. Gunda S.K. Petrash J.M. Reddy G.B. Inhibition of aldose reductase by dietary antioxidant curcumin: Mechanism of inhibition, specificity and significance. FEBS Lett. 2009 583 22 3637 3642 10.1016/j.febslet.2009.10.042 19850041
    [Google Scholar]
  26. Puppala M. Ponder J. Suryanarayana P. Reddy G.B. Petrash J.M. LaBarbera D.V. The isolation and characterization of β-glucogallin as a novel aldose reductase inhibitor from Emblica officinalis. PLoS One 2012 7 4 e31399 10.1371/journal.pone.0031399 22485126
    [Google Scholar]
  27. Saraswat M. Muthenna P. Suryanarayana P. Petrash J.M. Reddy G.B. Dietary sources of aldose reductase inhibitors: prospects for alleviating diabetic complications. Asia Pac. J. Clin. Nutr. 2008 17 4 558 565 19114390
    [Google Scholar]
  28. Gaens K.H.J. Stehouwer C.D.A. Schalkwijk C.G. Advanced glycation endproducts and its receptor for advanced glycation endproducts in obesity. Curr. Opin. Lipidol. 2013 24 1 4 11 10.1097/MOL.0b013e32835aea13 23298958
    [Google Scholar]
  29. Kuro-o M. Matsumura Y. Aizawa H. Kawaguchi H. Suga T. Utsugi T. Ohyama Y. Kurabayashi M. Kaname T. Kume E. Iwasaki H. Iida A. Shiraki-Iida T. Nishikawa S. Nagai R. Nabeshima Y. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997 390 6655 45 51 10.1038/36285 9363890
    [Google Scholar]
  30. Fang Y. Gong A.Y. Haller S.T. Dworkin L.D. Liu Z. Gong R. The ageing kidney: Molecular mechanisms and clinical implications. Ageing Res. Rev. 2020 63 101151 10.1016/j.arr.2020.101151 32835891
    [Google Scholar]
  31. Kovesdy C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022 12 1 7 11 10.1016/j.kisu.2021.11.003 35529086
    [Google Scholar]
  32. Hall J. Juncos L. Wang Z. Hall M. do Carmo J. da Silva A. Obesity, hypertension, and chronic kidney disease. Int. J. Nephrol. Renovasc. Dis. 2014 7 75 88 10.2147/IJNRD.S39739 24600241
    [Google Scholar]
  33. Ku E. Lee B.J. Wei J. Weir M.R. Hypertension in CKD: Core curriculum 2019. Am. J. Kidney Dis. 2019 74 1 120 131 10.1053/j.ajkd.2018.12.044 30898362
    [Google Scholar]
  34. Kumar M. Dev S. Khalid M.U. Siddenthi S.M. Noman M. John C. Akubuiro C. Haider A. Rani R. Kashif M. Varrassi G. Khatri M. Kumar S. Mohamad T. The bidirectional link between diabetes and kidney disease: Mechanisms and management. Cureus 2023 15 9 e45615 10.7759/cureus.45615 37868469
    [Google Scholar]
  35. Sanz A.B. Santamaría B. Ruiz-Ortega M. Egido J. Ortiz A. Mechanisms of renal apoptosis in health and disease. J. Am. Soc. Nephrol. 2008 19 9 1634 1642 10.1681/ASN.2007121336 18632846
    [Google Scholar]
  36. Stevens P.E. Levin A. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013 158 11 825 830 10.7326/0003‑4819‑158‑11‑201306040‑00007 23732715
    [Google Scholar]
  37. Feng Y. Yu Y.H. Wang S.T. Ren J. Camer D. Hua Y.Z. Zhang Q. Huang J. Xue D.L. Zhang X.F. Huang X.F. Liu Y. Chlorogenic acid protects d-galactose-induced liver and kidney injury via antioxidation and anti-inflammation effects in mice. Pharm. Biol. 2016 54 6 1027 1034 10.3109/13880209.2015.1093510 26810301
    [Google Scholar]
  38. Yang Q. Jiang Y. Fu S. Shen Z. Zong W. Xia Z. Zhan Z. Jiang X. Protective effects of Ulva lactuca polysaccharide extract on oxidative stress and kidney injury induced by D-galactose in mice. Mar. Drugs 2021 19 10 539 10.3390/md19100539 34677438
    [Google Scholar]
  39. Park S. Kim C.S. Min J. Lee S.H. Jung Y.S. A high-fat diet increases oxidative renal injury and protein glycation in D-galactose-induced aging rats and its prevention by Korea red ginseng. J. Nutr. Sci. Vitaminol. (Tokyo) 2014 60 3 159 166 10.3177/jnsv.60.159 25078371
    [Google Scholar]
  40. Zeng L. Lin L. Xiao W. Li Y. L-theanine protects rat kidney from D-galactose-induced injury via inhibition of the AGEs/RAGE signaling pathway. Eur. J. Pharmacol. 2022 927 175072 10.1016/j.ejphar.2022.175072 35636523
    [Google Scholar]
  41. Li W. Wang S. Wang H. Wang J. Jin F. Fang F. Fang C. Astragaloside IV prevents memory impairment in D-galactose-induced aging rats via the AGEs/RAGE/NF-κB axis. Arch. Med. Res. 2022 53 1 20 28 10.1016/j.arcmed.2021.05.005 34217517
    [Google Scholar]
  42. Mishra A. Bhatti R. Singh A. Singh Ishar M. Ameliorative effect of the cinnamon oil from Cinnamomum zeylanicum upon early stage diabetic nephropathy. Planta Med. 2010 76 5 412 417 10.1055/s‑0029‑1186237 19876811
    [Google Scholar]
  43. Anderson R.A. Broadhurst C.L. Polansky M.M. Schmidt W.F. Khan A. Flanagan V.P. Schoene N.W. Graves D.J. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J. Agric. Food Chem. 2004 52 1 65 70 10.1021/jf034916b 14709014
    [Google Scholar]
  44. Peng X. Cheng K.W. Ma J. Chen B. Ho C.T. Lo C. Chen F. Wang M. Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. J. Agric. Food Chem. 2008 56 6 1907 1911 10.1021/jf073065v 18284204
    [Google Scholar]
  45. Starowicz M. Zieliński H. Inhibition of advanced glycation end-product formation by high antioxidant-leveled spices commonly used in European cuisine. Antioxidants 2019 8 4 100 10.3390/antiox8040100 30991695
    [Google Scholar]
  46. Yokozawa T. Kim H.Y. Kim H.J. Tanaka T. Sugino H. Okubo T. Chu D.C. Juneja L.R. Amla (Emblica officinalis Gaertn.) attenuates age-related renal dysfunction by oxidative stress. J. Agric. Food Chem. 2007 55 19 7744 7752 10.1021/jf072105s 17715896
    [Google Scholar]
  47. Chen Y.Y. Chen S.Y. Lin J.A. Yen G.C. Preventive effect of indian gooseberry ( Phyllanthus emblica L.) fruit extract on cognitive decline in high‐fat diet (HFD)‐fed rats. Mol. Nutr. Food Res. 2023 67 7 2200791 10.1002/mnfr.202200791 36738163
    [Google Scholar]
  48. Xu Y.X. Pindolia K.R. Janakiraman N. Chapman R.A. Gautam S.C. Curcumin inhibits IL1 alpha and TNF-alpha induction of AP-1 and NF-kB DNA-binding activity in bone marrow stromal cells. Hematopathol. Mol. Hematol. 1997-1998 11 1 49 62 9439980
    [Google Scholar]
  49. Saravanan N. Patil M.A. Kumar P.U. Suryanarayana P. Reddy G.B. Dietary ginger improves glucose dysregulation in a long-term high-fat high-fructose fed prediabetic rat model. Indian J. Exp. Biol. 2017 55 3 142 150 30184415
    [Google Scholar]
  50. Suryanarayana P. Saraswat M. Petrash J.M. Reddy G.B. Emblica officinalis and its enriched tannoids delay streptozotocin-induced diabetic cataract in rats. Mol. Vis. 2007 13 1291 1297 17679931
    [Google Scholar]
  51. Li A.L. Li G.H. Li Y.R. Wu X.Y. Ren D.M. Lou H.X. Wang X.N. Shen T. Lignan and flavonoid support the prevention of cinnamon against oxidative stress related diseases. Phytomedicine 2019 53 143 153 10.1016/j.phymed.2018.09.022 30668393
    [Google Scholar]
  52. Srinivasan K. Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Crit. Rev. Food Sci. Nutr. 2007 47 8 735 748 10.1080/10408390601062054 17987447
    [Google Scholar]
  53. Pathomthongtaweechai N. Chutipongtanate S. AGE/RAGE signaling-mediated endoplasmic reticulum stress and future prospects in non-coding RNA therapeutics for diabetic nephropathy. Biomed. Pharmacother. 2020 131 110655 10.1016/j.biopha.2020.110655 32853909
    [Google Scholar]
  54. Flamment M. Hajduch E. Ferré P. Foufelle F. New insights into ER stress-induced insulin resistance. Trends Endocrinol. Metab. 2012 23 8 381 390 10.1016/j.tem.2012.06.003 22770719
    [Google Scholar]
  55. Wu D. Huang L.F. Chen X.C. Huang X.R. Li H.Y. an N. Tang J.X. Liu H.F. Yang C. Research progress on endoplasmic reticulum homeostasis in kidney diseases. Cell Death Dis. 2023 14 7 473 10.1038/s41419‑023‑05905‑x 37500613
    [Google Scholar]
  56. Dhivya Bharathi M. Justin-Thenmozhi A. Manivasagam T. Ahmad Rather M. Saravana Babu C. Mohamed Essa M. Guillemin G.J. Amelioration of aluminum maltolate-induced inflammation and endoplasmic reticulum stress-mediated apoptosis by tannoid principles of Emblica officinalis in neuronal cellular model. Neurotox. Res. 2019 35 2 318 330 10.1007/s12640‑018‑9956‑5 30242626
    [Google Scholar]
  57. Yu N. Yang L. Ling L. Liu Y. Yu Y. Wu Q. Gu Y. Niu J. Curcumin attenuates angiotensin II‐induced podocyte injury and apoptosis by inhibiting endoplasmic reticulum stress. FEBS Open Bio. 2020 10 10 1957 1966 10.1002/2211‑5463.12946 32770719
    [Google Scholar]
  58. Neto J.G.O. Boechat S.K. Romão J.S. Pazos-Moura C.C. Oliveira K.J. Treatment with cinnamaldehyde reduces the visceral adiposity and regulates lipid metabolism, autophagy and endoplasmic reticulum stress in the liver of a rat model of early obesity. J. Nutr. Biochem. 2020 77 108321 10.1016/j.jnutbio.2019.108321 31869758
    [Google Scholar]
  59. Li Y.M. Zhao S.Y. Zhao H.H. Wang B.H. Li S.M. Procyanidin b2 alleviates palmitic acid-induced injury in HepG2 cells via endoplasmic reticulum stress pathway. Evid. Based Complement. Alternat. Med. 2021 2021 1 14 10.1155/2021/8920757 34956386
    [Google Scholar]
  60. Yu H. Yu Q. Mi Y. Wang P. Jin S. Xiao L. Guo Q. Wu Y. Hydrogen sulfide inhibited sympathetic activation in D-galactose-induced aging rats by upregulating klotho and inhibiting inflammation in the paraventricular nucleus. Biomedicines 2023 11 2 566 10.3390/biomedicines11020566 36831102
    [Google Scholar]
  61. Takenaka T. Inoue T. Miyazaki T. Kobori H. Nishiyama A. Ishii N. Hayashi M. Suzuki H. Klotho Ameliorates medullary fibrosis and pressure natriuresis in hypertensive rat kidneys. Hypertension 2018 72 5 1151 1159 10.1161/HYPERTENSIONAHA.118.11176 30354813
    [Google Scholar]
  62. Neyra J.A. Hu M.C. Moe O.W. Klotho in clinical nephrology. Clin. J. Am. Soc. Nephrol. 2021 16 1 162 176 10.2215/CJN.02840320 32699047
    [Google Scholar]
  63. Maharajan N. Cho G.W. Camphorquinone promotes the antisenescence effect via activating AMPK/SIRT1 in stem cells and D-galactose-induced aging mice. Antioxidants 2021 10 12 1916 10.3390/antiox10121916 34943019
    [Google Scholar]
  64. Sha J. Li J. Zhou Y. Yang J. Liu W. Jiang S. Wang Y. Zhang R. Di P. Li W. The p53/p21/p16 and PI3K/Akt signaling pathways are involved in the ameliorative effects of maltol on D‐galactose‐induced liver and kidney aging and injury. Phytother. Res. 2021 35 8 4411 4424 10.1002/ptr.7142 34028092
    [Google Scholar]
/content/journals/cff/10.2174/0126668629328687240926050822
Loading
/content/journals/cff/10.2174/0126668629328687240926050822
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test