Skip to content
2000
Volume 1, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Background

Linnaeus (Cucurbitaceae family), known as bitter melon is an annual climbing vine, that grows in tropical regions and its fruits are consumed as a vegetable in Asian countries. Traditionally various parts of the plant such as fruits, seeds, leaves, flowers, have been used for medicinal purposes. Its fruit is used as an anti-diabetic, laxative, anthelmintic, emetic, and anti-obesity, for respiratory problems, ulcers, wounds, rheumatism, gout, toothache, and skin diseases.

Objective

To perform pharmacognostical evaluation, qualitative and quantitative phytochemical screening, safety and toxicity studies, and anti-obesity activity evaluation on bitter gourd fruits from Haryana (India).

Methods

Organoleptic studies were performed with the naked eye and microscopical studies were performed using the EVOS microscope; physicochemical evaluation, microbial, and mycotoxin studies were performed by adopting the standard procedures detailed in the WHO guidelines (2011); phytochemical screening was performed by following the standard procedures; pesticide residue determination was performed by using GCMS; and anti-obesity evaluation consisting of pancreatic lipase, α-amylase, and α-glucosidase evaluation was performed by following the standard procedures.

Results

The pharmacognostical standards macroscopy, microscopy, and physicochemical analyses of the fruits were established and their qualitative and quantitative phytochemical contents revealed the presence of alkaloids, glycosides, flavonoids, tannins, proteins, and amino acids, carbohydrates, fats, and fixed oils, sterols, and triterpenoids, The fruit was found to be free from mycotoxin, microbial contamination, and harmful pesticide residues. The major pesticides found to be present in fruit extract were alpha-BHC, Aldrin, 4, 4’-DDE, Endrin, and4, 4'-DDD and they were present within permissible limits. The total phenolic content in the fruits was found to be 3.49 ± 1.3mg/g gallic acid equivalent/100g. The content of total flavonoids have been expressed as quercetin, catechin, and rutin equivalents, 1.88 ± 0.16, 122.7 ± 13.8 and 1.978 ± 0.006 mg/g dry weight of fruits respectively and they were present within permissible limits. The αglucosidase inhibition potential of the alcoholic extract was good with an IC value of 173.50 ± 0.33 µg/ml, followed by aqueous extract 351.00 ± 0.56, whereas the chloroform extract showed milder inhibition with IC value of 448.60 ± 0.98 µg/ml. The lipase inhibition potential of aqueous extracts was good with an IC value of 140.31 ± 0.48µg/ml, followed by alcoholic extracts, with inhibition of 100.10 µg/ml, whereas the chloroform extracts show lesser inhibition, 499.83 µg/ml only. Whereas the alcoholic extract shows good α-amylase enzyme inhibition with IC value of 425.44 ± 0.63 µg/ml, followed by aqueous extract 486.12 ± 0.77 µg/ml, and chloroform extract shows lesser activity, 65. 82 ± 0.41 µg/ml.

Conclusion

Identification and authentication of the fruits was performed with the help of pharmacognostical and physicochemical standards, and they could be useful for the monograph preparation of the plant and in controlling the commercial adulteration of the bitter gourd fruits. Safety and toxicity studies have determined that the fruits were fit for consumption. anti-obesity evaluation findings can be further explored for testing their therapeutic efficacy in lab animals. Proper identification of the crude drug helps the researchers in reproducing the results and carrying the research forward without wasting time that usually occurs due to misidentification of the crude drug which makes lab results difficult to reproduce.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666230217091237
2023-09-01
2024-11-22
Loading full text...

Full text loading...

References

  1. BodekerC. BodekerG. OngC.K. GrundyC.K. BurfordG. SheinK. WHO Global Atlas of Traditional, Complementary and Alternative Medicine. Geneva, Switzerland: World Health Organization2005
    [Google Scholar]
  2. AhamadJ. AminS. MirS.R. Momordica charantia Linn. (Cucurbitaceae): Review on phytochemistry and pharmacology.Res. J. Phytochem.2017112536510.3923/rjphyto.2017.53.65
    [Google Scholar]
  3. OyelereS.F. AjayiO.H. AyoadeT.E. A detailed review on the phytochemical profiles and anti-diabetic mechanisms of Momordica charantia.Heliyon202284e0925335434401
    [Google Scholar]
  4. JiaS. ShenM. ZhangF. XieJ. Recent advances in Momordica charantia: Functional components and biological activities.Int. J. Mol. Sci.20171812255510.3390/ijms1812255529182587
    [Google Scholar]
  5. PolitoL. BortolottiM. MaielloS. BattelliM.G. BolognesiA. Plants producing ribosome-inactivating proteins in traditional medicine.Molecules20162111E156010.3390/molecules2111156027869738
    [Google Scholar]
  6. FabricantD.S. FarnsworthN.R. The value of plants used in traditional medicine for drug discovery.Environ. Health Perspect.2001109S1697510.1289/ehp.01109s16911250806
    [Google Scholar]
  7. AswarP.B. KuchekarB.S. Phytochemical, microscopic, antidiabetic, biochemical and histopathological evaluation of Momordica charantia fruits.Int J Pharma Pharmaceutical Sci2012417
    [Google Scholar]
  8. ShindeS.A. SolankiD. ChavhanS.A. Pharmacognostic study and development of quality control parameters for certain traditional antidiabetic herbs.Int J Pharma Pharmaceutical Res Human201915491110
    [Google Scholar]
  9. BharathiL.K. JosephJ.K. Momordicagenus in Asia: An overview.New DelhiSpringer201310.1007/978‑81‑322‑1032‑0
    [Google Scholar]
  10. GroverJ.K. YadavS.P. Pharmacological actions and potential uses of Momordica charantia: A review.J. Ethnopharmacol.200493112313210.1016/j.jep.2004.03.035
    [Google Scholar]
  11. Villarreal-LaT.V.E. Antimicrobial activity and chemical composition of Momordica charantia: A review.Pharmacogn. J.2020121213222
    [Google Scholar]
  12. BukhariS.A. FarahN. MustafaG. MahmoodS. NaqviS.A.R. Magneto-priming improved nutraceutical potential and antimicrobial activity of Momordica charantia L. without affecting nutritive value.Appl. Biochem. Biotechnol.2019188387889210.1007/s12010‑019‑02955‑w30729394
    [Google Scholar]
  13. UllahM. Karim ChyF. SarkarS.K. IslamM.K. AbsarN. Nutrient and phytochemical analysis of four varieties of bittergourd (Momordica charantia) grown in Chittagong hill tracts Bangladesh.Asian J Agri Res20115318619310.3923/ajar.2011.186.193
    [Google Scholar]
  14. HudsonN.D.T. Nutrient profile: Bitter melon (Momordica charantia).Natural Med Journal20124109296
    [Google Scholar]
  15. BaschE. GabardiS. UlbrichtC. Bitter melon (Momordica charantia): A review of efficacy and safety.Am. J. Health Syst. Pharm.200360435635910.1093/ajhp/60.4.35612625217
    [Google Scholar]
  16. CynthiaAI NivethiniL VictoriaTD Phytochemical screening and bioactivity of Momordica charantia L.201573970-5
    [Google Scholar]
  17. KhanN.H. LinA.T.S. PerveenN. Phytochemical analysis, antibacterial and antioxidant activity determination of Momordica charantia.World J. Pharm. Pharm. Sci.201982819610.20959/wjpps20192‑13111
    [Google Scholar]
  18. GuptaM. SharmaS. GautamA. BhaduriaR. Momordica charantia Linn. (Karela): Nature’s silent healer.Int. J. Pharm. Sci. Rev. Res.20111113237
    [Google Scholar]
  19. GroverJ.K. YadavS. VatsV. Medicinal plants of India with anti-diabetic potential.J. Ethnopharmacol.20028118110010.1016/s0378‑8741(02)00059‑412020931
    [Google Scholar]
  20. TahiraS. HussainF. Antidiabetic evaluation of Momordica charantia L. fruit extracts.West Indian Med. J.201463429429910.7727/wimj.2013.18025429471
    [Google Scholar]
  21. MukherjeeP.K. Quality control of herbal drugs. New Delhi.Business Horizons2002pp. 186191
    [Google Scholar]
  22. LiangY.Z. XieP. ChanK.J. Quality control of herbal medicines.J Chromatograp B2004812537010.1016/j.jchromb.2004.08.041
    [Google Scholar]
  23. RevathyS.S. RathinamalaR. MurugesanM. Authentication methods for drugs used in Ayurveda, Siddha and Unani systems of medicine: An overview.Int. J. Pharm. Sci. Res.2012382352236110.13040/IJPSR.0975‑8232.3(8).2352‑2361
    [Google Scholar]
  24. ChaseC.R.Jr PrattR. Fluorescence of powdered vegetable drugs with particular reference to development of a system of identification.J Am Pharm Assoc Am Pharm Assoc194938632433110.1002/jps.303038061218145471
    [Google Scholar]
  25. BelonN.M.G. AkpaganaK. HudsonJ.K de S. KoumagloK. ArnasonJ.T. Ethnomedical uses of Momordica charantia (cucurbitaceae) in Togo and relation to its phytochemistry and biological activity.J. Ethnopharmacol.200596495510.1016/j.jep.2004.08.00915588650
    [Google Scholar]
  26. PoyrazE. Derdovski. Morpho-anatomical investigations on Momordica charantia L. (Cucurbitaceae).Anadolu Univ J Sci and Technology-C-Life Sci Biotech201651233010.18036/btdc.68664
    [Google Scholar]
  27. KatewaS.S. ChaudharyB.L. JainA. Folk herbal medicines from tribal area of Rajasthan, India.J. Ethnopharmacol.2004921414610.1016/j.jep.2004.01.01115099845
    [Google Scholar]
  28. GiulianiC. TaniC. Maleci BiniL. Micromorphology and anatomy of fruits and seeds of bitter melon (Momordica charantia L., Cucurbitaceae).Acta Soc. Bot. Pol.2016851349010.5586/asbp.3490
    [Google Scholar]
  29. ShethiK.J. BegumM. RashidP. Comparative anatomy of Momordica charantia and M. cochinchinensis (Lour.) Spreng.Bangladesh J. Bot.2017462725732
    [Google Scholar]
  30. AguoruC.U. OkoliB.E. Seed coat anatomy of Momordica L. (Cucurbitaceae) in parts of tropical Western Africa.Int J Tropical Agri Food Syst2008212933
    [Google Scholar]
  31. SaifiA. NamdeoK.P. ChauhanR. DwivediJ. Evaluation of pharmacognostical, phytochemical and antidiabetic activity fruits of Momordica charantia Linn.Asian J. Pharm. Clin. Res.2014732014
    [Google Scholar]
  32. SaifiA. NamdeoK.P. ChauhanR. DwivediJ. Antiobesity potential and complex phytochemistry of Momordica charantia Linn. with promising molecular targets.Indian J. Pharm. Sci.2020June-july648560
    [Google Scholar]
  33. WangL. WaltenbergerB. Pferschy-WenzigE.M. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review.Biochem. Pharmacol.2014921738910.1016/j.bcp.2014.07.01825083916
    [Google Scholar]
  34. ChandaS. Importance of pharmacognostic study of medicinal plants: An overview.J. Pharmacogn. Phytochem.2014256973
    [Google Scholar]
  35. GoelA. GargA. KumarA. Effect of Capparis spinosa Linn. extract on lipopolysaccharide-induced cognitive impairment in rats.Indian J. Exp. Biol.2016542126132
    [Google Scholar]
  36. DahiyaV. VasudevaN. SharmaS. KumarA. RowleyD. Lead anti-obesity compounds from nature.Endocr Metabol Immune Disorders202020101637165310.2174/187153032066620050409201232364084
    [Google Scholar]
  37. KumarC.D. Pharmacognosy can help minimize accidental misuse of herbal medicine.Curr. Sci.2007313561358
    [Google Scholar]
  38. ShethiK.J. DotyM.K. SaimaJ.L. RashidP. Anatomical study of Momordica charantia L. from Bangladesh.Dhaka Univ J BiolSci20182716974
    [Google Scholar]
  39. WHO Quality control methods for herbal material. Sante. Geneva: Organisation Mondiale De.2011pp. 9-86
  40. WadoodA. GhufranM. JamalS.B. NaeemM. KhanA. GhaffarR.A. Phytochemical analysis of medicinal plants occurring in local area of Mardan.Biochem. Anal. Biochem.2013241410.4172/2161‑1009.1000144
    [Google Scholar]
  41. MuleyB.P. KhadabadiS.S. BanaraseN.B. Phytochemical constituents and pharmacological activities of Calendula officinalis Linn. (Asteraceae): A review.Trop. J. Pharm. Res.2019845546510.4314/tjpr.v8i5.48090
    [Google Scholar]
  42. HarborneJ.B. Phytochemical methods.LondonChapman and Hall, Ltd197349188
    [Google Scholar]
  43. HarborneJ. Phytochemical methods, a guide to modern techniques of plant analysis.Springer Science & Business Media2012
    [Google Scholar]
  44. TreaseG. Carbohydrates. Trease, Evans Textbook of Pharmacognosy.OxfordAiden Press2002585
    [Google Scholar]
  45. RavikumarV.R. ThiagarajanM. SengottuvelT. GopalV. ParimaladeviB. Pharmacognostical studies of zanthoxy lumtetraspermum wigntand arn.Res J Pharm Tech201010610810.5958/0974‑360X
    [Google Scholar]
  46. ParialS. JainD.C. JoshiS.B. Pharmacognostical studies on Ficus retusa leaf.Res J Pharm Tech20092354054310.5958/0974‑360X
    [Google Scholar]
  47. ThiyagarajanS. SasikalaC. VenkatalakshmiR. SudhakarB. SureshK. Pharmacognostical studies on flower parts of Nymphaeae pubescens.Res J Pharm Tech201031210213
    [Google Scholar]
  48. PandaS.K. DasD.J. Phytochemical investigation physicochemical analysis and pharmacognostical studies of root of Gmelina arborea Roxb.Res J Pharm Tech201691444810.5958/0974‑360X.2016.00008.1
    [Google Scholar]
  49. BanuS. JenitaJ.L. ManjulaD. PremakumariK.B. Pharmacognostical studies and isolation of an alkaloid from barleriacristata Linn. roots.Res J Pharm Tech201916316710.5958/0974‑360X.2020.00033.5
    [Google Scholar]
  50. PaniharN. VasudevaN. SharmaS. JangirB.L. Exploring the pharmacognostic features, anti-oxidant and lipid lowering potential of Fagopyrume sculentum Moench. seed.Curr. Tradit. Med.20206011510.2174/2215083805666190807105935
    [Google Scholar]
  51. DasS. VasudevaN. SharmaS. Chemical composition of ethanol extract of Macrotyloma uniflorum (Lam.) Verdc. Using GC-MS spectroscopy.Org. Med. Chem. Lett.2014411310.1186/s13588‑014‑0013‑y26548989
    [Google Scholar]
  52. StankovicM.S. Total phenolic content, flavanoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac.J. Sci.2011336372
    [Google Scholar]
  53. DjeridaneA. YousfiM. NadjemiB. BoutassounaD. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds.Food Chem.200697465466010.1016/j.foodchem.2005.04.028
    [Google Scholar]
  54. HanL.K. KimuraY. OkudaH. Reduction in fat storage during chitin-chitosan treatment in mice fed a high-fat diet.Int. J. Obes.199923217417910078853
    [Google Scholar]
  55. RaniN. SharmaS.K. VasudevaN. Assessment of antiobesity potential of Achyranthes aspera Linn. seed.Evid. Based Complement. Alternat. Med.2012201271591210.1155/2012/71591222919417
    [Google Scholar]
  56. MoradiA.F. AsghariB. SaeidniaS. In vitro α-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polyganumhyrcanicum.Daru201220371610.1186/2008‑2231‑20‑37
    [Google Scholar]
  57. The Ayurvedic Pharmacopoeia of India (API 2001). 1st ed. pp. 89-90.
  58. a BrittJ.K. Properties and effects of pesticides. In: Principles of Toxicology: Environmental and Industrial Applications, 3rd Edition. John Wiley and Sons 2015; New York.
  59. b SarafA. Phytochemical and antimicrobial studies of medicinal plant Costus speciosus (Koen.).E-J. Chem.20107S1405413
    [Google Scholar]
  60. WilliamsP.L. JamesR.C. RobertsS.M. Principles of toxicology: Environmental and industrial applications.New YorkJohn Wiley and Sons. Inc.2000345366
    [Google Scholar]
  61. Kunle ofEgharevba HO, Ahmadu PO. Standardization of herbal medicines: A review.Int. J. Biodivers. Conserv.20124310111210.5897/IJBC11.163
    [Google Scholar]
  62. Farmacopeia Brasileira. Portuguese. 5th ed. Brasilia: Anvisa: National Health Surveillance Agency - ANVISA20101: p. 546
    [Google Scholar]
  63. WHO Guidelines for assessing quality of herbal medicines with reference to contaminants and residues. Switzerland: Press, Geneva2007
  64. ZankS. HanazakiN. The coexistence of traditional medicine and biomedicine: A study with local health experts in two Brazilian regions.PLoS One2017124e017473110.1371/journal.pone.017473128414735
    [Google Scholar]
  65. RustomI.Y.S. Aflatoxin in food and feed: Occurrence, legislation and inactivation by physical methods.Food Chem.199759576710.1016/S0308‑8146(96)00096‑9
    [Google Scholar]
  66. SweeneyM.J. DobsonA.D.W. Mycotoxin production by Aspergillus, Fusarium and Penicillium species.Int. J. Food Microbiol.199843314115810.5094/APR.2012.0129801191
    [Google Scholar]
  67. SoobratteeM.A. NeergheenV.S. Luximon-RammaA. AruomaO.I. BahorunT. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions.Mutat. Res.20055791-220021310.1016/j.mrfmmm.2005.03.02316126236
    [Google Scholar]
  68. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  69. SumiyoshiM. KimuraY. Low molecular weight chitosan inhibits obesity induced by feeding a high-fat diet long-term in mice.J. Pharm. Pharmacol.200658220120710.1211/jpp.58.2.000716451748
    [Google Scholar]
  70. UnuofinJ.O. OtunolaG.A. AfolayanA.J. In vitro α-amylase, α-glucosidase, lipase inhibitory and cytotoxic activities of tuber extracts of Kedrostis africana (L.).Cogn Heliyon201849e0081010.1016/j.heliyon.2018.e00810
    [Google Scholar]
  71. KumarB.D. MitraA. ManjunathaM. A comparative study of alpha-amylase inhibitory activities of common antidiabetic plants of Kharagpur.Int J Green Pharm20104111512110.4103/0973‑8258.63887
    [Google Scholar]
  72. KarthicK. KirthiramK.S. SadasivamS. ThayumanavanB. PalvannanT. Identification of α amylase inhibitors from Syzygium cumini Linn. seeds.Indian J. Exp. Biol.200846967768018949899
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666230217091237
Loading
/content/journals/cff/10.2174/2666862901666230217091237
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): anti-obesity; Bitter gourd; microbial; mycotoxins; pesticide residue; pharmacognostical
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test