Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

The goji berry ( spp.) belongs to the Solanaceae family. The genus comprises 87 recognized species and is distributed in arid and semi-arid regions in temperate to subtropical zones around the world. China is currently the greatest supplier of goji berry, or wolfberry, products in the world and commercial amounts of wolfberry are grown in this country. Goji berry is densely cultivated around the southwestern part of China. Recently, goji berry became a popular fruit in Turkey due to containing health beneficial compounds, especially phenolic compounds (phenolic acids and flavonoids), carotenoids, tocopherol, and ascorbic acid and having antioxidant properties. fruits were used as remedies since ancient times in Asian countries, especially in China, for their emmenagogue, diuretic, antipyretic, tonic, aphrodisiac, hypnotic, and hepatoprotective effects. After the discovery of the medicinal and aromatic characteristics of goji berry products, interest in goji berry has increased around the world. Goji berry is regarded as a superfood because of its nutrient profile. Especially in recent years, the goji berry has been cultivated and used widely as a medical aromatic plant in many European countries, following its use in Southeast Asian countries. In this chapter, adequate research is presented about goji berry in terms of botanical description, homeland, benefits to human health, and traditional uses.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666220127140658
2023-04-01
2025-01-24
Loading full text...

Full text loading...

References

  1. HänselR. KellerK. RimplerH. SchneiderG. Handbuch der pharmazeutischen Praxis.Berlin, Heidelberg, New YorkSpringer Verlag19935
    [Google Scholar]
  2. QianJ. LiuD. HuangA. The efficiency of flavonoids in polar extracts of Lycium chinense Mill. fruits as free radical scavenger.Food Chem.200487228328810.1016/j.foodchem.2003.11.008
    [Google Scholar]
  3. MasriI.N. YusoffW.A.W. MuhamadK. The potential of goji berry tree to control soil erosion in cameron highlands, Malaysia.In: Global Symposium (15–17 May 2019) on Soil Erosionpp. 316
    [Google Scholar]
  4. Bondia-PonsI. SavolainenO. TörrönenR. MartinezJ.A. PoutanenK. HanhinevaK. Metabolic profiling of Goji berry extracts for discrimination of geographical origin by non-targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.Food Res. Int.20146313213810.1016/j.foodres.2014.01.067
    [Google Scholar]
  5. LiuZ. DangJ. WangQ. Optimization of polysaccharides from Lycium ruthenicum fruit using RSM and its anti-oxidant activity.Int. J. Biol. Macromol.20136112713410.1016/j.ijbiomac.2013.06.04223831533
    [Google Scholar]
  6. WuT. LvH. WangF. WangY. Characterization of polyphenols from Lycium ruthenicum fruit by UPLC-Q-TOF/MSE and their antioxidant activity in Caco-2 cells.J. Agric. Food Chem.201664112280228810.1021/acs.jafc.6b0003526963650
    [Google Scholar]
  7. ZhangY. ChenF.F. SangJ. Green approach for sample preparation and determination of anthocyanins from Lycium ruthenicum Murr. Using a β-cyclodextrin-based extraction method coupled with UPLC-DAD analysis.Food Anal. Methods20181182141214810.1007/s12161‑018‑1191‑4
    [Google Scholar]
  8. IslamT. YuX. BadwalT.S. XuB. Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum).Chem. Cent. J.20171115910.1186/s13065‑017‑0287‑z29086843
    [Google Scholar]
  9. HeQ. DuB. XuB. Extraction optimization of phenolics and antioxidants from black goji berry by accelerated solvent extractor using response surface methodology.Appl. Sci. (Basel)2018810190510.3390/app8101905
    [Google Scholar]
  10. ZhangQ. ChenW. ZhaoJ. XiW. Functional constituents and antioxidant activities of eight Chinese native goji genotypes.Food Chem.201620023023610.1016/j.foodchem.2016.01.04626830583
    [Google Scholar]
  11. LiuB XuQ SunY. Black goji berry (Lycium ruthenicum) tea has higher phytochemical contents and in vitro antioxidant properties than red goji berry (Lycium barbarum) tea.Food Quality and Safety20204419320110.1093/fqsafe/fyaa022
    [Google Scholar]
  12. ZhangC. WuW. ZhouL. ChengH. YeX. HeY. Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging.Food Chem.202031912653610.1016/j.foodchem.2020.12653632146292
    [Google Scholar]
  13. Oğuzİ. Değirmenciİ. KafkasE. Determination of the total phenolic and anthocyanin contents, as well as the total antioxidant capacity, of black wolfberry (Lycium ruthenicum) fruits.J Process Energy Agric201923415816110.5937/JPEA1904158O
    [Google Scholar]
  14. AmagaseH. FarnsworthN.R. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji).Food Res. Int.20114471702171710.1016/j.foodres.2011.03.027
    [Google Scholar]
  15. SkenderidisP. KerasiotiE. KarkantaE. Assessment of the antioxidant and antimutagenic activity of extracts from goji berry of Greek cultivation.Toxicol. Rep.2018525125710.1016/j.toxrep.2018.02.00129854596
    [Google Scholar]
  16. BenchennoufA. GrigorakisS. LoupassakiS. KokkalouE. Phytochemical analysis and antioxidant activity of Lycium barbarum (Goji) cultivated in Greece.Pharm. Biol.201755159660210.1080/13880209.2016.126598727937034
    [Google Scholar]
  17. StuartGA SmithFP Chinese materia medica.Shanghai: American Pres-byterian Mission Press: 250191110.5962/bhl.title.25114
    [Google Scholar]
  18. LiuC.Y. TsengA. Chinese herbal medicine modern applications of traditional formulas.Boca Raton, FLCRC Press2005
    [Google Scholar]
  19. WangH. LiJ. TaoW. Lycium ruthenicum studies: Molecular biology, Phytochemistry and pharmacology.Food Chem.201824075976610.1016/j.foodchem.2017.08.02628946340
    [Google Scholar]
  20. SongM.K. SalamN.K. RoufogalisB.D. HuangT.H. Lycium barbarum (Goji Berry) extracts and its taurine component inhibit PPARγ-dependent gene transcription in human retinal pigment epithelial cells: Possible implications for diabetic retinopathy treatment.Biochem. Pharmacol.20118291209121810.1016/j.bcp.2011.07.08921820420
    [Google Scholar]
  21. ShahrajabianM.H. SunW. ChengQ. A short review of goji berry, ginger, ginseng and astragalus in traditional Chinese and Asian medicine.Black Sea J Health Sci2020323645
    [Google Scholar]
  22. ReidD.P. Chinesische Heilkunde.StuttgartThieme Hippokrates Enke1995155224
    [Google Scholar]
  23. ZhufanX. Practical traditional Chinese medicine.BeijingForeign Language Press2000
    [Google Scholar]
  24. ReidDP Handbuch der chinesischen Heilkräuter.München: Droemer-sche Verlagsanstalt Th Knaur Nachf1998
    [Google Scholar]
  25. ChenJ.K. ChenT.T. Chinese medical herbology and pharmacology.City of Industry, CAArt of Medicine Press, Inc2004
    [Google Scholar]
  26. BoraP. RagaeeS. Abdel-AalE.S.M. Effect of incorporation of goji berry by-product on biochemical, physical and sensory properties of selected bakery products.Lebensm. Wiss. Technol.201911210822510.1016/j.lwt.2019.05.123
    [Google Scholar]
  27. YeX. JiangY. Phytochemicals in Goji Berries: Applications in Functional Foods.CRC Press202010.1201/9780429021749
    [Google Scholar]
  28. HuangK.C. The pharmacognosy of Chinese herbs.Boca RatonCRC Press1999333334
    [Google Scholar]
  29. ZhuY.P. Chinese Materia Medica chemistry, pharmacology and applications.AmsterdamHarwood Academic Publishers1998
    [Google Scholar]
  30. YehP.T. ChenY.J. LinN.C. YehA.I. YangC.H. The ocular protective effects of nano/submicron particles prepared from Lycium barbarum fruits against oxidative stress in an animal model.J. Ocul. Pharmacol. Ther.202036317918910.1089/jop.2019.004831951153
    [Google Scholar]
  31. YuM.S. LaiC.S. HoY.S. Characterization of the effects of anti-aging medicine Fructus lycii on beta-amyloid peptide neurotoxicity.Int. J. Mol. Med.200720226126817611646
    [Google Scholar]
  32. AmagaseH. SunB. BorekC. Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults.Nutr. Res.2009291192510.1016/j.nutres.2008.11.00519185773
    [Google Scholar]
  33. PotteratO. Goji (Lycium barbarum and L. Chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity.Planta Med.201076171910.1055/s‑0029‑118621819844860
    [Google Scholar]
  34. ReeveV.E. AllansonM. ArunS.J. DomanskiD. PainterN. Mice drinking goji berry juice (Lycium barbarum) are protected from UV radiation-induced skin damage via antioxidant pathways.Photochem. Photobiol. Sci.20109460160710.1039/b9pp00177h20354657
    [Google Scholar]
  35. TakebayashiJ. IshiiR. ChenJ. MatsumotoT. IshimiY. TaiA. Reassessment of antioxidant activity of arbutin: Multifaceted evaluation using five antioxidant assay systems.Free Radic. Res.201044447347810.3109/1071576100361076020166881
    [Google Scholar]
  36. ZhangZ. LiuX. WuT. Selective suppression of cervical cancer Hela cells by 2-O-β-D-glucopyranosyl-L-ascorbic acid isolated from the fruit of Lycium barbarum L.Cell Biol. Toxicol.201127210712110.1007/s10565‑010‑9174‑220717715
    [Google Scholar]
  37. TangW.M. ChanE. KwokC.Y. A review of the anticancer and immunomodulatory effects of Lycium barbarum fruit.Inflammopharmacology201220630731410.1007/s10787‑011‑0107‑322189914
    [Google Scholar]
  38. ZhangX. [Experimental research on the role of Lycium barbarum polysaccharide in anti-peroxidation].Zhongguo Zhongyao Zazhi1993182110112, 1288323695
    [Google Scholar]
  39. OguzH.I. History, botanical characteristic features, beneficial of human health and general using ways of wolfberry.Gece Publishing First Edition.20197792
    [Google Scholar]
  40. PengY. YanY. WanP. Gut microbiota modulation and antiinflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice.Free Radic. Biol. Med.20191369610810.1016/j.freeradbiomed.2019.04.00530959170
    [Google Scholar]
  41. TangJ. YanY. RanL. Isolation, antioxidant property and protective effect on PC12 cell of the main anthocyanin in fruit of Lycium ruthenicum Murray.J. Funct. Foods2017309710710.1016/j.jff.2017.01.015
    [Google Scholar]
  42. YanY. PengY. TangJ. Effects of anthocyanins from the fruit of Lycium ruthenicum Murray on intestinal microbiota.J. Funct. Foods20184853354110.1016/j.jff.2018.07.053
    [Google Scholar]
  43. WedickN.M. PanA. CassidyA. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women.Am. J. Clin. Nutr.201295492593310.3945/ajcn.111.02889422357723
    [Google Scholar]
  44. MinkP.J. ScraffordC.G. BarrajL.M. Flavonoid intake and cardiovascular disease mortality: A prospective study in postmenopausal women.Am. J. Clin. Nutr.200785389590910.1093/ajcn/85.3.89517344514
    [Google Scholar]
  45. McCulloughM.L. PetersonJ.J. PatelR. JacquesP.F. ShahR. DwyerJ.T. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults.Am. J. Clin. Nutr.201295245446410.3945/ajcn.111.01663422218162
    [Google Scholar]
  46. ZhuY. LingW. GuoH. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: A randomized controlled trial.Nutr. Metab. Cardiovasc. Dis.201323984384910.1016/j.numecd.2012.06.00522906565
    [Google Scholar]
  47. CaballeroS. PamerE.G. Microbiota-mediated inflammation and antimicrobial defense in the intestine.Annu. Rev. Immunol.201533122725610.1146/annurev‑immunol‑032713‑12023825581310
    [Google Scholar]
  48. JonesR.M. The influence of the gut microbiota on host physiology: In pursuit of mechanisms.Yale J. Biol. Med.201689328529727698613
    [Google Scholar]
  49. PengY. YanY. WanP. Effects of long-term intake of anthocyanins from Lycium ruthenicum Murray on the organism health and gut microbiota in vivo.Food Res. Int.202013010895210.1016/j.foodres.2019.10895232156393
    [Google Scholar]
  50. SuC.X. DuanX.G. LiangL.J. Lycium barbarum polysaccharides as an adjuvant for recombinant vaccine through enhancement of humoral immunity by activating Tfh cells.Vet. Immunol. Immunopathol.20141581-29810410.1016/j.vetimm.2013.05.00623759470
    [Google Scholar]
  51. ChenZ. Kwong Huat TanB. ChanS.H. Activation of T lymphocytes by polysaccharide-protein complex from Lycium barbarum L.Int. Immunopharmacol.20088121663167110.1016/j.intimp.2008.07.01918755300
    [Google Scholar]
  52. XuM. ZhangH. WangY. [The protective effects of Lycium barbarum polysaccharide on alloxan-induced isolated islet cells damage in rats].Zhong Yao Cai200225964965110.1002/ptr.363312451977
    [Google Scholar]
  53. ZhangL. GuJ. ChenY. ZhangL. A study on four antioxidation effects of lycium barbarum polysaccharides in vitro.Afr. J. Tradit. Complement. Altern. Med.201310649449810.4314/ajtcam.v10i6.1824311876
    [Google Scholar]
  54. JingL. YinL. Antihyperglycemic activity of polysaccharide from Lycium barbarum.J. Med. Plants Res.2010412326
    [Google Scholar]
  55. LiP. XiaoB. ChenH. GuoJ. Lycium barbarum and tumors in the gastrointestinal tract.Lycium barbarum and Human. ChangR.C. SoK.F. 201510.1007/978‑94‑017‑9658‑3_6
    [Google Scholar]
  56. TorrissenO.J. HardyR.W. ShearerK.D. ScottT.M. StoneF.E. Effects of dietary canthaxanthin level and lipid level on apparent digestibility coefficients for canthaxanthin in rainbow trout (Oncorhynchus mykiss).Aquaculture1990883-435136210.1016/0044‑8486(90)90160‑O
    [Google Scholar]
  57. KanX. YanY. RanL. Ultrasonic-assisted extraction and high-speed counter-current chromatography purification of zeaxanthin dipalmitate from the fruits of Lycium barbarum L.Food Chem.202031012585410.1016/j.foodchem.2019.12585431784067
    [Google Scholar]
  58. OguzI. KafkasE.N. Importance and growing of wolf berry ın the world and turkey. I. International Mersin Symposium. 01-03 December201820187077
    [Google Scholar]
  59. GongG. FanJ. SunY. Isolation, structural characterization, and antioxidativity of polysaccharide LBLP5-A from Lycium barbarum leaves.Process Biochem.201651231432410.1016/j.procbio.2015.11.013
    [Google Scholar]
  60. MocanA. ZenginG. SimirgiotisM. Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: Phytochemical characterization, biological profile, and computational studies.J. Enzyme Inhib. Med. Chem.201732115316810.1080/14756366.2016.124353528095717
    [Google Scholar]
  61. YaoX. PengY. XuL.J. LiL. WuQ.L. XiaoP.G. Phytochemical and biological studies of Lycium medicinal plants.Chem. Biodivers.201186976101010.1002/cbdv.20100001821674776
    [Google Scholar]
  62. MocanA. VlaseL. VodnarD.C. Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. leaves.Molecules2014197100561007310.3390/molecules19071005625014533
    [Google Scholar]
  63. WeiZ.Q. YangJ. TanY.P. WangJ.J. Study on hypoglycemic effect of Lycium barbarum leaves in Ningxia at different picking periods.Lishizhen Med Materia Medica Res20122327862787
    [Google Scholar]
  64. WangL. LiZ.F. YangJ. Effect of Lycium barbarum leaf tea on diabetic mice Lishizhen Med.Materia Medica Res20122327532754
    [Google Scholar]
  65. ZhaoX.Q. GuoS. LuY.Y. Lycium barbarum L. leaves ameliorate type 2 diabetes in rats by modulating metabolic profiles and gut microbiota composition.Biomed. Pharmacother.202012110955910.1016/j.biopha.2019.10955931734581
    [Google Scholar]
  66. BenskyD. ClaveyS. StögerE. Chinese herbal medicine. 3rd ed. Materia Medica. Seattle: Eastland Press, Inc.2004
    [Google Scholar]
  67. OyagbemiA.A. AzeezO.I. SabaA.B. Interactions between reactive oxygen species and cancer: The roles of natural dietary antioxidants and their molecular mechanisms of action.Asian Pac. J. Cancer Prev.200910453554419827865
    [Google Scholar]
  68. Oğuzİ. OğuzH.İ. KafkasN.E. Evaluation of fruit characteristics of various organically-grown goji berry (Lycium barbarum L., Lycium chinense Miller) species during ripening stages.J. Food Compos. Anal.202110110384610.1016/j.jfca.2021.103846
    [Google Scholar]
  69. BalsanoC. AlisiA. Antioxidant effects of natural bioactive compounds.Curr. Pharm. Des.200915263063307310.2174/13816120978905808419754380
    [Google Scholar]
  70. SasazukiS. HayashiT. NakachiK. Protective effect of vitamin C on oxidative stress: A randomized controlled trial.Int. J. Vitam. Nutr. Res.200878312112810.1024/0300‑9831.78.3.12119003734
    [Google Scholar]
  71. OhnoS. OhnoY. SuzukiN. SomaG. InoueM. High-dose vitamin C (ascorbic acid) therapy in the treatment of patients with advanced cancer.Anticancer Res.200929380981519414313
    [Google Scholar]
  72. KhaerunnisaS. KurniawanH. AwaluddinR. SuhartatiS. SoetjiptoS. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study.Preprints202010.20944/preprints202003.0226.v1
    [Google Scholar]
  73. YangF. ZhangY. TariqA. Food as medicine: A possible preventive measure against coronavirus disease (COVID-19).Phytother. Res.202034123124313610.1002/ptr.677032468635
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666220127140658
Loading

  • Article Type:
    Review Article
Keyword(s): aromatic; Goji berry; human health. wolfberry; medicinal plants; superfood
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test