Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Background

Mango, known as “the king of fruits,” is one of the most popular fruits on the planet. Vitamins, minerals, antioxidants, and bioactive substances abound.

Objective

In the present review, we aimed to explore the therapeutic effects of mango as an antioxidant.

Methods

Scopus and ScienceDirect databases were used to gather research papers over the previous 12 years.

Results

Our research explores the formidable antioxidant potential of mango, driven by its elevated phenolic and flavonoid content. Within mango, crucial metabolites such as glutathione and euxanthone contribute significantly to its antioxidant and anti-inflammatory prowess. A noteworthy bioactive compound, Mangiferin, found in mango, exhibits anti-diabetic properties by inhibiting sucrase and isomaltase, consequently reducing glucose absorption in the intestine.

Conclusion

In our study, mango has demonstrated its ability to lower blood sugar levels, enhance insulin production, and reduce lipid levels. These beneficial effects are attributed to high soluble fiber, polyphenols, and carotenoids, including quercetin and beta-carotene. Our findings shed light on the multifaceted health-promoting attributes of mango, positioning it as a valuable natural resource for potential dietary interventions and health enhancement. In conclusion, effective blood sugar management hinges on strategic dietary decisions. Steering clear of high-glycemic combinations with mangoes, choosing daytime consumption, and integrating regular physical activity for energy equilibrium is paramount.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629288525240228182840
2024-03-20
2025-01-24
Loading full text...

Full text loading...

References

  1. EvansSF MeisterM MahmoodM Mango supplementation improves blood glucose in obese individuals.Nutr Metab Insights20147NMI.S1702810.4137/NMI.S17028 25210462
    [Google Scholar]
  2. US Department of Agriculture ARSUSDA national nutrient database for standard reference.2005Available from: http://www.ars.usda.gov/ba/bhnrc/ndl
  3. AjilaC.M. RaoJ.L. RaoP.U.J.S. Characterization of bioactive compounds from raw and ripe Mangifera indica L. peel extracts.Food Chem. Toxicol.201048123406341110.1016/j.fct.2010.09.012 20851730
    [Google Scholar]
  4. AjilaC.M. AalamiM. LeelavathiK. RaoU.J.S.P. Mango peel powder: A potential source of antioxidant and dietary fiber in macaroni preparations.Innov. Food Sci. Emerg. Technol.201011121922410.1016/j.ifset.2009.10.004
    [Google Scholar]
  5. SivakumarD. JiangY. YahiaE.M. Maintaining mango (Mangifera indica L.) fruit quality during the export chain.Food Res. Int.20114451254126310.1016/j.foodres.2010.11.022
    [Google Scholar]
  6. KuganesanA. ThiripuranatharG. NavaratneA.N. ParanagamaP.A. Antioxidant and anti-inflammatory activities of peels, pulps, and seed kernels of three common mango (Mangifera indica L.) varieties in Sri Lanka.Int. J. Pharm. Sci. Res.20178170
    [Google Scholar]
  7. JeongS.H. KimB.Y. KangH.G. KuH.O. ChoJ.H. Effects of butylated hydroxyanisole on the development and functions of reproductive system in rats.Toxicology20052081496210.1016/j.tox.2004.11.014 15664432
    [Google Scholar]
  8. EnginA.B. BukanN. KurukahveciogluO. MemisL. EnginA. Effect of butylated hydroxytoluene (E321) pretreatment versus l-arginine on liver injury after sub-lethal dose of endotoxin administration.Environ. Toxicol. Pharmacol.201132345746410.1016/j.etap.2011.08.014 22004966
    [Google Scholar]
  9. BotterweckA.A.M. VerhagenH. GoldbohmR.A. KleinjansJ. van den BrandtP.A. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands Cohort Study.Food Chem. Toxicol.200038759960510.1016/S0278‑6915(00)00042‑9 10942321
    [Google Scholar]
  10. RandhawaS. BahnaS.L. Hypersensitivity reactions to food additives.Curr. Opin. Allergy Clin. Immunol.20099327828310.1097/ACI.0b013e32832b2632 19390435
    [Google Scholar]
  11. LourençoS.C. MartinsM.M. AlvesV.D. Antioxidants of natural plant origins: From sources to food industry applications.Molecules20192422413210.3390/molecules24224132 31731614
    [Google Scholar]
  12. NunesC.R. ArantesB.M. de PereiraF.M.S. Plants as sources of anti-inflammatory agents.Molecules20202516372610.3390/molecules25163726 32824133
    [Google Scholar]
  13. TsaiW.C. LiY.H. LinC.C. ChaoT.H. ChenJ.H. Effects of oxidative stress on endothelial function after a high-fat meal.Clin. Sci.2004106331531910.1042/CS20030227 14561213
    [Google Scholar]
  14. BloomerR.J. KabirM.M. MarshallK.E. CanaleR.E. FarneyT.M. Postprandial oxidative stress in response to dextrose and lipid meals of differing size.Lipids Health Dis.2010917910.1186/1476‑511X‑9‑79 20663187
    [Google Scholar]
  15. O’HaraC. OjoB. EmersonS.R. Acute freeze-dried mango consumption with a high-fat meal has minimal effects on postprandial metabolism, inflammation and antioxidant enzymes.Nutr. Metab. Insights20191210.1177/1178638819869946 31452602
    [Google Scholar]
  16. LeN.A. Lipoprotein-associated oxidative stress: A new twist to the postprandial hypothesis.Int. J. Mol. Sci.201416140141910.3390/ijms16010401 25548897
    [Google Scholar]
  17. MathieuP. LemieuxI. DesprésJ-P. Obesity, inflammation, and cardiovascular risk.Clin. Pharmacol. Ther.201087440741610.1038/clpt.2009.311 20200516
    [Google Scholar]
  18. Siri-TarinoP.W. SunQ. HuF.B. KraussR.M. Saturated fat, carbohydrate, and cardiovascular disease.Am. J. Clin. Nutr.201091350250910.3945/ajcn.2008.26285 20089734
    [Google Scholar]
  19. MoussaH.A. GardnerM.J. KurukulasuriyaL.R. SowersJ.R. Dysglycemia/prediabetes and cardiovascular risk factors.Rev. Cardiovasc. Med.200910420220810.3909/ricm0474 20065930
    [Google Scholar]
  20. RobinsonE. GrieveD.J. Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease.Pharmacol. Ther.2009122324626310.1016/j.pharmthera.2009.03.003 19318113
    [Google Scholar]
  21. WangY.X. PPARs: Diverse regulators in energy metabolism and metabolic diseases.Cell Res.201020212413710.1038/cr.2010.13 20101262
    [Google Scholar]
  22. LatruffeN. VamecqJ. Peroxisome proliferators and peroxisome proliferator activated receptors (PPARs) as regulators of lipid metabolism.Biochimie1997792-3819410.1016/S0300‑9084(97)81496‑4 9209701
    [Google Scholar]
  23. XiY. ZhangY. ZhuS. LuoY. XuP. HuangZ. PPAR-mediated toxicology and applied pharmacology.Cells20209235210.3390/cells9020352 32028670
    [Google Scholar]
  24. LucasE.A. LiW. PetersonS.K. Mango modulates body fat and plasma glucose and lipids in mice fed a high-fat diet.Br. J. Nutr.2011106101495150510.1017/S0007114511002066 21733317
    [Google Scholar]
  25. National Mango DatabaseIndian status of mango: Area, production and productivity-growth pattern; National mango database.Available from: https://mangifera.res.in/ (Accessed on: September 6, 2020).
  26. National mango database indian status of mango: Area, production and productivity-growth pattern; National mango database.Available from: https://mangifera.res.in/ (Accessed on: January 14, 2024).
  27. AltendorfS. Major Tropical Fruits Market Review 2017.Rome: FAO201910
    [Google Scholar]
  28. LebakaV.R. WeeY.J. YeW. KoriviM. Nutritional composition and bioactive compounds in three different parts of mango fruit.Int. J. Environ. Res. Public Health202118274110.3390/ijerph18020741 33467139
    [Google Scholar]
  29. APEDA-Agricultural and Processed Food Products Export Development AuthorityProducts-Fresh Fruits and Vegetable: Mango.New Delhi, IndiaMinistry of Commerce and Government of India20202020
    [Google Scholar]
  30. AngelR. ChadhaY.R. The wealth of India. Raw materials.Kew Bull.197832480210.2307/4109779
    [Google Scholar]
  31. HaqueS. AkbarD. KinnearS. The variable impacts of extreme weather events on fruit production in subtropical Australia.Sci. Hortic.202026210905010.1016/j.scienta.2019.109050
    [Google Scholar]
  32. RajanS. Phenological responses to temperature and rainfall: A case study of mango. In: National Agricultural.Bioversity International Office for South Asia2012
    [Google Scholar]
  33. OlesenT. Late 20th century warming in a coastal horticultural region and its effects on tree phenology.N. Z. J. Crop Hortic. Sci.201139211912910.1080/01140671.2010.550627
    [Google Scholar]
  34. NormandF. LauriP.E. LegaveJ.M. Climate change and its probable effects on mango production and cultivation.Acta Hortic.201510751075213110.17660/ActaHortic.2015.1075.1
    [Google Scholar]
  35. AyyazS. BonneyL. AkmalN. Competitiveness in mango trade: A comparative analysis between pakistan and other mango exporting nations.Int. J. Food Agric. Econ.20197341349
    [Google Scholar]
  36. FAOSTATFAO statistics.2018Available from: http://www.faostat.fao.org/ (Accessed on: January 14, 2024).
  37. BadarH. Value chain performance improvement for sustainable mango industry development in Pakistan.PhD Thesis, School of Agriculture and Food Sciences, The University of Queensland201510.14264/uql.2015.430
    [Google Scholar]
  38. SunX. A whole of supply chain approach to developing a new market for Pakistan mangoes: The case of China.III International Symposium on Improving the Performance of Supply Chains in the Transitional EconomiesKuala Lumpur, Malaysia2011. 4-8 July 2010;
    [Google Scholar]
  39. HamzaA. ZahranN. SawiresS. Impact of substerilizing dose on histological changes in gonads and ovaries of Ephestia cautella (Lepidoptera: Pyralidae) by gamma radiation.Sci. Rep.20221211326510.1038/s41598‑022‑17309‑6 35918368
    [Google Scholar]
  40. Report of a Join WHO/FAO Expert Consultation Diet Nutrition and the Prevention of Chronic Diseases.Geneva, Switzerland: World Health Organization2003
    [Google Scholar]
  41. JashS.K. BrahmachariG. Chemical profile and health benefits of fruit mango—an emerging functional food: An update.Benefits201523
    [Google Scholar]
  42. DeshpandeD.J. HandBook of Herbal Remedies.2nd edIndia Jodhpur: Agrobias2011
    [Google Scholar]
  43. ParvezM.G.M. Pharmacological activities of mango (Mangifera indica): A review.J. Pharmacogn. Phytochem.20165317
    [Google Scholar]
  44. PaullR.E. Crop Production Science in Horticulture. 2nd ed.CA B International20101252-29
    [Google Scholar]
  45. FowomolaM.A. Some nutrients and antinutrients contents of mango.Seed Afr J Food Sci201048472476
    [Google Scholar]
  46. KhandareM.S. Mango (Mangifera indica Linn) is a medicinal and holy plant.J Med Plants Stud2016444446
    [Google Scholar]
  47. OkwuD.E. EzenaguV. Evaluation of the phytochemical composition of mango (Mangifera indica Linn) stem bark and leaves.Int. J. Chem. Sci.200562705716
    [Google Scholar]
  48. SamantaS. ChandaR. ReddyA.G. Antidiabetic activity of mango (Mangifera indica): A review.MOJ Bioequiv Availab201962326
    [Google Scholar]
  49. VithanaM.D.K. SinghZ. JohnsonS.K. Harvest maturity stage affects the concentrations of health-promoting compounds: Lupeol, mangiferin and phenolic acids in the pulp and peel of ripe ‘Kensington Pride’ mango fruit.Sci. Hortic.201924312513010.1016/j.scienta.2018.08.019
    [Google Scholar]
  50. VithanaM.D.K. SinghZ. JohnsonS.K. Regulation of the levels of health promoting compounds: Lupeol, mangiferin and phenolic acids in the pulp and peel of mango fruit: A review.J. Sci. Food Agric.20199983740375110.1002/jsfa.9628 30723909
    [Google Scholar]
  51. APEDA-agricultural and processed food products export development authority. In: Products-Fresh Fruits and Vegetable.New Delhi, India: Ministry of Commerce and Government of India20202020
    [Google Scholar]
  52. CelisM.M.E. YahiaE.M. BedoyaR. Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds.Front Plant Sci201910107310.3389/fpls.2019.01073 31681339
    [Google Scholar]
  53. DarM.S. OakP. ChidleyH. DeshpandeA. GiriA. GuptaV. Nutrient and flavor content of mango (Mangifera indica L.) cultivars: An appurtenance to the list of staple foods. In: Nutritional Composition of Fruit Cultivars.Elsevier2016445467
    [Google Scholar]
  54. US Department of AgricultureUSDA national nutrient database for standard reference.Available from: https://ndb.nal.usda.gov/ndb
  55. VallarinoJ.G. ChapterO.S. 10. Organic acids. YahiaE Carrillo-LópezA Postharvest Physiology and Biochemistry of Fruits and Vegetables.Elsevier2019207224
    [Google Scholar]
  56. RobineauL. SoejartoD.D. TRAMIL: A research project on the medicinal plant resources of the caribbean.Med Resour Trop Biodivers Importance Hum Health19961317325
    [Google Scholar]
  57. CarlosP.H. YahiaE.M. AguilarG.G.A. Identification and quantification of major phenolic compounds from mango (Mangifera indica, Cv. Ataulfo) fruit by HPLC–DAD–MS/MS-ESI and their individual contribution to the antioxidant activity during ripening.Food Chem.2012135110511110.1016/j.foodchem.2012.04.103 23017399
    [Google Scholar]
  58. ShahidiF. AmbigaipalanP. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – a review.J. Funct. Foods20151882089710.1016/j.jff.2015.06.018
    [Google Scholar]
  59. EdiriweeraM.K. TennekoonK.H. SamarakoonS.R. A review on ethnopharmacological applications, pharmacological activities, and bioactive compounds of Mangifera indica (Mango).Evid. Based Complement. Alternat. Med.2017201712410.1155/2017/6949835 29456572
    [Google Scholar]
  60. ChooW.S. Fruit Pigment Changes During Ripening.Elsevier201917
    [Google Scholar]
  61. VarakumarS. KumarY.S. ReddyO.V.S. Carotenoid composition of mango (Mangifera indica L.) wine and its antioxidant activity.J. Food Biochem.20113551538154710.1111/j.1745‑4514.2010.00476.x
    [Google Scholar]
  62. AcevedoL.M. RayaA.I. MorenoM.J.M. TejeroA.E. RiveroJ.L.L. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats.PLoS One2017123e017302810.1371/journal.pone.0173028 28253314
    [Google Scholar]
  63. AcostaJ. SevillaI. SalomonS. NuevasL. RomeroA. AmaroD. Determination of magniferin solubility in solvents used in the biopharmaceutical university.J. Pharm. Pharmacogn. Res.2016424953
    [Google Scholar]
  64. ImranM. ArshadM.S. ButtM.S. KwonJ.H. ArshadM.U. SultanM.T. Mangiferin: A natural miracle bioactive compound against lifestyle related disorders.Lipids Health Dis.20171618410.1186/s12944‑017‑0449‑y 28464819
    [Google Scholar]
  65. MangoAvailable from: https://www.ndb.nal.usda.gov/ndb/nutrients/
  66. ObohG. AdemosunA.O. AkinleyeM. OmojokunO.S. BoligonA.A. AthaydeM.L. Starch composition, glycemic indices, phenolic constituents, and antioxidative and antidiabetic properties of some common tropical fruits.J Ethn Foods201522647310.1016/j.jef.2015.05.003
    [Google Scholar]
  67. MasiboM. HeQ. Major mango polyphenols and their potential significance to human health.Compr. Rev. Food Sci. Food Saf.20087430931910.1111/j.1541‑4337.2008.00047.x 33467788
    [Google Scholar]
  68. KalraB GuptaL KhandelwalD ChoubeyN. Mango and diabetes.J Soc Health Diabetes20186010568
    [Google Scholar]
  69. AjilaC.M. RaoP.U.J.S. Mango peel dietary fibre: Composition and associated bound phenolics.J. Funct. Foods20135144445010.1016/j.jff.2012.11.017
    [Google Scholar]
  70. SinghD. MishraM. GuptaM. SinghP. GuptaA. NemaR. Nitric oxide radical scavenging assay of bioactive compounds present in methanol extract of centella asiatica.Int. J. Pharm. Sci. Res.2012234244
    [Google Scholar]
  71. CarlosP.H. YahiaE. OsunaI.M.A. MartinezG.P. SánchezR.M. AguilarG.G.A. Effect of ripeness stage of mango fruit (Mangifera indica L., cv. Ataulfo) on physiological parameters and antioxidant activity.Sci. Hortic.201213571310.1016/j.scienta.2011.11.027
    [Google Scholar]
  72. JacobiK.K. MacRaeE.A. HetheringtonS.E. Effects of hot air conditioning of ‘Kensington’ mango fruit on the response to hot water treatment.Postharvest Biol. Technol.2000211394910.1016/S0925‑5214(00)00163‑0
    [Google Scholar]
  73. OchoaF.Á. CamachoC.R. LinaresB.I. AvilaD.J.A. CarreteroS.A. AguilarG.G.A. Evaluation of metabolic changes in liver and serum of streptozotocin-induced diabetic rats after Mango diet supplementation.J. Funct. Foods20206410369510.1016/j.jff.2019.103695
    [Google Scholar]
  74. PrabhuS. JainuM. SabithaK.E. DeviC.S.S. Role of mangiferin on biochemical alterations and antioxidant status in isoproterenol-induced myocardial infarction in rats.J. Ethnopharmacol.2006107112613310.1016/j.jep.2006.02.014 16584858
    [Google Scholar]
  75. RidkerP.M. From C-reactive protein to interleukin-6 to interleukin-1.Circ. Res.2016118114515610.1161/CIRCRESAHA.115.306656 26837745
    [Google Scholar]
  76. BassukS.S. RifaiN. RidkerP.M. High-sensitivity C-reactive protein.Curr. Probl. Cardiol.200429843949310.1016/j.cpcardiol.2004.03.004 15258556
    [Google Scholar]
  77. DerosaG. FerrariI. D’AngeloA. Oral fat load effects on inflammation and endothelial stress markers in healthy subjects.Heart Vessels200924320421010.1007/s00380‑008‑1109‑y 19466522
    [Google Scholar]
  78. DekkerM.J. WrightA.J. MazurakV.C. Fasting triacylglycerol status, but not polyunsaturated/saturated fatty acid ratio, influences the postprandial response to a series of oral fat tolerance tests.J. Nutr. Biochem.200920969470410.1016/j.jnutbio.2008.06.012 18829281
    [Google Scholar]
  79. NatalD.I.G. RodriguesK.C.C. MoreiraM.E.C. Bioactive compounds of the Ubá mango juices decrease inflammation and hepatic steatosis in obese Wistar rats.J. Funct. Foods20173240941810.1016/j.jff.2017.03.023
    [Google Scholar]
  80. KaurJ. RathinamX. KasiM. Preliminary investigation on the antibacterial activity of mango (Mangifera indica L: Anacardiaceae) seed kernel.Asian Pac. J. Trop. Med.20103970771010.1016/S1995‑7645(10)60170‑8
    [Google Scholar]
  81. GuerraJ.F.C. MacielP.S. de AbreuI.C.M.E. Dietary açai attenuates hepatic steatosis via adiponectin-mediated effects on lipid metabolism in high-fat diet mice.J. Funct. Foods20151419220210.1016/j.jff.2015.01.025
    [Google Scholar]
  82. EmamatH. NooriM. ForoughiF. RismanchiM. ZinabE.H. HekmatdoostA. An accessible and pragmatic experimental model of nonalcoholic fatty liver disease.Middle East J. Dig. Dis.20168210911510.15171/mejdd.2016.15 27252817
    [Google Scholar]
  83. LimJ. LiuZ. ApontesP. Dual mode action of mangiferin in mouse liver under high fat diet.PLoS One201493e9013710.1371/journal.pone.0090137 24598864
    [Google Scholar]
  84. PanM.H. LaiC.S. TsaiM.L. HoC.T. Chemoprevention of nonalcoholic fatty liver disease by dietary natural compounds.Mol. Nutr. Food Res.201458114717110.1002/mnfr.201300522 24302567
    [Google Scholar]
  85. PinoJ.A. MesaJ. MuñozY. MartíM.P. MarbotR. Volatile components from mango (Mangifera indica L.) cultivars.J. Agric. Food Chem.20055362213222310.1021/jf0402633 15769159
    [Google Scholar]
  86. ChiouA. KarathanosV. MylonaA. SaltaF. PreventiF. AndrikopoulosN. Currants (Vitis vinifera L.) content of simple phenolics and antioxidant activity.Food Chem.2007102251652210.1016/j.foodchem.2006.06.009
    [Google Scholar]
  87. FangC. KimH. BarnesR. TalcottS.T. TalcottM.S.U. Daily mango (Mangifera indica L.) consumption for 42 days differentially modulates metabolism and inflammation in lean and obese individuals.FASEB J.2017311431433
    [Google Scholar]
  88. MontemayorE.L. BrenesH.C. ParraR.P.A. High hydrostatic pressure processing reduces the glycemic index of fresh mango puree in healthy subjects.Food Funct.2015641352136010.1039/C4FO01005A 25797308
    [Google Scholar]
  89. PatnaikR. Mango leaves in treating diabetes: A strategic study.Int. J. Innov. Res. Dev.2014312432441
    [Google Scholar]
  90. AzharA. AamirK. AsadF. KaziH.A. FarooquiM.U. Therapeutic effect of mango seed extract in diabetes mellitus.Prof. Med. J.20192691551155610.29309/TPMJ/2019.26.09.4023
    [Google Scholar]
  91. MujawdiyaP.K. Mangiferin: A potential natural molecule for management of metabolic syndrome.Int. J. Pharma Sci.2015715
    [Google Scholar]
  92. IwaiK. KimM.Y. OnoderaA. MatsueH. Alpha-glucosidase inhibitory and antihyperglycemic effects of polyphenols in the fruit of Viburnum dilatatum Thunb.J. Agric. Food Chem.200654134588459210.1021/jf0606353 16787002
    [Google Scholar]
  93. GondiM. BashaS.A. BhaskarJ.J. SalimathP.V. RaoP.U.J.S. Anti-diabetic effect of dietary mango (Mangifera indica L.) peel in streptozotocin-induced diabetic rats.J. Sci. Food Agric.201595599199910.1002/jsfa.6778 24917522
    [Google Scholar]
  94. AjilaC.M. RaoP.U.J.S. Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Mangifera indica L. peel extract.Food Chem. Toxicol.200846130330910.1016/j.fct.2007.08.024 17919803
    [Google Scholar]
  95. GonzálezR.S. RuízG.I.M. RamírezP.I.F. MoraO. GomezR.M. CamachoR. Mechanisms related to the anti-diabetic properties of mango (Mangifera indica L.) juice by-product.J. Funct. Foods20173719019910.1016/j.jff.2017.07.058
    [Google Scholar]
  96. GoversR. Molecular mechanisms of GLUT4 regulation in adipocytes.Diabetes Metab.201440640041010.1016/j.diabet.2014.01.005 24656589
    [Google Scholar]
  97. CruzA.D.M. GonzálezR.S. RamírezP.I.F. Juice by-products as a source of dietary fibre and antioxidants and their effect on hepatic steatosis.J. Funct. Foods2015179310210.1016/j.jff.2015.04.051
    [Google Scholar]
  98. HaY. LeeM. KwonH.O. LeeY.H. Effect of african mango (Irvingia gabonesis, IGOB 13 TM) extract on glucose regulation in STZ-induced diabetes.J Korean Soc Food Sci Nutr201544111607161110.3746/jkfn.2015.44.11.1607
    [Google Scholar]
/content/journals/cff/10.2174/0126668629288525240228182840
Loading
/content/journals/cff/10.2174/0126668629288525240228182840
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antioxidants; bioactive compounds; fiber; mangiferin; Mango; vitamins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test