Skip to content
2000
Volume 1, Issue 2
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Background

With the aid of various ulcer-induced models, the goal of this study was to assess the antiulcer ability of () leaf extracts in Wistar rats.

Methods

The induction of ulcers was done by different models like pylorus ligation method, ethanol-induced and stress-induced models. Group 1 (negative control), Group 2 (standard group) were treated with Sucralfate (8.6 mg/kg), Group 3 was treated with aqueous extract of (AEQI,200 mg/kg), Group 4 was treated with aqueous extract of (AEQI,400 mg/kg), Group 5 was treated with ethanolic extract of (EEQI, 200 mg/kg) and Group 6 was treated with ethanol extract of (EEQI, 400 mg/kg). All therapies were given orally twice every day. After the course of treatment was complete, blood and gastrointestinal contents were taken, and biochemical tests were run. The acetylcholine and histamine drug response curves were used to develop the mechanism of the extracts.

Results

The groups treated with extracts experienced a significant decrease in ulcer index. The antiulcer potential of the AEQI and EEQI is dose-dependent. Hematological, hepatic, and cardiac parameters were not significantly affected by the extracts, although high-density lipoprotein production was. Acetylcholine and histamine are blocked by AEQI and EEQI, according to the DRC analysis. The obtained scientific facts are amply supported by histopathological analysis.

Conclusion

AEQI and EEQI have antiulcer potential in a dose-dependent manner, but further research must be needed.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666230320103455
2023-09-01
2024-11-22
Loading full text...

Full text loading...

References

  1. KulshreshthaM. SrivastavaG. SinghM. Pathophysiological status and nutritional therapy of peptic ulcer: An update.Environ. Dis.201723768610.4103/ed.ed_11_17
    [Google Scholar]
  2. StewartR. Herbalism Most common form of medicine available.East Pharmt199747521
    [Google Scholar]
  3. KulshreshthaM. ShuklaK.S. TiwariG.A. SinghM.P. SinghA. Pharmacognostical, phytochemical and pharmacological aspects of Quisqualis indica: An update.J Nat Sci Med201814147
    [Google Scholar]
  4. JoshiS.G. Medicinal plants.1st edDelhiOxford & IBH Publishing Co Pvt. Ltd2002
    [Google Scholar]
  5. KirtikarK.R. BasuB.D. Indian Medicinal plant.2nd edNew DelhiAllahabad Lalit Mohan Basu2006
    [Google Scholar]
  6. YashrajY. MohantyP.K. KastureS.B. Anti-inflammatory activity of hydroalcoholic extract of Quisqualis indica Linn. Flower in rats.Int J Pharm Life Sci20112977981
    [Google Scholar]
  7. NituS. PankajK. SamanthaK.C. ReenaD. Antipyretic activity of methanolic extract of leaves of Quisqualis indica linn.IJPRD20102122126
    [Google Scholar]
  8. YadavY. MohantyP.K. KastureS.B. Evaluation of immunomodulatory activity of hydroalcoholic extract of Quisqualis indica Linn. flowers in wistar rats.IJPLS20112689686
    [Google Scholar]
  9. JahanF.N. RahmanM.S. MukhlesurR. SimonG. MohammadM.M. SamirK.S. Diphenylpropanoids from Quisqualis indica Linn. and their anti-staphylococcal activity.Lat. Am. J. Pharm.2009282279283
    [Google Scholar]
  10. WetwitayaklungP. LimmatvapiratC. PhaechamudT. KeokitichaiS. Kinetics of Acetylcholinesterase Inhibition of Quisqualis indica Linn. flower extract.Silpakorn Univ. Sci. Technol.200712028
    [Google Scholar]
  11. MayankK. GunjaS. MajulP.S. Pharmacognostical, Anti-oxidant activity and high performance thin layer chromatography studies on leaves of Quisqualis indica Linn.Curr. Tradit. Med.2018414
    [Google Scholar]
  12. EvansW.C. EvansD. TreaseG.E. Trease and Evan’s pharmacognosy.16th edNew DelhiElsevier2009
    [Google Scholar]
  13. HaborneJ.B. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis.1st edLondonChampman and Hall1998
    [Google Scholar]
  14. SairamK. RaoChV. BabuM.D. KumarK.V. AgrawalV.K.K. GoelR.K. Antiulcerogenic effect of methanolic extract of Emblica officinalis: An experimental study.J. Ethnopharmacol.20028211910.1016/S0378‑8741(02)00041‑712169398
    [Google Scholar]
  15. ShayH. KomarovS.A. FcisS.E. MerazeD. GruensteinM. SipletH. A simple method for the uniform production of gastric ulceration in the rat.Gartroentrol194554361
    [Google Scholar]
  16. ParéW.P. Psychological studies of stress ulcer in the rat.Brain Res. Bull.19805S1737910.1016/0361‑9230(80)90308‑16992948
    [Google Scholar]
  17. SenerG. PaskalogluK. Ayanoglu-dülgerG. Protective effect of increasing doses of famotidine, omeprazole, lansoprazole, and melatonin against ethanol-induced gastric damage in rats.Indian J. Pharmacol.200436171174
    [Google Scholar]
  18. WinzlerR.J. Determination of serum glycoproteins.Methods Biochem. Anal.1955227931114393571
    [Google Scholar]
  19. ElsonLA MorgonWTJ Colorimetric method for the determination of glucosamine and chondrosamine. Biochem J19331271824-810.1042/bj0271824
    [Google Scholar]
  20. AyalaA. MuñozM.F. ArgüellesS. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.Oxid. Med. Cell. Longev.2014201413110.1155/2014/36043824999379
    [Google Scholar]
  21. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑614907713
    [Google Scholar]
  22. GoelR.K. GuptaS. ShankarR. SanyalA.K. Anti-ulcerogenic effect of banana powder (Musa sapientum var. paradisiaca) and its effect on mucosal resistance.J. Ethnopharmacol.1986181334410.1016/0378‑8741(86)90041‑33821133
    [Google Scholar]
  23. NichausW.G. SamuelssonB. Formation of malonadehyde from phospholipid arachidonate during microsomal lipid peroxidation.Eur. J. Biochem.19866126130
    [Google Scholar]
  24. YagiK. Lipid peroxides and related radicals in clinical medicine.Adv. Exp. Med. Biol.199436611510.1007/978‑1‑4615‑1833‑4_17771246
    [Google Scholar]
  25. KakkarP. DasB. ViswanathanP.N. A modified spectrophotometric assay of superoxide dismutase.Indian J. Biochem. Biophys.19842121301326490072
    [Google Scholar]
  26. NagakannanP. ShivasharanB.D. ThippeswamyB.S. VeerapurV.P. BansalP. Protective effect of hydroalcoholic extract of Mimusops elengi Linn. flowers against middle cerebral artery occlusion induced brain injury in rats.J. Ethnopharmacol.2012140224725410.1016/j.jep.2012.01.01222281124
    [Google Scholar]
  27. GlickD. Von RedlichD. LevineS. Fluorometric determination of corticosterone and cortisol in 0.02-0.05 milliliters of plasma or submilligram samples of adrenal tissue.Endocrinology196474465365510.1210/endo‑74‑4‑65314183213
    [Google Scholar]
  28. KulkarniK. KastureS.B. MengiS.A. Efficacy study of prunus amygdalus (almond) nuts in scopolamine-induced amnesia in rats.Indian J. Pharmacol.201042316817310.4103/0253‑7613.6684120871769
    [Google Scholar]
  29. SlaouiM. FietteL. Histopathology procedures: from tissue sampling to histopathological evaluation.Methods Mol. Biol.2011691698210.1007/978‑1‑60761‑849‑2_420972747
    [Google Scholar]
  30. MathesiusU. Flavonoid functions in plants and their interactions with other organisms.Plants2018723010.3390/plants702003029614017
    [Google Scholar]
  31. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  32. SerafimC. ArarunaM.E. JúniorE.A. DinizM. Hiruma-LimaC. BatistaL. A review of the role of flavonoids in peptic ulcer (2010–2020).Molecules20202522543110.3390/molecules2522543133233494
    [Google Scholar]
  33. AyantundeA. Current opinions in bleeding peptic ulcer disease.J Gastro int Dig Syst2014417210.4172/2161‑069X.1000172
    [Google Scholar]
  34. SubohA.N. JigarM. REference flora – a source of traditional medicine in Jammu and Kashmir (withspecial to Chenab valley).Int. J. Recent Sci. Res.201451222862288
    [Google Scholar]
  35. HåkansonR. HedenbroJ. LiedbergG. SundlerF. VallgrenS. Mechanisms of gastric acid secretion after pylorus and oesophagus ligation in the rat.J. Physiol.1980305113914910.1113/jphysiol.1980.sp0133557441551
    [Google Scholar]
  36. TsaoR. Chemistry and biochemistry of dietary polyphenols.Nutrients20102121231124610.3390/nu212123122254006
    [Google Scholar]
  37. MartinsenT.C. FossmarkR. WaldumH.L. The phylogeny and biological function of gastric juice-microbiological consequences of removing gastric acid.Int. J. Mol. Sci.20192023603110.3390/ijms2023603131795477
    [Google Scholar]
  38. SarkerS.A. GyrK. Non-immunological defence mechanisms of the gut.Gut199233798799310.1136/gut.33.7.9871644343
    [Google Scholar]
  39. JohanssonM.E.V. SjövallH. HanssonG.C. The gastrointestinal mucus system in health and disease.Nat. Rev. Gastroenterol. Hepatol.201310635236110.1038/nrgastro.2013.3523478383
    [Google Scholar]
  40. FrühbeckG. Gómez-AmbrosiJ. MuruzábalF.J. BurrellM.A. The adipocyte: A model for integration of endocrine and metabolic signaling in energy metabolism regulation.Am. J. Physiol. Endocrinol. Metab.20012806E827E84710.1152/ajpendo.2001.280.6.E82711350765
    [Google Scholar]
  41. MoldovanL. MoldovanN.I. Oxygen free radicals and redox biology of organelles.Histochem. Cell Biol.2004122439541210.1007/s00418‑004‑0676‑y15452718
    [Google Scholar]
  42. AnsonM.L. MirskyA.E. MiskeyA.E. The estimation of pepsin with hemoglobin.J. Gen. Physiol.1932161596310.1085/jgp.16.1.5919872691
    [Google Scholar]
  43. GóthL. VitaiM. Hypocatalasemia in hospital patients.Clin. Chem.199642234134210.1093/clinchem/42.2.3418595742
    [Google Scholar]
  44. PhanJ. BenhammouJ.N. PisegnaJ.R. Gastric hypersecretory states: Investigation and management.Curr. Treat. Options Gastroenterol.201513438639710.1007/s11938‑015‑0065‑826342486
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666230320103455
Loading
/content/journals/cff/10.2174/2666862901666230320103455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test