Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Background

Consuming a high-fructose diet (HFD) contributes to obesity, dyslipidemia, and cardiovascular diseases. It has been proposed that curcumin modulates lipid metabolism, and it has a potential beneficial effect in the context of cardiometabolic diseases, although it has not been demonstrated.

Objective

This article evaluates the effect of curcumin on the expression of the PPARα, CPT1, MCAD, VLCAD, and ACAA2 genes in the hearts of mice fed with an HFD.

Methods

Four groups of male C57BL/6 mice (n = 6) were treated for 15 weeks as follows: 1) standard diet (C), 2) standard diet + 0.75% (w/w) curcumin (C+Cur), 3) standard diet + 30% (w/v) fructose (F), and 4) standard diet + 0.75% (w/w) curcumin + 30% (w/v) fructose (F+Cur). Bodyweight gain, glucose, and the overall serum cholesterol levels were measured after the treatment. The expression of PPARα, MCAD, VLCAD, ACAA2, and CPT1 was assessed by Western blot in mice hearts.

Results

Our data showed that a curcumin treatment induced a higher expression of PPARα and ACAA2, whereas it decreased CPT1 and MCAD expression in the hearts of mice fed with an HFD. However, it did not affect VLCAD expression.

Conclusion

Curcumin regulated PPARα, CPT1, and MCAD expression and increased that of ACAA2. This suggests a possible therapeutic use to prevent the alterations of mitochondrial fatty acid metabolism in the hearts of mice fed with an HFD.

Loading

Article metrics loading...

/content/journals/cff/10.2174/2666862901666220426103916
2023-04-01
2024-11-26
Loading full text...

Full text loading...

References

  1. TaskinenM.R. PackardC.J. BorénJ. Dietary fructose and the metabolic syndrome.Nutrients20191191987
    [Google Scholar]
  2. Ter HorstK.W. SerlieM.J. Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease.Nutrients201799981
    [Google Scholar]
  3. ZhangD.M. JiaoR.Q. KongL.D. High dietary fructose: Direct or indirect dangerous factors disturbing tissue and organ functions.Nutrients201794335
    [Google Scholar]
  4. JaswalJ.S. KeungW. WangW. UssherJ.R. LopaschukG.D. Targeting fatty acid and carbohydrate oxidation - A novel therapeutic intervention in the ischemic and failing heart.Biochim. Biophys. Acta2011181371333135010.1016/j.bbamcr.2011.01.01521256164
    [Google Scholar]
  5. HanL. LiuJ. ZhuL. Free fatty acid can induce cardiac dysfunction and alter insulin signaling pathways in the heart.Lipids Health Dis.201817185
    [Google Scholar]
  6. Grygiel-GórniakB. Peroxisome proliferator-activated receptors and their ligands: Nutritional and clinical implications--a review.Nutr. J.2014131710.1186/1475‑2891‑13‑1724524207
    [Google Scholar]
  7. NeelsJ.G. GrimaldiP.A. Physiological functions of peroxisome proliferator-activated receptor β.Physiol. Rev.2014943795858
    [Google Scholar]
  8. FillmoreN. LopaschukG.D. Malonyl CoA: A promising target for the treatment of cardiac disease.IUBMB Life20146613914610.1002/iub.1253
    [Google Scholar]
  9. FillmoreN. MoriJ. LopaschukG.D. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy.Br. J. Pharmacol.201420802090
    [Google Scholar]
  10. YangY. FengY. ZhangX. Activation of PPARα by fatty acid accumulation enhances fatty acid degradation and sulfatide synthesis.Tohoku J. Exp. Med.2016240211312210.1620/tjem.240.11327644403
    [Google Scholar]
  11. OhashiK. MunetsunaE. YamadaH. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver.Biochem. Biophys. Res. Commun.201546818518910.1016/j.bbrc.2015.10.134
    [Google Scholar]
  12. HongF. XuP. ZhaiY. The opportunities and challenges of peroxisome proliferator-activated receptors ligands in clinical drug discovery and development.Int. J. Mol. Sci.201820181908218910.3390/ijms19082189
    [Google Scholar]
  13. Abraham Domínguez-AvilaJ. González-AguilarG.A. Alvarez-ParrillaE. de la RosaL.A. Modulation of PPAR expression and activity in response to polyphenolic compounds in high fat diets.Int. J. Mol. Sci.20171771002
    [Google Scholar]
  14. KumarS.S.D. HoureldN.N. AbrahamseH. Therapeutic potential and recent advances of curcumin in the treatment of aging-associated diseases.Molecules2018234835
    [Google Scholar]
  15. HewlingsS. KalmanD. Curcumin: A review of its effects on human health.MDPI AG201769210.3390/foods6100092
    [Google Scholar]
  16. JinT. SongZ. WengJ. FantusI.G. Curcumin and other dietary polyphenols: Potential mechanisms of metabolic actions and therapy for diabetes and obesity.Am. J. Physiol. Endocrinol. Metab.2018314E201E205
    [Google Scholar]
  17. JinT.R. Curcumin and dietary polyphenol research: Beyond drug discovery.Acta Pharmacol. Sin.2018779786
    [Google Scholar]
  18. Jiménez-FloresL.M. López-BrionesS. Macías-CervantesM.H. Ramírez-EmilianoJ. Pérez-VázquezV. A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver.Molecules20141968289830210.3390/molecules1906828924945581
    [Google Scholar]
  19. YooS.Y. AhnH. ParkY.K. High dietary fructose intake on cardiovascular disease related parameters in growing rats.Nutrients20179111
    [Google Scholar]
  20. HurkmanW.J. TanakaC.K. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis.Plant Physiol.198681380280610.1104/pp.81.3.80216664906
    [Google Scholar]
  21. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.19767224825410.1016/0003‑2697(76)90527‑3942051
    [Google Scholar]
  22. Pulido-MoranM. Moreno-FernandezJ. Ramirez-TortosaC. Ramirez-TortosaM.C. Curcumin and health.Molecules201620162103026410.3390/molecules21030264
    [Google Scholar]
  23. KelanyM.E. HakamiT.M. OmarA.H. Curcumin improves the metabolic syndrome in high-fructosediet-fed rats: Role of TNF-α, NF-κB, and oxidative stress.Can. J. Physiol. Pharmacol.20179514015027901349
    [Google Scholar]
  24. MaithilikarpagaselviN. SridharM.G. SwaminathanR.P. ZachariahB. Curcumin prevents inflammatory response, oxidative stress and insulin resistance in high fructose fed male Wistar rats: Potential role of serine kinases.Chem. Biol. Interact.201624418719410.1016/j.cbi.2015.12.01226713546
    [Google Scholar]
  25. ManzoniA.G. PassosD.F. da SilvaJ.L.G. Rutin and curcumin reduce inflammation, triglyceride levels and ADA activity in serum and immune cells in a model of hyperlipidemia.Blood Cells Mol. Dis.201976132110.1016/j.bcmd.2018.12.005
    [Google Scholar]
  26. LewandowskiE.D. FischerS.K. FasanoM. Acute liver carnitine palmitoyltransferase I overexpression recapitulates reduced palmitate oxidation of cardiac hypertrophy.Circ. Res.20131121576510.1161/CIRCRESAHA.112.27445622982985
    [Google Scholar]
  27. XieX.W. Liquiritigenin attenuates cardiac injury induced by high fructose-feeding through fibrosis and inflammation suppression.Biomed Pharmacother Elsevier Masson SAS20178669470410.1016/j.biopha.2016.12.06628039849
    [Google Scholar]
  28. LoneJ. ChoiJ.H. KimS.W. YunJ.W. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes.J. Nutr. Biochem.201627193202
    [Google Scholar]
  29. ChanM.Y. ZhaoY. HengC.K. Sequential responses to high-fat and high-calorie feeding in an obese mouse model.Obesity (Silver Spring)200816597297810.1038/oby.2008.3218292748
    [Google Scholar]
  30. BruceC.R. HoyA.J. TurnerN. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance.Diabetes200958355055810.2337/db08‑107819073774
    [Google Scholar]
  31. SodhiS.S. GhoshM. SongK.D. An approach to identify SNPs in the gene encoding acetyl-CoA acetyltransferase-2 (ACAT-2) and their proposed role in metabolic processes in pig.PLoS One2014910243210.1371/journal.pone.0102432
    [Google Scholar]
/content/journals/cff/10.2174/2666862901666220426103916
Loading
/content/journals/cff/10.2174/2666862901666220426103916
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test