Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

The ongoing threat of COVID-19 has prompted us to search for innovative strategies to enhance immune responses in affected patients. Phytoconstituents derived from Ashwagandha, Amla, and Ginger have gained attention due to their historical usage in traditional medicine and potential immune-modulatory, antioxidant, and antiviral properties. This review investigates the synergistic effects of phytoconstituents from Ashwagandha, Amla, and Ginger to identify potential immunity-boosting agents for COVID-19 patients. The investigation involved a comprehensive analysis of the immune-modulatory compounds present in Ashwagandha, the high vitamin C content in Amla, and the immunomodulatory constituents in Ginger. The concept of “phytochemical synergy” was explored, hypothesizing that their combined effects could enhance antiviral capabilities. The combined phytoconstituents from Ashwagandha, Amla, and Ginger demonstrated a potential synergistic interaction, suggesting an amplified immune-boosting effect. The adaptogenic properties of Ashwagandha, the rich vitamin C source in Amla, and the immunomodulatory components of Ginger appeared to complement each other, contributing to a holistic approach to viral resistance. While the investigation into the synergy of Ashwagandha, Amla, and Ginger holds promise as an immunity-boosting strategy, careful consideration is warranted due to factors like appropriate dosing, safety profiles, and potential interactions with conventional treatments. This study underscores the significance of combining traditional wisdom with modern research efforts. As the world continues to combat the complexities of COVID-19, exploring these botanical sources serves as a reminder of the abundant resources nature offers. While further rigorous research and clinical trials are essential, pursuing these phytoconstituents exemplifies our commitment to exploring all viable avenues in the battle against COVID-19.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629277959240218104457
2024-03-11
2025-01-24
Loading full text...

Full text loading...

References

  1. PolesJ. KarhuE. McGillM. McDanielH.R. LewisJ.E. The effects of twenty-four nutrients and phytonutrients on immune system function and inflammation: A narrative review.J. Clin. Transl. Res.202173333376 34239993
    [Google Scholar]
  2. GPT-35, a language model by OpenAI.2023Available from: https://chat.openai.com/c/a5ad1118-0a0d-4683-9d19-a7e2a2e73a25
  3. CuiJ. LiF. ShiZ.L. Origin and evolution of pathogenic coronaviruses.Nat. Rev. Microbiol.201917318119210.1038/s41579‑018‑0118‑9 30531947
    [Google Scholar]
  4. WuJ.T. LeungK. LeungG.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study.Lancet20203951022568969710.1016/S0140‑6736(20)30260‑9 32014114
    [Google Scholar]
  5. Hui DS, I Azhar E, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health: The latest 2019 novel coronavirus outbreak in Wuhan, China.Int. J. Infect. Dis.20209126426610.1016/j.ijid.2020.01.009 31953166
    [Google Scholar]
  6. DengS.Q. PengH.J. Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China.J. Clin. Med.20209257510.3390/jcm9020575 32093211
    [Google Scholar]
  7. ZhuN. ZhangD. WangW. A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa2001017 31978945
    [Google Scholar]
  8. JiangS. DuL. ShiZ. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: Calling for developing therapeutic and prophylactic strategies.Emerg. Microbes Infect.20209127527710.1080/22221751.2020.1723441 32005086
    [Google Scholar]
  9. WuZ. McGooganJ.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention.JAMA2020323131239124210.1001/jama.2020.2648 32091533
    [Google Scholar]
  10. ChanJ.F.W. YuanS. KokK.H. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster.Lancet20203951022351452310.1016/S0140‑6736(20)30154‑9 31986261
    [Google Scholar]
  11. Eurosurveillance editorial team. Note from the editors: World Health Organization declares novel coronavirus (2019-nCoV) sixth public health emergency of international concern.Euro Surveill2020255200131e 32019636
    [Google Scholar]
  12. KhanalP. ChikhaleR. DeyY.N. Withanolides from Withania somnifera as an immunity booster and their therapeutic options against COVID-19.J. Biomol. Struct. Dyn.202240125295530810.1080/07391102.2020.1869588 33459174
    [Google Scholar]
  13. LangadeD.G. ChoudharyB. ShettyA. Efficacy of ashwagandha (Withania somnifera [L. Dunal) in improving cardiorespiratory endurance in healthy athletic adults.Ayu2015361636810.4103/0974‑8520.169002 26730141
    [Google Scholar]
  14. DubeyS. SinghM. NelsonA. KaranD. A perspective on Withania somnifera modulating antitumor immunity in targeting prostate cancer.J. Immunol. Res.2021202111110.1155/2021/9483433 34485538
    [Google Scholar]
  15. SinghM. JayantK. SinghD. Withania somnifera (L.) Dunal (Ashwagandha) for the possible therapeutics and clinical management of SARS-CoV-2 infection: Plant-based drug discovery and targeted therapy.Front. Cell. Infect. Microbiol.20221293382410.3389/fcimb.2022.933824 36046742
    [Google Scholar]
  16. SaggamA. LimgaokarK. BorseS. Withania somnifera (L.) Dunal: Opportunity for clinical repurposing in COVID-19 management.Front. Pharmacol.20211262379510.3389/fphar.2021.623795 34012390
    [Google Scholar]
  17. ShreeP. MishraP. SelvarajC. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – a molecular docking study.J. Biomol. Struct. Dyn.202240119020310.1080/07391102.2020.1810778 32851919
    [Google Scholar]
  18. BhardwajV.K. SinghR. SharmaJ. RajendranV. PurohitR. KumarS. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors.J. Biomol. Struct. Dyn.202011010.1080/07391102.2020.1766572 32397940
    [Google Scholar]
  19. BhojV.G. ChenZ.J. Ubiquitylation in innate and adaptive immunity.Nature2009458723743043710.1038/nature07959 19325622
    [Google Scholar]
  20. BiswasA. BhattacharjeeU. ChakrabartiA.K. TewariD.N. BanuH. DuttaS. Emergence of novel coronavirus and COVID-19: Whether to stay or die out?Crit. Rev. Microbiol.202046218219310.1080/1040841X.2020.1739001 32282268
    [Google Scholar]
  21. CaiZ. ZhangG. TangB. LiuY. FuX. ZhangX. Promising anti-influenza properties of active constituent of Withania somnifera ayurvedic herb in targeting neuraminidase of H1N1 influenza: Computational study.Cell Biochem. Biophys.201572372773910.1007/s12013‑015‑0524‑9 25627548
    [Google Scholar]
  22. ChavanS.A. UlheA.G. BeradB.N. ChikhaleR.V. Synthesis and molecular docking studies of glucose-linked isonicotinoyl-1, 3, 4-thiadiazolidines as antitubercular agents.Lett. Org. Chem.2017151152210.2174/1570178614666170608130326
    [Google Scholar]
  23. ChengappaK.N.R. BrarJ.S. GannonJ.M. SchlichtP.J. Adjunctive use of a standardized extract of Withania somnifera (Ashwagandha) to treat symptom exacerbation in schizophrenia: A randomized, double-blind, placebo-controlled study.J. Clin. Psychiatry201879510.4088/JCP.17m11826
    [Google Scholar]
  24. ChikhaleR. ThoratS. ChoudharyR.K. GadewalN. KhedekarP. Design, synthesis and anticancer studies of novel aminobenzazolyl pyrimidines as tyrosine kinase inhibitors.Bioorg. Chem.2018778410010.1016/j.bioorg.2018.01.008 29342447
    [Google Scholar]
  25. ChikhaleR.V. GuravS.S. PatilR.B. Sars-COV-2 host entry and replication inhibitors from Indian ginseng: An in-silico approach.J. Biomol. Struct. Dyn.202011210.1080/07391102.2020.1778539 32568012
    [Google Scholar]
  26. ChikhaleR.V. SinhaS.K. PatilR.B. In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19.J. Biomol. Struct. Dyn.202011510.1080/07391102.2020.1784289 32579064
    [Google Scholar]
  27. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  28. DainaA. ZoeteV. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules.ChemMedChem201611111117112110.1002/cmdc.201600182 27218427
    [Google Scholar]
  29. Dassault SystèmesBIOVIA Discovery Studio.2019Available from: https://discover.3ds.com/discovery-studio-visualizer-download
    [Google Scholar]
  30. DeyY.N. KhanalP. PatilB.M. The role of andrographolide and its derivative in COVID-19 associated proteins and immune system.Res Sq202012210.21203/rs.3.rs‑35800/v1
    [Google Scholar]
  31. DuyuT. KhanalP. Ashrafali KhatibN. Mahadevagouda PatilB. Mimosa pudica modulates neuroactive ligand receptor interaction in Parkinson’s disease.Indian J Pharm Educ Res202054373273910.5530/ijper.54.3.124
    [Google Scholar]
  32. EganW.J. LauriG. Prediction of intestinal permeability.Adv. Drug Deliv. Rev.200254327328910.1016/S0169‑409X(02)00004‑2 11922948
    [Google Scholar]
  33. EganW.J. MerzK.M.Jr BaldwinJ.J. Prediction of drug absorption using multivariate statistics.J. Med. Chem.200043213867387710.1021/jm000292e 11052792
    [Google Scholar]
  34. GuravN.S. GuravS.S. SakharwadeS.N. Studies on Ashwagandha Ghrita with reference to murcchana process and storage conditions.J. Ayurveda Integr. Med.202011324324910.1016/j.jaim.2019.10.004 32139244
    [Google Scholar]
  35. GuravS. GuravN. Herbal drug microscopy. GuravS. GuravN. Indian herbal drug microscopy.1st edSpringer Sciences201418618710.1007/978‑1‑4614‑9515‑4_4
    [Google Scholar]
  36. HalgrenT.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94.J. Comput. Chem.1996175-6490519
    [Google Scholar]
  37. JohnsonD.S. ChenY.H. Ras family of small GTPases in immunity and inflammation.Curr. Opin. Pharmacol.201212445846310.1016/j.coph.2012.02.003 22401931
    [Google Scholar]
  38. KhanalP DuyuT PatilBM DeyYN PashaI KavalapureRS In silico screening of JAK-STAT modulators from the antiviral plants of Indian traditional system of medicine with the potential to inhibit 2019 novel coronavirus using network pharmacology.3 Biotech202011311910.21203/rs.3.rs‑32233/v1
    [Google Scholar]
  39. KhanalP. PatilB.M. Gene set enrichment analysis of alpha-glucosidase inhibitors from Ficus benghalensis.Asian Pac. J. Trop. Biomed.20199626327010.4103/2221‑1691.260399
    [Google Scholar]
  40. KhanalP. PatilB.M. α-Glucosidase inhibitors from Duranta repens modulate p53 signaling pathway in diabetes mellitus.Advances in Traditional Medicine202020342743810.1007/s13596‑020‑00426‑w
    [Google Scholar]
  41. KhanalP. PatilB.M. Gene ontology enrichment analysis of α-amylase inhibitors from Duranta repens in diabetes mellitus.J. Diabetes Metab. Disord.202019273574710.1007/s40200‑020‑00554‑9 33520800
    [Google Scholar]
  42. KhanalP. PatilB.M. Integration of network and experimental pharmacology to decipher the antidiabetic action of Duranta repens L.J. Integr. Med.2020191667710.1016/j.joim.2020.10.003 33071211
    [Google Scholar]
  43. KhanalP. PatilB.M. ChandJ. NaazY. Anthraquinone derivatives as an immune booster and their therapeutic option against COVID-19.Nat. Prod. Bioprospect.202010532533510.1007/s13659‑020‑00260‑2 32772313
    [Google Scholar]
  44. KuhnJ.H. LiW. ChoeH. FarzanM. Angiotensin-converting enzyme 2: A functional receptor for SARS coronavirus.Cell. Mol. Life Sci.200461212738274310.1007/s00018‑004‑4242‑5 15549175
    [Google Scholar]
  45. LaguninA. IvanovS. RudikA. FilimonovD. PoroikovV. DIGEP-Pred: Web service for in silico prediction of drug-induced gene expression profiles based on structural formula.Bioinformatics201329162062206310.1093/bioinformatics/btt322 23740741
    [Google Scholar]
  46. LiW. MooreM.J. VasilievaN. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus.Nature2003426696545045410.1038/nature02145 14647384
    [Google Scholar]
  47. LindnerH.A. Fotouhi-ArdakaniN. LytvynV. LachanceP. SuleaT. MénardR. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme.J. Virol.20057924151991520810.1128/JVI.79.24.15199‑15208.2005 16306591
    [Google Scholar]
  48. PatilR. ChikhaleR. KhanalP. Computational and network pharmacology analysis of bioflavonoids as possible natural antiviral compounds in COVID-19.Informatics in Medicine Unlocked20212210050410.1016/j.imu.2020.100504 33363251
    [Google Scholar]
  49. MorrisG.M. HueyR. LindstromW. AutoDock4 and autodockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  50. MosmannT.R. KobieJ.J. LeeF.E.H. QuataertS.A. T helper cytokine patterns: Defined subsets, random expression, and external modulation.Immunol. Res.2009452-317318410.1007/s12026‑009‑8098‑5 19198763
    [Google Scholar]
  51. Muñoz-FontelaC. MandinovaA. AaronsonS.A. LeeS.W. Emerging roles of p53 and other tumour-suppressor genes in immune regulation.Nat. Rev. Immunol.2016161274175010.1038/nri.2016.99 27667712
    [Google Scholar]
  52. MuralikrishnanG. DindaA.K. ShakeelF. Immunomodulatory effects of Withania somnifera on azoxymethane induced experimental colon cancer in mice.Immunol. Invest.201039768869810.3109/08820139.2010.487083 20840055
    [Google Scholar]
  53. OpitzB. van LaakV. EitelJ. SuttorpN. Innate immune recognition in infectious and noninfectious diseases of the lung.Am. J. Respir. Crit. Care Med.2010181121294130910.1164/rccm.200909‑1427SO 20167850
    [Google Scholar]
  54. PalliyaguruD.L. SinghS.V. KenslerT.W. Withania somnifera: From prevention to treatment of cancer.Mol. Nutr. Food Res.20166061342135310.1002/mnfr.201500756 26718910
    [Google Scholar]
  55. PedersenB.K. Hoffman-GoetzL. Exercise and the immune system: Regulation, integration, and adaptation.Physiol. Rev.20008031055108110.1152/physrev.2000.80.3.1055 10893431
    [Google Scholar]
  56. PoroikovV.V. FilimonovD.A. IhlenfeldtW.D. PASS biological activity spectrum predictions in the enhanced open NCI database browser.J. Chem. Inf. Comput. Sci.200343122823610.1021/ci020048r 12546557
    [Google Scholar]
  57. SattlerS. The role of the immune system beyond the fight against infection.Adv. Exp. Med. Biol.2017100331410.1007/978‑3‑319‑57613‑8_1 28667551
    [Google Scholar]
  58. SchwedeT. KoppJ. GuexN. PeitschM.C. SWISS-MODEL: An automated protein homology-modeling server.Nucleic Acids Res.200331133381338510.1093/nar/gkg520 12824332
    [Google Scholar]
  59. Science News. COVID-19: The immune system can fight back.2020Available from: https://www.sciencedaily.com/releases/2020/03/200317103815.htm
  60. ShannonP. MarkielA. OzierO. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  61. SinhaS.K. PrasadS.K. IslamM.A. Identification of bioactive compounds from Glycyrrhiza glabra as possible inhibitor of SARS-CoV-2 spike glycoprotein and non-structural protein-15: A pharmacoinformatics study.J. Biomol. Struct. Dyn.202011510.1080/07391102.2020.1762741 32552462
    [Google Scholar]
  62. SinhaS.K. ShakyaA. PrasadS.K. An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets.J. Biomol. Struct. Dyn.202011210.1080/07391102.2020.1762741 32345124
    [Google Scholar]
  63. ChikhaleR.V. SinhaS.K. KhanalP. Computational and network pharmacology studies of Phyllanthus emblica to tackle SARS-CoV-2.Phytomedicine Plus20211310009510.1016/j.phyplu.2021.100095 35399824
    [Google Scholar]
  64. MalveH. MoreD. MoreA. Effects of two formulations containing Phyllanthus emblica and Tinospora cordifolia with and without Ocimum sanctum in immunocompromised mice.J. Ayurveda Integr. Med.202112468268810.1016/j.jaim.2021.06.021 34799208
    [Google Scholar]
  65. JantanI. HaqueM.A. IlangkovanM. ArshadL. An insight into the modulatory effects and mechanisms of action of phyllanthus species and their bioactive metabolites on the immune system.Front. Pharmacol.20191087810.3389/fphar.2019.00878 31440162
    [Google Scholar]
  66. NguseM. YangY. FuZ. XuJ. MaL. BuD. Phyllanthus emblica (Amla) fruit powder as a supplement to improve preweaning dairy calves’ health: Effect on antioxidant capacity, immune response, and gut bacterial diversity.Biology20221112175310.3390/biology11121753 36552263
    [Google Scholar]
  67. SainiR. KumarV. PatelC.N. SourirajanA. DevK. Synergistic antibacterial activity of Phyllanthus emblica fruits and its phytocompounds with ampicillin: A computational and experimental study.Naunyn Schmiedebergs Arch. Pharmacol.2023Epub ahead of print10.1007/s00210‑023‑02624‑0 37522914
    [Google Scholar]
  68. NashineS. KanodiaR. NesburnA.B. SomanG. KuppermannB.D. KenneyM.C. Nutraceutical effects of Emblica officinalis in age-related macular degeneration.Aging20191141177118810.18632/aging.101820 30792375
    [Google Scholar]
  69. ParveenA. ZahiruddinS. AgarwalN. Akhtar SiddiquiM. Husain AnsariS. AhmadS. Modulating effects of the synergistic combination of extracts of herbal drugs on cyclophosphamide-induced immunosuppressed mice.Saudi J. Biol. Sci.202128116178619010.1016/j.sjbs.2021.06.076 34764748
    [Google Scholar]
  70. ZhongZ.G. LuoX.F. HuangJ.L. Study on the effect of extracts from the leaves of Phyllanthus emblica on immune function of mice.Zhong Yao Cai2013366441444
    [Google Scholar]
  71. AbankwaJ.K. DotseE. Appiah-OpongR. NyarkoA.K. Antioxidant and anti-prostate cancer activities of Moringa oleifera, Phyllanthus amarus and Carica papaya.Hea Sci Invest J202011243010.46829/hsijournal.2020.6.1.1.24‑30
    [Google Scholar]
  72. Abd RaniN.Z. LamK.W. JalilJ. MohamadH.F. Mat AliM.S. HusainK. Mechanistic studies of the antiallergic activity of Phyllanthus amarus schum. & thonn. and its compounds.Molecules202126369510.3390/molecules26030695
    [Google Scholar]
  73. AbhyankarG. SuprasannaP. PandeyB.N. MishraK.P. RaoK.V. ReddyV.D. Hairy root extract of Phyllanthus amarus induces apoptotic cell death in human breast cancer cells.Innov. Food Sci. Emerg. Technol.201011352653210.1016/j.ifset.2010.02.005
    [Google Scholar]
  74. AboK.A. Fred-JaiyesimiA.A. JaiyesimiA.E.A. Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria.J. Ethnopharmacol.20081151677110.1016/j.jep.2007.09.005 17950547
    [Google Scholar]
  75. AcharyuluN.P.S. DubeyR.S. SwaminadhamV. KolluP. KalyaniR.L. PammiS.V.N. Green synthesis of CuO nanoparticles using Phyllanthus amarus leaf extract and their antibacterial activity against multidrug resistance bacteria.Int. J. Eng. Res. Technol.2014341
    [Google Scholar]
  76. AcheampongD.O. Owusu-AdzorahN. ArmahF.A. Ethnopharmacological evaluation of schistosomicidal and cercaricidal activities of some selected medicinal plants from Ghana.Trop. Med. Health20204811910.1186/s41182‑020‑00205‑y 32308530
    [Google Scholar]
  77. AdedapoA.A. AbatanM.O. AkinloyeA.K. IdowuS.O. OlorunsogoO.O. Morphometric and histopathological studies on the effects of some chromatographic fractions of Phyllanthus amarus and Euphorbia hirta on the male reproductive organs of rats.J. Vet. Sci.20034218118510.4142/jvs.2003.4.2.181 14610373
    [Google Scholar]
  78. AdedapoA.A. AbatanM.O. IdowuS.O. OlorunsogoO.O. Toxic effects of chromatographic fractions of Phyllanthus amarus on the serum biochemistry of rats.Phytother. Res.200519981281510.1002/ptr.1721 16220579
    [Google Scholar]
  79. AdedapoA. OfuegbeS.O. Anti-inflammatory and analgesic activities of soft drink leaf extract of Phyllanthus amarus in some laboratory animals.Br. Biotechnol. J.20133219120410.9734/BBJ/2013/2953
    [Google Scholar]
  80. AdedapoAA OfuegbeSO The evaluation of the hypoglycemic effect of soft drink leaf extract of Phyllanthus amarus (Euphorbiaceae) in rats.jbcpp2014251475710.1515/jbcpp‑2013‑0033 23817600
    [Google Scholar]
  81. AdedayoB.C. OgunsuyiO.B. AkinniyiS.T. ObohG. Effect of Andrographis paniculata and Phyllanthus amarus leaf extracts on selected biochemical indices in Drosophila melanogaster model of neurotoxicity.Drug Chem. Toxicol.2020111010.1080/01480545.2019.1708377 31899970
    [Google Scholar]
  82. AdegokeA.A. IberiP.A. AkinpeluD.A. AiyegoroO.A. MbotoC.I. Studies on phytochemical screening and antimicrobial potentials of Phyllanthus amarus against multiple antibiotic resistant bacteria.Int. J. Appl. Res. Nat. Prod.20103612
    [Google Scholar]
  83. AdejoroI.A. BabatundeD.D. TolufasheG.F. Molecular docking and dynamic simulations of some medicinal plants compounds against SARS-CoV-2: An in silico study.J. Taibah Univ. Sci.20201411563157010.1080/16583655.2020.1848049
    [Google Scholar]
  84. AdeneyeA.A. AmoleO.O. AdeneyeA.K. Hypoglycemic and hypocholesterolemic activities of the aqueous leaf and seed extract of Phyllanthus amarus in mice.Fitoterapia2006777-851151410.1016/j.fitote.2006.05.030 16905277
    [Google Scholar]
  85. Article CAS Pubmed Google ScholarAvailable from: https://www.google.com/search?client=firefox-b-d&q=Article+CAS+PubMed+Google+Scholar+
  86. AdeneyeA.A. BeneboA.S. Protective effect of the aqueous leaf and seed extract of Phyllanthus amarus on gentamicin and acetaminophen-induced nephrotoxic rats.J. Ethnopharmacol.2008118231832310.1016/j.jep.2008.04.025 18554830
    [Google Scholar]
  87. AdjanohounE.J. AhyiM.R.A. Ake AssiL. Contribution to ethnobotanical and floristic studies in Togo. Paris.Cultural and Technical Cooperation Agency19861671
    [Google Scholar]
  88. AgatiG. AzzarelloE. PollastriS. TattiniM. Flavonoids as antioxidants in plants: Location and functional significance.Plant Sci.2012196677610.1016/j.plantsci.2012.07.014 23017900
    [Google Scholar]
  89. AgrawalA. SrivastavaS. SrivastavaJ.N. SrivasavaM.M. Evaluation of inhibitory effect of the plant Phyllanthus amarus against dermatophytic fungi Microsporum gypseum.Biomed. Environ. Sci.2004173359365 15602834
    [Google Scholar]
  90. AhirraoY.A. PatilD.A. Indigenous healthcare practices in Buldhana district (Maharashtra).Indian J. Nat. Prod. Resour.201018588
    [Google Scholar]
  91. AhmadB. AlamT. Components from whole plant of Phyllanthus amarus Linn. Indian J Chem - B Org.Med. Chem.20034217861790
    [Google Scholar]
  92. AryaeianN. ShahramF. MahmoudiM. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active Rheumatoid Arthritis.Gene201969817918510.1016/j.gene.2019.01.048 30844477
    [Google Scholar]
  93. AsgharM.U. RahmanA. HayatZ. Exploration of Zingiber officinale effects on growth performance, immunity and gut morphology in broilers.Braz. J. Biol.202383e25029610.1590/1519‑6984.250296 34669804
    [Google Scholar]
  94. BoozariM. HosseinzadehH. Natural products for COVID ‐19 prevention and treatment regarding to previous coronavirus infections and novel studies.Phytother. Res.202135286487610.1002/ptr.6873 32985017
    [Google Scholar]
  95. AbdullahS. AbidinS.A.Z. MuradN.A. MakpolS. Wan NgahW.Z. Mohd YusoY.A. Ginger extract (Zingiber officinale) triggers apoptosis and G0/G1 cells arrest in HCT 116 and HT 29 colon cancer cell lines.Afr. J. Biochem. Res.2010413414210.5897/AJBR.9000126
    [Google Scholar]
  96. AggarwalB.B. ShishodiaS. Molecular targets of dietary agents for prevention and therapy of cancer.Biochem. Pharmacol.200671101397142110.1016/j.bcp.2006.02.009 16563357
    [Google Scholar]
  97. AjayiB.O. AdedaraI.A. FarombiE.O. Pharmacological activity of 6-gingerol in dextran sulphate sodium-induced ulcerative colitis in BALB/c mice.Phytother. Res.201529456657210.1002/ptr.5286 25631463
    [Google Scholar]
  98. AjayiB.O. OlajideT.A. OlayinkaE.T. 6-gingerol attenuates pulmonary inflammation and oxidative stress in mice model of house dust mite-induced asthma.Advan Red Res.2022510003610.1016/j.arres.2022.100036
    [Google Scholar]
  99. AjazuddinS.S. SarafS. Applications of novel drug delivery system for herbal formulations.Fitoterapia201081768068910.1016/j.fitote.2010.05.001 20471457
    [Google Scholar]
  100. AkramA RasulA WaqasMK Development, characterization and evaluation of in vitro anti-inflammatory activity of ginger extract based micro emulsion.Pak J Pharm Sci2019323 Special132732 31551211
    [Google Scholar]
  101. AlgandabyM.M. El-halawanyA.M. AbdallahH.M. Gingerol protects against experimental liver fibrosis in rats via suppression of pro-inflammatory and profibrogenic mediators.Naunyn Schmiedebergs Arch. Pharmacol.2016389441942810.1007/s00210‑016‑1210‑1 26809353
    [Google Scholar]
  102. AliR.A. KnightJ.S. Natural gingerols inhibit neutrophil extracellular trap release elicited by lupus autoantibodies.Arthritis rheumatol2018Available from: https://acrabstracts.org/abstract/natural-gingerols-inhibit-neutrophil-extracellular-trap-release-elicited-by-lupus-autoantibodies/ (Accessed August 5, 2022).
    [Google Scholar]
  103. AliR WeinerJ GandhiA EstesS KnightJ Potent anti-neutrophil properties of the natural compound 6-gingerol in models of lupus and antiphospholipid syndrome.Arthritis Rheumatol2019Available from: https://acrabstracts.org/abstract/potent-anti-neutrophil-properties-of-the-natural-compound-6-gingerol-in-models-of-lupus-and-antiphospholipid-syndrome/
    [Google Scholar]
  104. AlolgaR.N. WangF. ZhangX. LiJ. TranL.S.P. YinX. Bioactive compounds from the Zingiberaceae Family with known antioxidant activities for possible therapeutic uses.Antioxidants2022117128110.3390/antiox11071281 35883772
    [Google Scholar]
  105. AmorndoljaiP. TaneepanichskulS. NiempoogS. NimmannitU. A comparative of ginger extract in Nanostructure Lipid Carrier (NLC) and 1% diclofenac gel for treatment of knee osteoarthritis (OA).J. Med. Assoc. Thai.20171004447456 29911849
    [Google Scholar]
  106. AmriM. Touil-BoukoffaC. In vitro anti-hydatic and immunomodulatory effects of ginger and [6]-gingerol.Asian Pac. J. Trop. Med.20169874975610.1016/j.apjtm.2016.06.013 27569883
    [Google Scholar]
  107. ArablouT. AryaeianN. The effect of ginger (Zingiber Officinale) as an ancient medicinal plant on improving blood lipids.J. Herb. Med.201812111510.1016/j.hermed.2017.09.005
    [Google Scholar]
  108. ArcusaR. VillañoD. MarhuendaJ. CanoM. CerdàB. ZafrillaP. Potential role of Ginger (Zingiber officinale Roscoe) in the prevention of neurodegenerative diseases.Front. Nutr.2022980962110.3389/fnut.2022.809621 35369082
    [Google Scholar]
  109. DaraM.A. MohammedA.W. BnarM.I. Antimicrobial and antioxidant activities of extracts from medicinal plant ginger (Zingiber officinale) and identification of components by gas chromatography.Afr. J. Plant Sci.201591041242010.5897/AJPS2015.1345
    [Google Scholar]
  110. BaskarV. SelvakumarK. MadhanR. SrinivasanG. MuralidharanM. Study on improving bioavailability ratio of anti-inflammatory compound from ginger through nano transdermal delivery.Asian J. Pharm. Clin. Res.201253241246
    [Google Scholar]
/content/journals/cff/10.2174/0126668629277959240218104457
Loading
/content/journals/cff/10.2174/0126668629277959240218104457
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): amla; ashwagandha; COVID-19; ginger; immunity booster; Nutraceuticals; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test