Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2666-8629
  • E-ISSN: 2666-8637

Abstract

Background

Plant products have been used for the treatment of numerous kinds of human disorders since the very ancient age. Iridoid glycosides are secondary plant metabolites of medicinal importance that have been well investigated in the scientific field for their role in plants. Numerous iridoid class phytochemicals have cardiovascular, anti-viral, anti-hepatotoxic, anti-inflammatory, anti-cancer, immunomodulatory, anti-spasmodic, hypolipidemic, choleretic, purgative, and hypoglycaemic activity.

Methods

Here in the present work, we have collected scientific information on cornin and presented it with respect to its medicinal importance and pharmacological activities with their analytical aspects. Scientific information on cornin has been collected from numerous scientific databases such as PubMed, Science Direct, Google, and Scopus to know the biological potential of cornin in medicine. Further, pharmacological activity scientific data of cornin has been presented in this work with proper citations.

Results

The scientific data of the present paper described the biological significance of cornin in medicine. The further detailed pharmacological activity of cornin signified its therapeutic effectiveness on cerebral ischemia, angiogenesis, autophagy, myocardial injury, cerebral injury, oxidative injury, lipid peroxidation, proliferation, and cytochrome p450. Analytical data signified the separation, isolation, and identification techniques of cornin in medicine.

Conclusion

The scientific information of the present work will be beneficial for all scientific people to explore the therapeutic effectiveness of cornin in medicine.

Loading

Article metrics loading...

/content/journals/cff/10.2174/0126668629277718240101095407
2024-01-26
2025-01-24
Loading full text...

Full text loading...

References

  1. DavilaM.M. PapadaE. The role of plant-derived natural products in the management of inflammatory bowel disease-what is the clinical evidence so far?Life2023138170310.3390/life13081703 37629560
    [Google Scholar]
  2. AtanasovA.G. WaltenbergerB. Pferschy-WenzigE.M. Discovery and resupply of pharmacologically active plant-derived natural products: A review.Biotechnol. Adv.20153381582161410.1016/j.biotechadv.2015.08.001 26281720
    [Google Scholar]
  3. ChoiD.W. KimJ.H. ChoS.Y. KimD.H. ChangS.Y. Regulation and quality control of herbal drugs in Korea.Toxicology2002181-18258158610.1016/S0300‑483X(02)00487‑0 12505370
    [Google Scholar]
  4. PatelD.K. Medicinal importance, pharmacological activities, and analytical aspects of engeletin in medicine: Therapeutic benefit through scientific data analysis.Endocr. Metab. Immune Disord. Drug Targets202323327328210.2174/1871530322666220520162251 35619306
    [Google Scholar]
  5. PatelD.K. PatelK. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects.Pharmacological Research - Modern Chinese Medicine2022510017510.1016/j.prmcm.2022.100175
    [Google Scholar]
  6. WelzA.N. Emberger-KleinA. MenradK. Why people use herbal medicine: Insights from a focus-group study in Germany.BMC Complement. Altern. Med.20181819210.1186/s12906‑018‑2160‑6 29544493
    [Google Scholar]
  7. ChaachouayN. DouiraA. ZidaneL. Herbal medicine used in the treatment of human diseases in the Rif, Northern Morocco.Arab. J. Sci. Eng.202247113115310.1007/s13369‑021‑05501‑1 33842189
    [Google Scholar]
  8. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.00177 24454289
    [Google Scholar]
  9. ParveenA. ZahiruddinS. AgarwalN. Akhtar SiddiquiM. Husain AnsariS. AhmadS. Modulating effects of the synergistic combination of extracts of herbal drugs on cyclophosphamide-induced immunosuppressed mice.Saudi J. Biol. Sci.202128116178619010.1016/j.sjbs.2021.06.076 34764748
    [Google Scholar]
  10. PatelD.K. PatelK. An overview of medicinal importance, pharmacological activities and analytical aspects of fraxin from Cortex fraxinus.Curr. Tradit. Med.202395e19092220892110.2174/2215083808666220919114652
    [Google Scholar]
  11. PatelK. PatelD.K. Therapeutic benefit and biological importance of Ginkgetin in the medicine: Medicinal importance, pharmacological activities and analytical aspects.Curr. Bioact. Compd.2021179e19072119077010.2174/1573407217666210127091221
    [Google Scholar]
  12. ParkH.L. LeeH.S. ShinB.C. Traditional medicine in china, Korea, and Japan: a brief introduction and comparison.Evid. Based Complement. Alternat. Med.201220121910.1155/2012/429103 23133492
    [Google Scholar]
  13. AraiI. Clinical studies of traditional Japanese herbal medicines (Kampo): Need for evidence by the modern scientific methodology.Integr. Med. Res.202110310072210.1016/j.imr.2021.100722 34136346
    [Google Scholar]
  14. MizutaniT. YokoyamaY. KokuryoT. Does inchinkoto, a herbal medicine, have hepatoprotective effects in major hepatectomy? A prospective randomized study.HPB201517546146910.1111/hpb.12384 25581163
    [Google Scholar]
  15. PatelD.K. Biological importance of bioactive phytochemical ‘Cimifugin’ as potential active pharmaceutical ingredients against human disorders: A natural phytochemical for new therapeutic alternatives.Pharmacological Research - Modern Chinese Medicine2023710023210.1016/j.prmcm.2023.100232
    [Google Scholar]
  16. PatelD.K. Health benefits, therapeutic applications, and recent advances of cirsilineol in the medicine: Potential bioactive natural flavonoids of genus Artemisia.Endocr. Metab. Immune Disord. Drug Targets202323789490710.2174/1871530323666221122123456 36415094
    [Google Scholar]
  17. SenS. ChakrabortyR. Toward the integration and advancement of herbal medicine: a focus on traditional Indian medicine.Bot Targets Ther201533
    [Google Scholar]
  18. PandeyM.M. RastogiS. RawatA.K.S. Indian traditional ayurvedic system of medicine and nutritional supplementation.Evid. Based Complement. Alternat. Med.2013201311210.1155/2013/376327 23864888
    [Google Scholar]
  19. Skalicka-WoźniakK GeorgievMI OrhanIE Adulteration of herbal sexual enhancers and slimmers: The wish for better sexual well-being and perfect body can be risky.Food Chem Toxicol2017108Pt B3556410.1016/j.fct.2016.06.018 27338710
    [Google Scholar]
  20. PatelD.K. Biological importance of a Biflavonoid ‘Bilobetin’ in the medicine: Medicinal importance, pharmacological activities and analytical aspects.Infect. Disord. Drug Targets2022225e21032220249010.2174/1871526522666220321152036 35319397
    [Google Scholar]
  21. PatelD.K. Biological potential and therapeutic benefit of Chrysosplenetin: An applications of polymethoxylated flavonoid in medicine from natural sources.Pharmacological Research - Modern Chinese Medicine2022410015510.1016/j.prmcm.2022.100155
    [Google Scholar]
  22. FerreiraJ.A. QueirozS.C.N. Multiresidue method for determination of pesticides in coconut (Cocos nucifera Linn.) endosperm by using GC–MS/MS and UHPLC–MS/MS analysis.J. Food Compos. Anal.20219710376410.1016/j.jfca.2020.103764
    [Google Scholar]
  23. TabutiJ.R.S. LyeK.A. DhillionS.S. Traditional herbal drugs of Bulamogi, Uganda: Plants, use and administration.J. Ethnopharmacol.2003881194410.1016/S0378‑8741(03)00161‑2 12902048
    [Google Scholar]
  24. StaubP.O. CasuL. LeontiM. Back to the roots: A quantitative survey of herbal drugs in Dioscorides’ De Materia Medica (ex Matthioli, 1568).Phytomedicine201623101043105210.1016/j.phymed.2016.06.016 27444350
    [Google Scholar]
  25. ZhouJ. LiuF. LiX. A strategy for rapid discovery of traceable chemical markers in herbal products using MZmine 2 data processing toolbox: A case of Jing Liqueur.Chin. Herb. Med.202113343043810.1016/j.chmed.2021.05.004 36118935
    [Google Scholar]
  26. PacificoS. D’AbroscaB. PascarellaM.T. Antioxidant efficacy of iridoid and phenylethanoid glycosides from the medicinal plant Teucrium chamaedris in cell-free systems.Bioorg. Med. Chem.200917176173617910.1016/j.bmc.2009.07.065 19674906
    [Google Scholar]
  27. SaidiI. Waffo-TéguoP. Ayeb-ZakhamaA.E.L. Harzallah-SkhiriF. MarchalA. Ben JannetH. Phytochemical study of the trunk bark of Citharexylum spinosum L. growing in Tunisia: Isolation and structure elucidation of iridoid glycosides.Phytochemistry2018146475510.1016/j.phytochem.2017.11.012 29223063
    [Google Scholar]
  28. DuK. LiJ. BaiY. AnM. GaoX. ChangY. A green ionic liquid-based vortex-forced MSPD method for the simultaneous determination of 5-HMF and iridoid glycosides from Fructus Corni by ultra-high performance liquid chromatography.Food Chem.201824419019610.1016/j.foodchem.2017.10.057 29120770
    [Google Scholar]
  29. LiM. ShangX. ZhangR. Antinociceptive and anti-inflammatory activities of iridoid glycosides extract of Lamiophlomis rotata (Benth.) Kudo.Fitoterapia201081316717210.1016/j.fitote.2009.08.018 19698769
    [Google Scholar]
  30. DoblerS. PetschenkaG. PankokeH. Coping with toxic plant compounds-The insect’s perspective on iridoid glycosides and cardenolides.Phytochemistry201172131593160410.1016/j.phytochem.2011.04.015 21620425
    [Google Scholar]
  31. RatheeD. LatherV. GrewalA.S. DurejaH. Enzymatic inhibitory activity of iridoid glycosides from Picrorrhiza kurroa against matrix metalloproteinases: Correlating in vitro targeted screening and docking.Comput. Biol. Chem.201978283610.1016/j.compbiolchem.2018.10.017 30497018
    [Google Scholar]
  32. TiwariN. YadavA.K. SrivastavaP. ShankerK. VermaR.K. GuptaM.M. Iridoid glycosides from Gmelina arborea.Phytochemistry200869122387239010.1016/j.phytochem.2008.06.016 18684476
    [Google Scholar]
  33. SinghP.P. QaziN.A. ShafiS. Regio-selective acylation of biologically important iridoid glycosides by Candida antarctica lipase.J. Mol. Catal., B Enzym.2009561465410.1016/j.molcatb.2008.04.005
    [Google Scholar]
  34. BadenC.U. GeierT. FrankeS. DoblerS. Sequestered iridoid glycosides – Highly effective deterrents against ant predators?Biochem. Syst. Ecol.2011394-689790110.1016/j.bse.2011.07.014
    [Google Scholar]
  35. RefaeyM.S. HassaneinA.M.M. MostafaM.A.H. WanasA.S. AliA.A. Two new iridoid glycosides from Odontonema cuspidatum and their bioactivities.Phytochem. Lett.201722273210.1016/j.phytol.2017.08.009
    [Google Scholar]
  36. XuY. XuY. LuanH. JiangY. TianX. ZhangS. Cardioprotection against experimental myocardial ischemic injury using cornin.Braz. J. Med. Biol. Res.2016492e503910.1590/1414‑431X20155039 26871971
    [Google Scholar]
  37. ZhangQ. QuZ. ZhouY. In vitro study on the effect of cornin on the activity of cytochrome P450 enzymes.BMC Complementary Medicine and Therapies202121113810.1186/s12906‑021‑03309‑y 33966625
    [Google Scholar]
  38. LanT. XuY. LiS. LiN. ZhangS. ZhuH. Cornin protects against cerebral ischemia/reperfusion injury by preventing autophagy via the PI3K/Akt/mTOR pathway.BMC Pharmacol. Toxicol.20222318210.1186/s40360‑022‑00620‑3 36280856
    [Google Scholar]
  39. JiangW.L. ZhangS.P. ZhuH.B. Jian-Hou, Tian J-W. Cornin ameliorates cerebral infarction in rats by antioxidant action and stabilization of mitochondrial function.Phytother. Res.201024454755210.1002/ptr.2978 20041427
    [Google Scholar]
  40. KangZ. JiangW. LuanH. ZhaoF. ZhangS. Cornin induces angiogenesis through PI3K–Akt–eNOS–VEGF signaling pathway.Food Chem. Toxicol.20135834034610.1016/j.fct.2013.05.017 23702325
    [Google Scholar]
  41. DingC. ZhangJ. LiB. Cornin protects SH SY5Y cells against oxygen and glucose deprivation induced autophagy through the PI3K/Akt/mTOR pathway.Mol. Med. Rep.20181718792 29115424
    [Google Scholar]
  42. XuY. ZhangG. KangZ. XuY. JiangW. ZhangS. Cornin increases angiogenesis and improves functional recovery after stroke via the Ang1/Tie2 axis and the Wnt/β-catenin pathway.Arch. Pharm. Res.201639113314210.1007/s12272‑015‑0652‑1 26276673
    [Google Scholar]
  43. TanakaN. NishikawaK. IshimaruK. Antioxidative capacity of extracts and constituents in Cornus capitata adventitious roots.J. Agric. Food Chem.200351205906591010.1021/jf030267s 13129293
    [Google Scholar]
  44. VareedS.K. SchutzkiR.E. NairM.G. Lipid peroxidation, cyclooxygenase enzyme and tumor cell proliferation inhibitory compounds in Cornus kousa fruits.Phytomedicine2007141070670910.1016/j.phymed.2006.09.006 17084606
    [Google Scholar]
  45. TeborgD. JuniorP. Iridoid glucosides from Penstemon nitidus.Planta Med.199157218418610.1055/s‑2006‑960062 17226148
    [Google Scholar]
  46. KrullR.E. StermitzF.R. Trans-fused iridoid glycosides from Penstemon mucronatus.Phytochemistry19984982413241510.1016/S0031‑9422(98)00349‑5 9887533
    [Google Scholar]
  47. JiangY. ChenH. WangL. ZouJ. ZhengX. LiuZ. Quality evaluation of polar and active components in crude and processed Fructus Corni by quantitative analysis of multicomponents with single marker.J. Anal. Methods Chem.2016201611310.1155/2016/6496840 27446632
    [Google Scholar]
  48. TanakaN. TanakaT. FujiokaT. An ellagic compound and iridoids from Cornus capitata root cultures.Phytochemistry20015781287129110.1016/S0031‑9422(01)00179‑0 11454361
    [Google Scholar]
  49. JiW. WangR. MuY. WangX. Superhydrophilic molecularly imprinted polymers based on a single cross-linking monomer for the recognition of iridoid glycosides in Di-huang pills.Anal. Bioanal. Chem.2018410256539654810.1007/s00216‑018‑1257‑6 30043112
    [Google Scholar]
  50. WangL. ChenH. JiangY. LiuZ. WangQ. ZhengX. Simultaneous determination of 11 high-polarity components from Fructus Corni: A quantitative LC–MS/MS method for improved quality control.J. Chromatogr. Sci.2018561566410.1093/chromsci/bmx083 29036589
    [Google Scholar]
  51. CaiH. CaoG. CaiB. Rapid simultaneous identification and determination of the multiple compounds in crude Fructus Corni and its processed products by HPLC–MS/MS with multiple reaction monitoring mode.Pharm. Biol.201351327327810.3109/13880209.2012.720689 23134086
    [Google Scholar]
  52. FrederiksenS.M. StermitzF.R. Pyridine monoterpene alkaloid formation from iridoid glycosides. A novel PMTA dimer from geniposide.J. Nat. Prod.1996591414610.1021/np960026x 8984152
    [Google Scholar]
  53. SinghS. PathakN. FatimaE. NegiA.S. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine.Eur. J. Med. Chem.202122611383910.1016/j.ejmech.2021.113839 34536668
    [Google Scholar]
  54. PatelK. KumarV. VermaA. RahmanM. Kumar PatelD. Health benefits of furanocoumarins ‘Psoralidin’ An active phytochemical of Psoralea corylifolia: The present, past and future scenario.Curr. Bioact. Compd.201915436937610.2174/1573407214666180511153438
    [Google Scholar]
  55. BarnesS. PrasainJ. Current progress in the use of traditional medicines and nutraceuticals.Curr. Opin. Plant Biol.20058332432810.1016/j.pbi.2005.03.010 15860430
    [Google Scholar]
  56. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules21050559 27136524
    [Google Scholar]
  57. JungJ. Hermanns-ClausenM. WeinmannW. Anorectic sibutramine detected in a Chinese herbal drug for weight loss.Forensic Sci. Int.20061612-322122210.1016/j.forsciint.2006.02.052 16870382
    [Google Scholar]
  58. PatelD.K. Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature.Drug Metab. Lett.202114211712510.2174/1872312814666210726112910 34313205
    [Google Scholar]
/content/journals/cff/10.2174/0126668629277718240101095407
Loading
/content/journals/cff/10.2174/0126668629277718240101095407
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test