Skip to content
2000
Volume 5, Issue 1
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Polyhydroxyesters prepared from epoxy and organic acids are vitrimers that can rearrange their topology from exchange reactions enhanced by catalysts, forming crosslinked networks that can be deformed and remolded.

In this work, the curing kinetics and thermal properties of polyhydroxyesters vitrimers based on polyethylene glycol diglycidyl ether (PEGDGE), citric acid (CA), and sebacic acid (SA) in the presence and absence of tin octoate (Sn(Oct)) were investigated.

Differential scanning calorimetry (DSC) non-isothermal experiments and Ozawa models were used for the curing kinetic studies, and thermogravimetry analysis (TGA) and thermomechanical analyses (TMA) were employed to investigate the thermal behavior of the networks.

The highest curing enthalpy of these exothermic reactions was observed in the binary system PEGDGE:CA without catalyst (326 J/g). The addition of Sn increases the reaction enthalpy for formulations with SA and decreases it for formulations rich in CA. The lowest activation energy was shown for the formulation PEGDGE:CA = 3:2 containing 1 mol% of Sn (56 kJ/mol). The polyhydroxyesters presented ranging from -24 to -48 °C, and the decreased when the proportion of SA was increased in the formulation. The thermal stability was increased when the SA content increased and decreased when the content of Sn increased from 1 to 5 mol%.

Esterification of PEGDGE and organic acids (SA and CA) occurs even in the absence of catalyst, producing rubbery polyesters, but the use of Sn(Oct) decreases the curing time. Ternary networks of polyhydroxyesters containing Sn showed a discontinuity in the thermal expansion around 180°C attributed to exchange reactions, similarly to what was theorized for this class of vitrimer material.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271605666220404144604
2022-04-01
2024-12-26
Loading full text...

Full text loading...

References

  1. JinF.L. LiX. ParkS.J. Synthesis and application of epoxy resins: A review.J. Ind. Eng. Chem.20152911110.1016/j.jiec.2015.03.026
    [Google Scholar]
  2. FortmanD.J. BrutmanJ.P. CramerC.J. HillmyerM.A. DichtelW.R. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers.J. Am. Chem. Soc.201513744140191402210.1021/jacs.5b0808426495769
    [Google Scholar]
  3. DenissenW. WinneJ.M. Du PrezF.E. Vitrimers: Permanent organic networks with glass-like fluidity.Chem. Sci. (Camb.)201671303810.1039/C5SC02223A28757995
    [Google Scholar]
  4. MontarnalD. CapelotM. TournilhacF. LeiblerL. Silica-like malleable materials from permanent organic networks.Science2011334605896596810.1126/science.121264822096195
    [Google Scholar]
  5. CapelotM. UnterlassM.M. TournilhacF. LeiblerL. Catalytic control of the vitrimer glass transition.ACS Macro Lett.20121778979210.1021/mz300239f
    [Google Scholar]
  6. CapelotM. MontarnalD. TournilhacF. LeiblerL. Metal-catalyzed transesterification for healing and assembling of thermosets.J. Am. Chem. Soc.2012134187664766710.1021/ja302894k22537278
    [Google Scholar]
  7. YuK. TayntonP. ZhangW. DunnM.L. QiH.J. Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers.RSC Advances2014489486824869010.1039/C4RA06543C
    [Google Scholar]
  8. AltunaF.I. PettarinV. WilliamsR.J.J. Self-healable polymer networks based on the cross-linking of epoxidised soybean oil by an aqueous citric acid solution.Green Chem.201315123360336610.1039/c3gc41384e
    [Google Scholar]
  9. KrishnakumarB. SankaR.V.S.P. BinderW.H. ParthasarthyV. RanaS. KarakN. Vitrimers: Associative dynamic covalent adaptive networks in thermoset polymers.Chem. Eng. J.2020385: 123820.10.1016/j.cej.2019.123820
    [Google Scholar]
  10. CunhaR.H. NeleM. DiasM.L. Reaction and thermal behavior of vitrimer‐like polyhydroxy esters based on polyethylene glycol diglycidyl ether.J. Appl. Polym. Sci.2020137434932910.1002/app.49329
    [Google Scholar]
  11. DemongeotA. MougnierS.J. OkadaS. ZiakovicC.S. TournilhacF. Coordination and catalysis of Zn2+ in epoxy-based vitrimers.Polym. Chem.20167274486449310.1039/C6PY00752J
    [Google Scholar]
  12. PeiZ. YangY. ChenQ. TerentjevE.M. WeiY. JiY. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds.Nat. Mater.2014131364110.1038/nmat381224292422
    [Google Scholar]
  13. YangY. PeiZ. ZhangX. TaoL. WeiY. JiY. Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy.Chem. Sci. (Camb.)2014593486349210.1039/C4SC00543K
    [Google Scholar]
  14. DuqueneC MelasM GentilhommeP DissonJP Composition for manufacturing epoxy/anhydride vitrimer resins including an organic catalyst.Patent US 0044305A12017
    [Google Scholar]
  15. YangZ. WangQ. WangT. Dual-triggered and thermally reconfigurable shape memory graphene-vitrimer composites.ACS Appl. Mater. Interfaces2016833216912169910.1021/acsami.6b0740327463202
    [Google Scholar]
  16. ChabertE. VialJ. CauchoisJ.P. MihalutaM. TournilhacF. Multiple welding of long fiber epoxy vitrimer composites.Soft Matter201612214838484510.1039/C6SM00257A27140663
    [Google Scholar]
  17. DuqueneC MougnierS J TounilhacFG LeiblerL Titaniumbased catalyst for vitrimer resins of epoxy/anhydride type.Patent US 10155842B22018
    [Google Scholar]
  18. MenczelJ.D. PrimeR.B. Thermal analysis of polymers: Fundamentals and applications.Wiley200910.1002/9780470423837
    [Google Scholar]
  19. PoutrelQ.A. BlakerJ.J. SoutisC. TournilhacF. GresilM. Dicarboxylic acid-epoxy vitrimers: Influence of the off-stoichiometric acid content on cure reactions and thermo-mechanical properties.Polym. Chem.202011333310.1039/D0PY00342E
    [Google Scholar]
  20. AltunaF.I. HoppeC.E. WilliamsR.J.J. Shape memory epoxy vitrimers based on DGEBA crosslinked with dicarboxylic acids and their blends with citric acid.RSC Advances2016691886478865510.1039/C6RA18010H
    [Google Scholar]
  21. HardisR. JessopJ.L.P. PetersF.E. KesslerM.R. Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA.Compos., Part A Appl. Sci. Manuf.20134910010810.1016/j.compositesa.2013.01.021
    [Google Scholar]
  22. KumarS. SamalS.K. MohantyS. NayakS.K. Study of curing kinetics of anhydride cured petroleum-based (DGEBA) epoxy resin and renewable resource based epoxidized soybean oil (ESO) systems catalyzed by 2-methylimidazole.Thermochim. Acta201765411212010.1016/j.tca.2017.05.016
    [Google Scholar]
  23. OzawaT. Kinetic analysis of derivative curves in thermal analysis.J. Therm. Anal.19702330132410.1007/BF01911411
    [Google Scholar]
  24. SnijkersF. PasquinoR. MaffezzoliA. Curing and viscoelasticity of vitrimers.Soft Matter201613125826810.1039/C6SM00707D27396412
    [Google Scholar]
  25. HermansJ.J. KeuneK. VanL.A. CorkeryR.W. IedemaP.D. Ionomer-like structure in mature oil paint binding media.RSC Advances2016696933639336910.1039/C6RA18267D
    [Google Scholar]
  26. FloresM. FrancosX.F. RamisX. SerraA. Novel epoxy-anhydride thermosets modified with a hyperbranched polyester as toughness enhancer. I. Kinetics study.Thermochim. Acta2012544172610.1016/j.tca.2012.06.008
    [Google Scholar]
  27. HuangK. LiuZ. ZhangJ. Self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from tung oil fatty acids: Synthesis and properties.Eur. Polym. J.201570455410.1016/j.eurpolymj.2015.06.027
    [Google Scholar]
  28. CoutureG. GranadoL. FangetF. BoutevinB. CaillolS. Limonene-based epoxy: Anhydride thermoset reaction study.Molecules20182311273910.3390/molecules2311273930360571
    [Google Scholar]
  29. TaoQ. PinterG. AntretterT. KrivecT. FuchsP. Model free kinetics coupled with finite element method for curing simulation of thermosetting epoxy resins.J. Appl. Polym. Sci.2018135274640810.1002/app.46408
    [Google Scholar]
  30. LuL. XiaL. ZenghengH. XingyueS. YiZ. PanL. Investigation on cure kinetics of epoxy resin containing carbon nanotubes modified with hyper-branched polyester.RSC Advances2018852298302983910.1039/C8RA04525A
    [Google Scholar]
  31. VasconcelosG.C. MazuraR.L. RibeiroB. BotelhoE.C. CostaM.L. Evaluation of decomposition kinetics of poly (ether-ether-ketone) by thermogravimetric analysis.Mater. Res.201417122723510.1590/S1516‑14392013005000202
    [Google Scholar]
  32. SenguptaR. SabharwalS. BhowmickA.K. ChakiT.K. Thermogravimetric studies on Polyamide-6, 6 modified by electron beam irradiation and by nanofillers.Polym. Degrad. Stabil.20069161311131810.1016/j.polymdegradstab.2005.08.012
    [Google Scholar]
  33. BrutmanJ.P. DelgadoP.A. HillmyerM.A. Polylactide vitrimers.ACS Macro Lett.20143760761010.1021/mz500269w
    [Google Scholar]
/content/journals/caps/10.2174/2452271605666220404144604
Loading
/content/journals/caps/10.2174/2452271605666220404144604
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test