Skip to content
2000
Volume 4, Issue 2
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

Sandwich structures are progressively being used in various engineering applications due to the superior bending-stiffness-to-weight ratio of these structures. We adapted a novel technique to incorporate carbon nanotubes (CNTs) and polyhedral oligomeric silsesquioxanes (POSS) into a sandwich composite structure utilizing a sonochemical and high temperature vacuum assisted resin transfer molding technique.

The objective of this work was to create a sandwich composite structure comprising of a nanophased foam core and reinforced nanophased face sheets, and to examine the thermal and mechanical properties of the structure. To prepare the sandwich structure, POSS nanoparticles were sonochemically attached to CNTs and dispersed in a high temperature resin system to make the face sheet materials and also coated on expandable thermoplastic microspheres for the fabrication of foam core materials.

The nanophased foam core was fabricated with POSS infused thermoplastic microspheres (Expancel) using a Tetrahedron MTP-14 programmable compression molder. The reinforced nanophased face sheet was fabricated by infusing POSS coated CNT in epoxy resin and then curing into a compression stainless steel mold.

Thermal analysis of POSS-infused thermoplastic microspheres foam (TMF) showed an increase in thermal stability in both nitrogen and oxygen atmospheres, 19% increase in thermal residue were observed for 4 wt% GI-POSS TMF compared to neat TMF. Quasi-static compression results indicated significant increases (73%) in compressive modulus, and an increase (5%) in compressive strength for the 1 wt% EC-POSS/CNTs resin system. The nanophased sandwich structure constructed from the above resin system and the foam core system displayed an increase (9%) in modulus over the neat sandwich structure.

The incorporation of POSS-nanofillier in the foam core and POSS-coated nanotubes in the face sheet significantly improved the thermal and mechanical properties of sandwich structure. Furthermore, the sandwich structure that was constructed from nanophased resin system showed an increase in modulus, with buckling in the foam core but no visible cracking.

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271604999201123193149
2021-08-01
2025-01-10
Loading full text...

Full text loading...

References

  1. MallickP.K. Fiber-reinforced composites.2nd edNew YorkMarcel Dekker Inc.1993
    [Google Scholar]
  2. AgarwalB.D. BroutmanL.J. Analysis and performance of fiber composites.2nd edHoboken, NJWiley1990
    [Google Scholar]
  3. AskelandD.R. PradeepP. The science and engineering of materials.5th edCanadaThompson2006
    [Google Scholar]
  4. OlssonK.A. Mechanics of sandwich structures: Presented at the 2000 Asme international mechanical engineering congress and exposition, November 5-10, 2000, Orlando, Florida AD-Vol. 62/AMD Vol.245. ASME 2000, pp.1-9.
  5. Osei-AntwiM. De CastroJ. VassilopoulosA.P. KellerT. Shear mechanical characterization of balsa wood as core material of composite sandwich panels.Constr. Build. Mater.20134123123810.1016/j.conbuildmat.2012.11.009
    [Google Scholar]
  6. HassaninA.H. HamoudaT. CandanZ. KilicA. AkbulutT. Developing high-performance hybrid green composites.Compos., Part B Eng.20169238439410.1016/j.compositesb.2016.02.051
    [Google Scholar]
  7. HamoudaT. HassaninA.H. SabaN. DemirelliM. KilicA. CandanZ. JawaidM. Evaluation of mechanical and physical properties of hybrid composites from food packaging and textiles wastes.J. Polym. Environ.20192748949710.1007/s10924‑019‑01369‑3
    [Google Scholar]
  8. HosurM.V. MohammedA.A. ZainuddinS. JeelaniS. Processing of nanoclay filled sandwich composites and their response to low–velocity impact loading.Compos Struct200882110111610.1016/j.compstruct.2006.12.009
    [Google Scholar]
  9. KabirM.E. SahaM.C. JeelaniS. Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite.Mater. Sci. Eng. A20074591-211111610.1016/j.msea.2007.01.031
    [Google Scholar]
  10. ZainuddinS. MahfuzH. JeelaniS. Enhancing fatigue performance of sandwich composites with nanophased core.J. Nanomater.2010201071273110.1155/2010/712731
    [Google Scholar]
  11. MahfuzH. UddinM.F. RangariV.K. SahaM.C. ZainuddinS. JeelaniS. High strain rate response of sandwich composites with nanophased cores.Appl. Compos. Mater.20051219321110.1007/s10443‑005‑1123‑5
    [Google Scholar]
  12. MahfuzH. IslamM. RangariV. SahaM. JeelaniS. Response of sandwich composites with nanophased cores under flexural loading.Compos Part B.2005356-854355010.1016/j.compositesb.2003.11.004
    [Google Scholar]
  13. HamoudaT. HassaninA.H. KilicA. CandanZ. BodurM.S. Hybrid composites from coir fibers reinforced with woven glass fabrics: physical and mechanical evaluation.Polym. Compos.201738102212222010.1002/pc.23799
    [Google Scholar]
  14. MahfuzH. RangariV. IslamM. JeelaniS. Fabrication, synthesis and mechanical characterization of nanoparticles infused polyurethane foams.Compos Part A.200435445346010.1016/j.compositesa.2003.10.009
    [Google Scholar]
  15. ShifaM. TariqF. BalochR. Effect of carbon nanotubes on mechanical properties of honeycomb sandwich panels.Nucleus201754116
    [Google Scholar]
  16. RangariV. HassanT. ZhouY. MahfuzH. JeelaniS. ProrokB. Cloisite clay-infused phenolic foam nanocomposites.J. Appl. Polym. Sci.2007103130831410.1002/app.25287
    [Google Scholar]
  17. RangariV. JeelaniM.I. ZhouY. JeelaniS. Fabrication and characterization of MWCNT/thermoplastic microsphere nanocomposite foams.Int. J. Nanosci.200872-316116910.1142/S0219581X08005237
    [Google Scholar]
  18. UddinM.N. GandyH.T. RahmanM.M. AsmatuluR. Adhesiveless honeycomb sandwich structures of prepreg carbon fiber composites for primary structural applications.Adv Compos Hybrid Mater20192233935010.1007/s42114‑019‑00096‑6
    [Google Scholar]
  19. Di SciuvaM. SorrentiM. Bending, free vibration and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended refined zigzag theory.Compos. Struct.201922711132410.1016/j.compstruct.2019.111324
    [Google Scholar]
  20. PielichowskiK. NjugunaJ. JanowskiB. PielichowskiJ. Polyhedral Oligomeric Silsesquioxanes (POSS)-containing nanohybrid polymers. AbeA. DusˇekK. KobayashiS. Supramolecular polymers polymeric betains oligomers.Berlin, GermanySpringer-Verlag Berlin200622529610.1007/12_077
    [Google Scholar]
  21. HarrisP.J.F. Carbon nanotubes and related structures: new materials for the twenty –first century.Cambridge, UKCambridge University Press199910.1017/CBO9780511605819
    [Google Scholar]
  22. ArmstrongW. SapkotaB. MishraS.R. Silver decorated carbon nanospheres as effective visible light photocatalyst.MRS Online Proceedings Library2013150993810.1557/opl.2013.516
    [Google Scholar]
  23. JoshiM. ButolaB.S. Polymeric nanocomposites: polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller.J Macromol Sci: Part C200444438941010.1081/MC‑200033687
    [Google Scholar]
  24. JungY. SahooN.G. ChoJ.W. Polymeric nanocomposites of polyurethane block copolymers and functionalized multi-walled carbon nanotubes as crosslinkers.Macromol. Rapid Commun.200627412613110.1002/marc.200500658
    [Google Scholar]
  25. DohiH. KikuchiS. KuwaharaS. SugaiT. ShinoharaH. Synthesis and spectroscopic characterization of single-wall carbon nanotubes wrapped by glycoconjugate polymer with bioactive sugars.Chem. Phys. Lett.20064281-39810110.1016/j.cplett.2006.06.053
    [Google Scholar]
  26. BaskaranD. MaysJ.W. BratcherM.S. Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes.Chem. Mater.200517133389339710.1021/cm047866e
    [Google Scholar]
  27. KonyushenkoE.N. StejskalJ. TrchovaM. HradilJ. KovarovaJ. ProkesJ. CieslarM. HwangJ.Y. ChenK.H. SapurinaI. Multi-wall carbon nanotubes coated with polyaniline.Polymer (Guildf.)200647165715572310.1016/j.polymer.2006.05.059
    [Google Scholar]
  28. RivinD. SuzinY. Calorimetric investigation of the interaction of carbon nanotubes with polystyrene.J Polym Sci: Part B200644131821183410.1002/polb.20831
    [Google Scholar]
  29. ZhangR. WangX. One step synthesis of multiwalled carbon nanotube/gold nanocomposites for enhancing electrochemical response.Chem. Mater.200719597697810.1021/cm062791v
    [Google Scholar]
  30. BittencourtC. FeltenA. GhijsenJ. PireauxJ.J. DrubeW. ErniR. Van TendelooG. Decorating carbon nanotubes with nickel nanoparticles.Chem. Phys. Lett.20074364-636837210.1016/j.cplett.2007.01.065
    [Google Scholar]
  31. KongH. LiW. GaoC. YanD. JinY. WaltonD.R.M. KrotoH.W. Poly(N-isopropylacrylamide)-coated carbon nanotubes: temperature sensitive molecular nanohybrids in water.Macromolecules200437186683668610.1021/ma048682o
    [Google Scholar]
  32. FranchiniE. GalyJ. GerardJ.F. TabuaniD. MediciA. Influence of POSS structure on the fire retardant properties of epoxy hybrid networks.Polym. Degrad. Stabil.200994101728173610.1016/j.polymdegradstab.2009.06.025
    [Google Scholar]
  33. DuW. ShanJ. WuY. XuR. YuD. Preparation and characterization of polybenzoxazine/trisilanol polyhedral oligomeric silsesquioxanes composites.Mater. Des.20103141720172510.1016/j.matdes.2009.01.050
    [Google Scholar]
  34. NiC. NiG. ZhangS. LiuX. ChenM. LiuL. The preparation of inorganic/organic hybrid nanomaterials containing silsesquioxane and its reinforcement for an epoxy resin network.Colloid Polym. Sci.201028846947710.1007/s00396‑009‑2160‑7
    [Google Scholar]
  35. ZhangZ. GuA. LiangG. RenP. XieJ. WangX. Thermo-oxygen mechanisms of POSS/epoxy nanocomposites.Polym. Degrad. Stabil.200992111986199310.1016/j.polymdegradstab.2007.08.004
    [Google Scholar]
  36. QiuZ. PanH. Preparation, crystallization and hydrolytic degradation of biodegradable poly(L-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites.Compos. Sci. Technol.20107071089109410.1016/j.compscitech.2009.11.001
    [Google Scholar]
  37. SuCH. ChiuYP. TengCC. ChiangCL. Preparation, characterization and thermal properties of organic–inorganic composites involving epoxy and polyhedral oligomeric silsesquioxane (POSS)J. Polym. Res.20101767368110.1007/s10965‑009‑9355‑y
    [Google Scholar]
  38. ASTM Standard E831. Standard test method for linear thermal expansion of solid materials by thermomechanical analysis. West Conshohocken, ASTM International 2003.10.1520/E0831‑06
  39. ASTM C365 / C365M-16, Standard test method for flatwise compressive properties of sandwich cores. West Conshohocken, ASTM International 2003.10.1520/C0365_C0365M‑05
  40. MaoQ. YangL. GengX. Interface strain induced hydrophobic facet suppression in cellulose nanocomposite embedded with highly oxidized monolayer graphene oxide.Adv. Mater. Interfaces2017423170099510.1002/admi.201700995
    [Google Scholar]
  41. BhoyateS. KaholP.K. MishraS.R. PerezF. GuptaR.K. Polystyrene activated linear tube carbon nanofiber for durable and high-performance supercapacitors.Surf. Coat. Tech.201834511312210.1016/j.surfcoat.2018.04.026
    [Google Scholar]
/content/journals/caps/10.2174/2452271604999201123193149
Loading
/content/journals/caps/10.2174/2452271604999201123193149
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): CNTs; Expancel foam; mechanical properties; POSS; sandwich structure; thermal properties
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test