Skip to content
2000
Volume 4, Issue 3
  • ISSN: 2452-2716
  • E-ISSN: 2452-2724

Abstract

A polymer as a host in the optical waveguide has many advantages and, when doped with rare-earth (RE) elements, offers an efficient connection, compared to its glass-based counterparts as an amplifier. However, a polymer matrix causes the concentration quenching effect of REs in the polymer matrix, making the fabrication of RE-doped polymer waveguides more complicated as compared to the fabrication of glass-based complements. Moreover, controlling scattering loss at the particle-polymer interface for maintaining the optical clarity of the composite is also a great challenge.

The main aim of the present study was to optimize the synthesis of ErO grafted Polymethylmethacrylate (PMMA)-Polystyrene (PS) composite based transparent ternary nanocomposite and its characterization to implement them as a potential material for active core in Polymer Optical Preform (POP).

Nano Erbium Oxide (ErO) was successfully synthesized by the wet-chemical method and encapsulated by a polymerizable surfactant, , 3-Methacyloxypropyltrimethoxy silane (MPS). The encapsulated nanoparticles were further subjected to grafting with PMMA using polymerization of methyl methacrylate (MMA) followed by blending with PSsolvent mixing technique.

The optical transparency of the ternary composite was achieved by fine-tuning the diameter (15-20 nm) of the PMMA coated ErO . The crystallinity present in ErO was significantly reduced after PMMA coating. The comparatively higher refractive index obtained at 589 nm wavelength for the synthesized material indicated its usability as active core material in the presence of a commercial acrylate cladding tube. A photoluminescence (Pl) study indicated that the technique might be used for a higher level of Er3+ doping in polymer matrix without sacrificing its transparency.

The obtained results indicated that the sample synthesized with the adopted technique gives better Pl intensity compared to the other methods of Er3+ incorporation in polymer optical preform (POP).

Loading

Article metrics loading...

/content/journals/caps/10.2174/2452271604666211130123241
2021-12-01
2025-01-10
Loading full text...

Full text loading...

References

  1. MiniscalcoW.J. Erbium-doped glasses for fiber amplifiers at 1500 nm.J. Lit. Technol.19919223425010.1109/50.65882
    [Google Scholar]
  2. Ramesh RaoM.R. RichardsJ.R. ManoharJ. MB. A SivasubramanianA. Erbium doped fiber amplifiers: State of art.Int. J. Sci. Technol. Res.201325316
    [Google Scholar]
  3. BorowskaL. FritzscheS. KikP.G. MasunovA.E. Near-field enhancement of infrared intensities for f-f transitions in Er3+ ions close to the surface of silicon nanoparticles.J. Mol. Model.201117342342810.1007/s00894‑010‑0708‑620490882
    [Google Scholar]
  4. DesurvireE. SimpsonJ.R. Evaluation of 4I15/2 and 4I13/2 Stark-level energies in erbium-doped aluminosilicate glass fibers.Opt. Lett.1990151054754910.1364/OL.15.00054719768003
    [Google Scholar]
  5. KobayashiT. NakatsukaS. IwafujiT. KurikiK. ImaiN. NakamotoT. ClaudeC.D. SasakiK. KoikeY. OkamotoY. Fabrication and superfluorescence of rare-earth chelate-doped graded index polymer optical fibers.Appl. Phys. Lett.19977117242110.1063/1.120080
    [Google Scholar]
  6. van EijkelenborgM. LargeM. ArgyrosA. ZagariJ. ManosS. IssaN. BassettI. FlemingS. McPhedranR. de SterkeC.M. NicoroviciN.A.P. Microstructured polymer optical fibre.Opt. Express20019731932710.1364/OE.9.00031919421303
    [Google Scholar]
  7. KoeppenC. YamadaS. JiangG. GaritoA.F. DaltonL.R. Rare-earth organic complexes for amplification in polymer optical fibers and waveguides.J. Opt. Soc. Am. B199714115516210.1364/JOSAB.14.000155
    [Google Scholar]
  8. HanemannT. SzabóD.V. Polymer-nanoparticle composites: From synthesis to modern applications.Materials (Basel)2010363468351710.3390/ma3063468
    [Google Scholar]
  9. SlooffL.H. PolmanA. KlinkS.I. GraveL. van VeggelF.C.J.M. HofstraatJ.W. Concentration effects in the photodegradation of lissamine-functionalized neodymium complexes in polymer waveguides.J. Opt. Soc. Am. B200118111690169410.1364/JOSAB.18.001690
    [Google Scholar]
  10. EhrmannP.R. CarlsonK. CampbellJ.H. ClickC.A. BrowR.K. Neodymium fluorescence quenching by hydroxyl groups in phosphate laser glasses.J. Non-Cryst. Solids200434910511410.1016/j.jnoncrysol.2004.08.216
    [Google Scholar]
  11. BruceA.J. ReedW.A. NeevesA.E. CopelandL.R. GrodkiewiczW.H. LidgardA. Concentration and hydroxyl impurity quenching of the 4I13/2–4I15/2 luminescence in Er3+ doped sodium silicate glasses.MRS Proc199124415716110.1557/PROC‑244‑157
    [Google Scholar]
  12. YanY.C. FaberA.J. De WaalH. KikP.G. PolmanA. Erbium- doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm.Appl. Phys. Lett.19977120292210.1063/1.120216
    [Google Scholar]
  13. GaoR. NorwoodR.A. TengC.C. GaritoA.F. Rare-earth-doped polymer optical waveguide amplifiers.Proceeding at Organic Photonic Materials and Devices IIProc SPIE200039391210.1117/12.386365
    [Google Scholar]
  14. GuoQ. GhadiriR. WeigelT. Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites.Polymers (Basel)201462433243410.3390/polym6072037
    [Google Scholar]
  15. EldadaL. ShackletteL.W. Advances in polymer integrated optics.IEEE J. Sel. Top. Quantum Electron.200061546810.1109/2944.826873
    [Google Scholar]
  16. SchulzH. BurtscherP. MädlerL. Correlating filler transparency with inorganic/polymer composite transparency.Compos., Part A Appl. Sci. Manuf.200738122451245910.1016/j.compositesa.2007.08.006
    [Google Scholar]
  17. TanM.C. PatilS.D. RimanR.E. Transparent infrared-emitting CeF3:Yb-Er polymer nanocomposites for optical applications.ACS Appl. Mater. Interfaces2010271884189110.1021/am100228j20533832
    [Google Scholar]
  18. BoyerJ.C. JohnsonN.J.J. van VeggelF.C.J.M. Upconverting lanthanide-doped NaYF4−PMMA polymer composites prepared by in situ polymerization.Chem. Mater.200921102010201210.1021/cm900756h
    [Google Scholar]
  19. ChinyaI. SenR. DharA. Synthesis and characterization of transparent erbium–ytterbium co-doped polymer nanocomposites for fabrication of polymer optical preform.Phys Status Solidi Appl Mater Sci201721451600685
    [Google Scholar]
  20. AsunskisD.J. BolotinI.L. HanleyL. Nonlinear optical properties of PbS nanocrystals grown in polymer solutions.J. Phys. Chem. C2008112269555955810.1021/jp8037076
    [Google Scholar]
  21. DuH. XuG.Q. ChinW.S. HuangL. JiW. Synthesis, characterization, and nonlinear optical properties of hybridized CdS-polystyrene nanocomposites.Chem. Mater.200214104473447910.1021/cm010622z
    [Google Scholar]
  22. ElimH.I. JiW. Ultrafast optical nonlinearity in poly(methylmethacrylate)-TiO2 nanocomposites.Appl. Phys. Lett.200382269110.1063/1.1568544
    [Google Scholar]
  23. KulykB. SahraouiB. Krupka1O. Linear and nonlinear optical properties of ZnO/PMMA nanocomposite filmsJ Appl Phy2009106610.1063/1.3253745
    [Google Scholar]
  24. JinL. WuH. MorbidelliM. Synthesis of water-based dispersions of polymer/TiO2 hybrid nanospheres.Nanomaterials (Basel)2015531454146810.3390/nano503145428347075
    [Google Scholar]
  25. ZhouM. WeiZ. QiaoH. ZhuL. YangH. XiaT. Particle size and pore structure characterization of silver nanoparticles prepared by confined arc plasma.J. Nanomater.2009200896805810.1155/2009/968058
    [Google Scholar]
  26. ShobhanaE. X-Ray diffraction and UV-Visible studies of PMMA thin films.Int. J. Mod. Eng. Res.2012231092
    [Google Scholar]
  27. ZhangY.Y. ShenL.F. PunE.Y.B. ChenB.J. LinH. Multi-color fluorescence in rare earth acetylacetonate hydrate doped Poly methyl methacrylate.Opt. Commun.201331111111610.1016/j.optcom.2013.08.045
    [Google Scholar]
  28. BukowskaA. BukowskaW. HusK. DepciuchJ. Parlińska-WojtanM. Synthesis and Characterization of New functionalized polymer-Fe3O4 nanocomposite particles.Express Polym. Lett.201711121310.3144/expresspolymlett.2017.2
    [Google Scholar]
  29. ParlakO. DemirM.M. Toward transparent nanocomposites based on polystyrene matrix and PMMA-grafted CeO2 nanoparticles.ACS Appl Mater Interfaces20113114306431410.1021/am200983h21970464
    [Google Scholar]
  30. ClabelH. Rivera,J.L. Siu LiV.A.G. NunesM. LeiteL.A.O. SchreinerE.R. MaregaW.H. Near-infrared light emission of Er3+ -doped zirconium oxide thin films: An optical, structural and XPS study.J. Alloys Compd.201561980080610.1016/j.jallcom.2014.09.007
    [Google Scholar]
/content/journals/caps/10.2174/2452271604666211130123241
Loading
/content/journals/caps/10.2174/2452271604666211130123241
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test