Skip to content
2000
image of Polymeric Microspheres for Herbal Extract Encapsulation: Advanced Formulation Techniques, Biomedical Applications, and Future Prospects

Abstract

Microspheres are tiny spherical particles with a diameter of 1 to 1000 μm that play a key role in several industries, most notably medicine delivery. This article provides an extensive overview of polymeric microspheres, including information on their uses, advantages, disadvantages, and various forms. We pay special attention to mucoadhesive microspheres and those containing herbal medicines. Improved bioavailability, regulated release patterns, and increased medicinal efficiency of plant extracts are among the important discoveries. Microspheres can be roughly categorized as either synthetic or natural. Synthetic microspheres provide targeted distribution and controlled medication release. One example of a synthetic microsphere is a biodegradable polymer called poly(lactic-co-glycolic acid) (PLGA). They might, however, run into restrictions like burst discharge and difficulties increasing production. On the other hand, natural microspheres made of substances like albumin or starch provide biocompatibility and easy disintegration, but they might not give you exact control over the kinetics of drug release. One subset of microspheres, known as mucoadhesive microspheres, has attracted a lot of attention due to its capacity to stick to mucosal surfaces, increasing bioavailability and extending the duration of drug residence. A variety of polymers, such as chitosan and alginate, which have strong adhesive qualities to mucosal tissues, can be used to create these microspheres. Moreover, the integration of herbal medicines into polymeric microspheres has several benefits, such as increased stability, regulated release, and better therapeutic effectiveness. To sum up, microspheres show great promise as a drug delivery platform. Particular benefits include increased bioavailability, controlled release, and targeted therapy for mucoadhesive microspheres and those containing herbal medicines. This article provides an in-depth review of polymeric microspheres, highlighting their various forms, benefits, drawbacks, and uses, with a particular focus on mucoadhesive microspheres and those encapsulating herbal medications. Key findings include enhanced bioavailability, controlled release profiles, and improved therapeutic efficacy of herbal extracts.

Loading

Article metrics loading...

/content/journals/caps/10.2174/0124522716338115241226033817
2025-01-30
2025-07-05
Loading full text...

Full text loading...

References

  1. Patil S. Sawant K. Mucoadhesive microspheres: A promising tool in drug delivery. Curr. Drug Deliv. 2008 5 4 312 318 10.2174/156720108785914970 18855602
    [Google Scholar]
  2. Smart J.D. Kellaway I.W. Worthington H.E.C. An in-vitro investigation of mucosa-adhesive materials for use in controlled drug delivery. J. Pharm. Pharmacol. 1984 36 5 295 299 10.1111/j.2042‑7158.1984.tb04377.x 6145763
    [Google Scholar]
  3. Gupta S. Parvez N. Bhandari A. Sharma P. Microspheres based on herbal actives: The less-explored ways of disease treatment. Egyptian Pharmaceutical Journal 2015 14 3 148 157 10.4103/1687‑4315.172852
    [Google Scholar]
  4. Beyatricks K.J. Kumar K.S. Suchitra D. Jainab N.H. Anita A. Recent microsphere formulations and its applications in herbal drugs–a review. Int J Pharm Dev Technol. 2014 4 01 58 62
    [Google Scholar]
  5. Ahuja A. Khar R.K. Ali J. Mucoadhesive drug delivery systems. Drug Dev. Ind. Pharm. 1997 23 5 489 515 10.3109/03639049709148498
    [Google Scholar]
  6. Edith M. Mark R.K. Encyclopedia of controlled release. London John Wiley and Sons Inc. 1998 2 493 510
    [Google Scholar]
  7. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012 75 3 311 335 10.1021/np200906s 22316239
    [Google Scholar]
  8. Verma H. Prasad S.B. Yashwant S.H. Herbal drug delivery system: A modern era prospective. Int J Current Pharma Rev Res. 2013 4 88 101
    [Google Scholar]
  9. Chaturvedi M. Sinhal A. Kumar M. Saifi A. Recent development in novel drug delivery systems of herbal drugs. Int. J. Green Pharm. 2011 5 2 87 10.4103/0973‑8258.85155
    [Google Scholar]
  10. Chao P. Deshmukh M. Kutscher H.L. Gao D. Rajan S.S. Hu P. Laskin D.L. Stein S. Sinko P.J. Pulmonary targeting microparticulate camptothecin delivery system: Anticancer evaluation in a rat orthotopic lung cancer model. Anticancer Drugs 2010 21 1 65 76 10.1097/CAD.0b013e328332a322 19966540
    [Google Scholar]
  11. Parmar H. Bakliwal S. Gujarathi N. Rane B. Pawar S. Different method of formulation and evaluation of mucoadhesive microsphere. Int. J. Appl. Biol. Pharm. Technol. 2010 1 3 1157 1167
    [Google Scholar]
  12. Donnelly R.F. Shaikh R. Raj Singh T.R. Garland M.J. Woolfson A.D. Mucoadhesive drug delivery systems. J. Pharm. Bioallied Sci. 2011 3 1 89 100 10.4103/0975‑7406.76478 21430958
    [Google Scholar]
  13. Alexander A. Tripathi D.K. Verma T. Patel S. Mechanism responsible for mucoadhesion of mucoadhesive drug delivery system. Int. J. Appl. Biol. Pharm. Technol. 2011 2 1 434 445
    [Google Scholar]
  14. Lee J.W. Park J.H. Robinson J.R. Bioadhesive-based dosage forms: The next generation. J. Pharm. Sci. 2000 89 7 850 866 10.1002/1520‑6017(200007)89:7<850::AID‑JPS2>3.0.CO;2‑G 10861586
    [Google Scholar]
  15. Nagai T. Machida Y. Advances in drug delivery-mucosal adhesive dosage forms. Pharmacy International. 1985 6 8 196 200
    [Google Scholar]
  16. Kamath K.R. Park K. Encyclopedia of Pharmaceutical Technology. Swarbrick J. Boylan J.C. New York Marcel Dekker 1988 10 133 164
    [Google Scholar]
  17. Jiménez-castellanos M.R. Zia H. Rhodes C.T. Mucoadhesive drug delivery systems. Drug Dev. Ind. Pharm. 1993 19 1-2 143 194 10.3109/03639049309038765
    [Google Scholar]
  18. Mathiowitz E. Chickering D. Jacob J.S. Santos C. Encyclopedia of Controlled Drug Delivery. Mathiowitz E. New York John Wiley and Sons 1999 Vol. 1 9 45
    [Google Scholar]
  19. Chowdary K.P.R. Srinivasa Rao Y. Mucoadhesive microspheres for controlled drug delivery. Biol. Pharm. Bull. 2004 27 11 1717 1724 10.1248/bpb.27.1717 15516712
    [Google Scholar]
  20. Smart J. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev. 2005 57 11 1556 1568 10.1016/j.addr.2005.07.001 16198441
    [Google Scholar]
  21. Chowdary K.P. Srinivas L. Mucoadhesive drug delivery systems: A review of current status. INDIAN DRUGS-BOMBAY 2000 37 9 400 406
    [Google Scholar]
  22. Punitha S. Girish Y. Polymers in mucoadhesive buccal drug delivery system. Int. J. Res. Pharm. Sci. 2010 1 2 170 186
    [Google Scholar]
  23. Andrews G.P. Laverty T.P. Jones D.S. Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm. 2009 71 3 505 518 10.1016/j.ejpb.2008.09.028 18984051
    [Google Scholar]
  24. Hemlata Kaurav S.L. Mucoadhesive microspheres as carriers in drug delivery: A review. Int. J. Drug Dev. & Res. 2012 4 2 21 34
    [Google Scholar]
  25. Kataria S. Middha A. Sandhu P. Bilandi A. Kapoor B. Microsphere: A review. Int. J. Res. Pharm. Chem. 2011 1 4 1185 1198
    [Google Scholar]
  26. Saraf S. Kaur C.D. Phytoconstituents as photoprotective novel cosmetic formulations. Pharmacogn. Rev. 2010 4 7 1 11 10.4103/0973‑7847.65319 22228936
    [Google Scholar]
  27. Formica J.V. Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 1995 33 12 1061 1080 10.1016/0278‑6915(95)00077‑1 8847003
    [Google Scholar]
  28. Mikaili P. Maadirad S. Moloudizargari M. Aghajanshakeri S. Sarahroodi S. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran. J. Basic Med. Sci. 2013 16 10 1031 1048 24379960
    [Google Scholar]
  29. Tringali C. Bioactive compounds from natural sources: Isolation, characterization and biological properties. CRC Press 2000 10.1201/9781482289268
    [Google Scholar]
  30. Abdul M. Naseer A.G. Phytochemical study of Cynara scolymus L. (Artichoke) (Asteraceae) cultivated in Iraq, detection and identification of phenolic acid compounds cynarin and chlorogenic acid. Iraqi J. Pharm Sci. 2012 21 6 13
    [Google Scholar]
  31. Kunnumakkara A.B. Anand P. Aggarwal B.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008 269 2 199 225 10.1016/j.canlet.2008.03.009 18479807
    [Google Scholar]
  32. Kumar K. Rai A.K. Development and evaluation of floating microspheres of curcumin. Trop. J. Pharm. Res. 2012 11 713 719
    [Google Scholar]
  33. Kwon S.H. Kim S.Y. Ha K.W. Kang M.J. Huh J.S. Tae Jong I. Kim Y.M. Park Y.M. Kang K.H. Lee S. Chang J.Y. Lee J. Choi Y.W. Pharmaceutical evaluation of genistein-loaded pluronic micelles for oral delivery. Arch. Pharm. Res. 2007 30 9 1138 1143 10.1007/BF02980249 17958332
    [Google Scholar]
  34. Afaq F. Adhami V.M. Ahmad N. Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice☆☆Part of this work was conducted at the Department of Dermatology, Case Western Reserve University and the Research Institute of University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106. Toxicol. Appl. Pharmacol. 2003 186 1 28 37 10.1016/S0041‑008X(02)00014‑5 12583990
    [Google Scholar]
  35. Şanlı O. Karaca İ. Işıklan N. Preparation, characterization, and salicylic acid release behavior of chitosan/poly(vinyl alcohol) blend microspheres. J. Appl. Polym. Sci. 2009 111 6 2731 2740 10.1002/app.29319
    [Google Scholar]
  36. Sujitha B. Krishnamoorthy B. Muthukumaran M. A role of natural polymers used in formulation of pharmaceutical dosage form. Int J Pharm Technol 2012 4 2347 2362
    [Google Scholar]
  37. Chanchal D. Swarnlata S. Novel approaches in herbal cosmetics. J. Cosmet. Dermatol. 2008 7 2 89 95 10.1111/j.1473‑2165.2008.00369.x 18482010
    [Google Scholar]
  38. Atmakuri L.R. Dathi S. Current trends in herbal medicines. J. Pharm. Res. 2010 3 1 109 113
    [Google Scholar]
  39. Kulkarni G.T. Herbal drug delivery systems: An emerging area in herbal drug research. J. Chronother. Drug Deliv. 2011 2 3 113 119
    [Google Scholar]
  40. Manach C. Scalbert A. Morand C. Rémésy C. Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004 79 5 727 747 10.1093/ajcn/79.5.727 15113710
    [Google Scholar]
  41. Goyal A. Kumar S. Nagpal M. Singh I. Arora S. Potential of novel drug delivery systems for herbal drugs. Indian J Pharma Educ Res 2011 45 225 235
    [Google Scholar]
  42. Gu J.M. Robinson J.R. Leung S.H. Binding of acrylic polymers to mucin/epithelial surfaces: Structure-property relationships. Crit. Rev. Ther. Drug Carrier Syst. 1988 5 1 21 67 3293807
    [Google Scholar]
  43. Langer R. Peppas N. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 1981 2 4 201 214 10.1016/0142‑9612(81)90059‑4 7034798
    [Google Scholar]
  44. Garg A. Upadhyay P. Mucoadhesive microspheres: A short review. Asian J. Pharm. Clin. Res. 2012 5 3 24 27
    [Google Scholar]
  45. Ingle T.G. Pande S.D. Sawarkar R. Padole D. The current trends in microspheres: A review. JDDT 2023 13 1 183 194 10.22270/jddt.v13i1.5915
    [Google Scholar]
  46. Kumar L Verma S Vaidya B Gupta V Bioadhesive polymers for targeted drug delivery. InNanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes Academic Press. 2017 322 362 10.1016/B978‑0‑12‑809717‑5.00012‑9
    [Google Scholar]
  47. Najmuddin M. Ahmed A. Shelar S. Patel V. Khan T. Floating microspheres of ketoprofen: Formulation and evaluation. Int. J. Pharm. Pharm. Sci. 2010 2 2 83 87
    [Google Scholar]
  48. Li S.P. Kowarski C.R. Feld K.M. Grim W.M. Recent advances in microencapsulation technology and equipment. Drug Dev. Ind. Pharm. 1988 14 2-3 353 376 10.3109/03639048809151975
    [Google Scholar]
  49. Chopra M Asija R Sharma D Asija S Gupta A. A brief review about microspheres. Int. J. Pharm. Erud. 2014 4 3 9 21
    [Google Scholar]
  50. Chandrawanshi P. Patidar H. Magnetic microsphere: As targeted drug delivery. J. Pharm. Res. 2009
    [Google Scholar]
  51. Yadav A.V. Mote H.H. Development of biodegradable starch microspheres for intranasal delivery. Indian J. Pharm. Sci. 2008 70 2 170 174 10.4103/0250‑474X.41450 20046707
    [Google Scholar]
  52. Saralidze K. Leo H. Polymeric microspheres for medical applications. Materials 2010 3 3357 3364 10.3390/ma3063537
    [Google Scholar]
  53. Trivedi P. Verma A.M.L. Garud N. Preparation and characterization of aceclofenac microspheres. Asian J. Pharm. 2008 2 2 110 115 10.4103/0973‑8398.42498
    [Google Scholar]
  54. Alagusundaram M. Chetty M.S. Umashankari K. Badarinath A.V. Lavanya C. Ramkanth S. Microspheres as a novel drug delivery system: A review. Int. J. Chemtech Res. 2009 1 3 526 534
    [Google Scholar]
  55. Bogataj M. Mrhar A. Korošec L. Influence of physicochemical and biological parameters on drug release from microspheres adhered on vesical and intestinal mucosa. Int. J. Pharm. 1999 177 2 211 220 10.1016/S0378‑5173(98)00341‑X 10205615
    [Google Scholar]
  56. Okada H. Yamamoto M. Heya T. Inoue Y. Kamei S. Ogawa Y. Toguchi H. Drug delivery using biodegradable microspheres. Advances in Drug Delivery Systems Elsevier 1994 6 121 129
    [Google Scholar]
  57. Jalil R. Nixon J.R. Microencapsulation using poly(l-lactic Acid) iv: Release properties of microcapsules containing phenobarbitone. J. Microencapsul. 1990 7 1 53 66 10.3109/02652049009028423 2308054
    [Google Scholar]
  58. Huang Y.Y. Chung T.W. Tzeng T. Drug release from PLA/PEG microparticulates. Int. J. Pharm. 1997 156 1 9 15 10.1016/S0378‑5173(97)00154‑3
    [Google Scholar]
  59. Atkins T.W. Peacock S.J. Yates D.J. Incorporation and release of vancomycin from Poly(D, L-lactide-co-glycolide) microspheres. J. Microencapsul. 1998 15 1 31 44 10.3109/02652049809006833 9463805
    [Google Scholar]
  60. Edlund U. Albertsson A.C. Novel drug delivery microspheres from poly(1,5-dioxepan-2-one-co-L-lactide). J. Polym. Sci. A Polym. Chem. 1999 37 12 1877 1884 10.1002/(SICI)1099‑0518(19990615)37:12<1877::AID‑POLA17>3.0.CO;2‑4
    [Google Scholar]
  61. Oh J. Nam Y.S. Lee K.H. Park T.G. Conjugation of drug to poly(??-lactic-co-glycolic acid) for controlled release from biodegradable microspheres. J. Control. Release 1999 57 3 269 280 10.1016/S0168‑3659(98)00123‑0 9895414
    [Google Scholar]
  62. Bai X.L. Yang Y.Y. Chung T.S. Ng S. Heller J. Effect of polymer compositions on the fabrication of poly( ortho ‐ester) microspheres for controlled release of protein. J. Appl. Polym. Sci. 2001 80 10 1630 1642 10.1002/app.1257
    [Google Scholar]
  63. Li W.I. Anderson K.W. Deluca P.P. Kinetic and thermodynamic modeling of the formation of polymeric microspheres using solvent extraction/evaporation method. J. Control. Release 1995 37 3 187 198 10.1016/0168‑3659(95)00077‑1
    [Google Scholar]
  64. Ghaderi R. Sturesson C. Carlfors J. Effect of preparative parameters on the characteristics of poly d,l-lactide-co-glycolide)microspheres made by the double emulsion method. Int. J. Pharm. 1996 141 1-2 205 216 10.1016/0378‑5173(96)04639‑X
    [Google Scholar]
  65. Billon A. Bataille B. Cassanas G. Jacob M. Development of spray-dried acetaminophen microparticles using experimental designs. Int. J. Pharm. 2000 203 1-2 159 168 10.1016/S0378‑5173(00)00448‑8 10967438
    [Google Scholar]
  66. Esposito E. Roncarati R. Cortesi R. Cervellati F. Nastruzzi C. Production of Eudragit microparticles by spray-drying technique: Influence of experimental parameters on morphological and dimensional characteristics. Pharm. Dev. Technol. 2000 5 2 267 278 10.1081/PDT‑100100541 10810756
    [Google Scholar]
  67. Burke P.A. Klumb L.A. Herberger J.D. Nguyen X.C. Harrell R.A. Zordich M. Poly(lactide-co-glycolide) microsphere formulations of darbepoetin alfa: Spray drying is an alternative to encapsulation by spray-freeze drying. Pharm. Res. 2004 21 3 500 506 10.1023/B:PHAM.0000019305.79599.a5 15070102
    [Google Scholar]
  68. Bodmeier R. Chen H. Preparation of biodegradable poly(+/-)lactide microparticles using a spray-drying technique. J. Pharm. Pharmacol. 1988 40 11 754 757 10.1111/j.2042‑7158.1988.tb05166.x 2907552
    [Google Scholar]
  69. Carino P.G. Jacob J.S. Chen C.J. Santos C.A. Hertzog B.A. Mathiowitz E. Bioadhesive Drug Delivery Systems - Fundamentals, Novel Approaches and Development. Mathiowitz E. Chickering D.E. Lehr C.M. New York Marcel Dekker 1999 98 459 476 10.1201/b14099‑18
    [Google Scholar]
  70. Viswanathan N.B. Thomas P.A. Pandit J.K. Kulkarni M.G. Mashelkar R.A. Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique. J. Control. Release 1999 58 1 9 20 10.1016/S0168‑3659(98)00140‑0 10021485
    [Google Scholar]
  71. Mathiowitz E. Langer R. Polyanhydride microspheres as drug carriers I. Hot-melt microencapsulation. J. Control. Release 1987 5 1 13 22 10.1016/0168‑3659(87)90033‑2
    [Google Scholar]
  72. Chickering D. Jacob J. Mathiowitz E. Poly(fumaric-co-sebacic) microspheres as oral drug delivery systems. Biotechnol. Bioeng. 1996 52 1 96 101 10.1002/(SICI)1097‑0290(19961005)52:1<96::AID‑BIT9>3.0.CO;2‑U 18629855
    [Google Scholar]
  73. Kawashima Y. Niwa T. Takeuchi H. Hino T. Ito Y. Preparation of multiple unit hollow microspheres (microballoons) with acrylic resin containing tranilast and their drug release characteristics (in vitro) and floating behavior (in vivo). J. Control. Release 1991 16 3 279 289 10.1016/0168‑3659(91)90004‑W
    [Google Scholar]
  74. Yadav R. Bhowmick M. Rathi V. Rathi J. Design and characterization of floating microspheres for rheumatoid arthritis. J. Drug Deliv. Ther. 2019 9 2-s 76 81 10.22270/jddt.v9i2‑s.2463
    [Google Scholar]
  75. Bodmeier R. Chen H. Preparation and characterization of microspheres containing the anti-inflammatory agents, indomethacin, ibuprofen, and ketoprofen. J. Control. Release 1989 10 2 167 175 10.1016/0168‑3659(89)90059‑X
    [Google Scholar]
  76. Mahale M.M. Saudagar R.B. Microsphere: A review. J. Drug Deliv. Ther. 2019 9 3-s 854 856 10.22270/jddt.v9i3‑s.2826
    [Google Scholar]
  77. More S. Gavali K. Doke O. Kasgawade P. Gastroretentive drug delivery system. J. Drug Deliv. Ther. 2018 8 4 24 35 10.22270/jddt.v8i4.1788
    [Google Scholar]
  78. Sinha V.R. Agrawal M.K. Kumria R. Influence of formulation and excipient variables on the pellet properties prepared by extrusion spheronization. Curr. Drug Deliv. 2005 2 1 1 8
    [Google Scholar]
  79. Meena K.P. Dangi J.S. Samal P.K. Namedo K.P. Recent advances in microsphere manufacturing technology. Int. J. Pharm. Technol. 2011 3 1 854 855
    [Google Scholar]
  80. Moy A.C. Mathew S.T. Mathapan R. Prasanth V.V. Microsphere-an overview. Int. J. Pharma Bio Sci. 2011 2 2 332 338
    [Google Scholar]
  81. Kushwaha N. Jain A. Jain P.K. Khare B. Jat Y.S. An overview on formulation and evaluation aspects of tablets. Asian J. Dent. Health Sci. 2022 2 4 35 39 10.22270/ajdhs.v2i4.23
    [Google Scholar]
  82. Vidgren P. Vidgren M. Vainio P. Nuutinen J. Paronen P. Double-labelling technique in the evaluation of nasal mucoadhesion of disodium cromoglycate microspheres. Int. J. Pharm. 1991 73 2 131 136 10.1016/0378‑5173(91)90036‑N
    [Google Scholar]
  83. Mathiowtz E. Chickering D. Jacob J.S. Bioadhesive microspheres and their use as drug delivery and imaging systems. Patent U.S. 6197346B1, 2001
  84. McDonough J.A. Persyn J.T. Nino J.A. Dixon H. Boland E.J. Wang Z. Putcha L. Microcapsule-gel formulation of promethazine HCl for controlled nasal delivery: A motion sickness medication. J. Microencapsul. 2007 24 2 109 116 10.1080/09687860600945628 17454422
    [Google Scholar]
  85. Akiyama Y. Nagahara N. Nara E. Kitano M. Iwasa S.U.S.U.M.U. Yamamoto I. Azuma J. Ogawa Y. Evaluation of oral mucoadhesive microspheres in man on the basis of the pharmacokinetics of furosemide and riboflavin, compounds with limited gastrointestinal absorption sites. J. Pharm. Pharmacol. 1998 50 2 159 166 10.1111/j.2042‑7158.1998.tb06171.x 9530983
    [Google Scholar]
  86. Fernández-Urrusuno R. Calvo P. Remuñán-López C. Vila-Jato J.L. José Alonso M. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm. Res. 1999 16 10 1576 1581 10.1023/A:1018908705446 10554100
    [Google Scholar]
  87. Farraj N.F. Johansen B.R. Davis S.S. Illum L. Nasal administration of insulin using bioadhesive microspheres as a delivery system. J. Control. Release 1990 13 2-3 253 261 10.1016/0168‑3659(90)90016‑M
    [Google Scholar]
  88. Woodley J. Bioadhesion. Clin. Pharmacokinet. 2001 40 2 77 84 10.2165/00003088‑200140020‑00001 11286325
    [Google Scholar]
  89. Genta I. Conti B. Perugini P. Pavanetto F. Spadaro A. Puglisi G. Bioadhesive microspheres for ophthalmic administration of acyclovir. J. Pharm. Pharmacol. 1997 49 8 737 742 10.1111/j.2042‑7158.1997.tb06103.x 9379347
    [Google Scholar]
  90. Kyyrönen K. Hume L. Benedetti L. Urtti A. Topp E. Stella V. Methylprednisolone esters of hyaluronic acid in ophthalmic drug delivery: In vitro and in vivo release studies. Int. J. Pharm. 1992 80 1-3 161 169 10.1016/0378‑5173(92)90274‑6
    [Google Scholar]
  91. Ghezzo E. Benedetti L. Rochira M. Biviano F. Callegaro L. Hyaluronane derivative microspheres as NGF delivery devices: Preparation methods and in vitro release characterization. Int. J. Pharm. 1992 87 1-3 21 29 10.1016/0378‑5173(92)90223‑O
    [Google Scholar]
  92. Ofokansi K.C. Adikwu M.U. Okore V.C. Preparation and evaluation of mucin-gelatin mucoadhesive microspheres for rectal delivery of ceftriaxone sodium. Drug Dev. Ind. Pharm. 2007 33 6 691 700 10.1080/03639040701360876 17613033
    [Google Scholar]
  93. Asacol. Available from: https://www.rxlist.com/asacol-drug.htm#description
  94. Available from: https://www.1mg.com/drugs/sazo-500-tablet-681957
  95. Available from: https://www.1mg.com/drugs/intazide-750mg-capsule-48271
  96. Available from: https://www.1mg.com/drugs/colospa-tablet-428337
  97. Available from: https://www.1mg.com/drugs/cyclominol-20mg-tablet-292290
  98. Available from: https://www.1mg.com/drugs/decapeptyl-0.1mg-injection-37857
  99. ARESTIN minocycline HCI 1mg microspheres. Available from: https://www.arestin.com
  100. Risperdal - Uses, side effects, and more. Available from: https://www.webmd.com/drugs/2/drug-9846/risperdal-oral/details
  101. Available from: https://www.1mg.com/drugs/mesacol-tablet-dr-505968
/content/journals/caps/10.2174/0124522716338115241226033817
Loading
/content/journals/caps/10.2174/0124522716338115241226033817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test