Recent Patents on Anti-Cancer Drug Discovery - Current Issue
Volume 19, Issue 5, 2024
-
-
Advanced Strategies of CAR-T Cell Therapy in Solid Tumors and Hematological Malignancies
Authors: Yangjie Liu, Cao Peng, Faiza Ahad, Syed A. Ali Zaidi, Tobias Achu Muluh and Qiuxia FuChimeric antigen receptor T-cells, known as CAR-T cells, represent a promising breakthrough in the realm of adoptive cell therapy. These T-cells are genetically engineered to carry chimeric antigen receptors that specifically target tumors. They have achieved notable success in the treatment of blood-related cancers, breathing new life into this field of medical research. However, numerous obstacles limit chimeric antigen receptors T-cell therapy's efficacy, such as it cannot survive in the body long. It is prone to fatigue and exhaustion, leading to difficult tumor elimination and repeated recurrence, affecting solid tumors and hematological malignancies. The challenges posed by solid tumors, especially in the context of the complex solid-tumor microenvironment, require specific strategies. This review outlines recent advancements in improving chimeric antigen receptors T-cell therapy by focusing on the chimeric antigen receptors protein, modifying T-cells, and optimizing the interaction between T-cells and other components within the tumor microenvironment. This article aims to provide an extensive summary of the latest discoveries regarding CAR-T cell therapy, encompassing its application across various types of human cancers. Moreover, it will delve into the obstacles that have emerged in recent times, offering insights into the challenges faced by this innovative approach. Finally, it highlights novel therapeutic options in treating hematological and solid malignancies with chimeric antigen receptors T-cell therapies.
-
-
-
Research Progress on the Anticancer Activity of Plant Polysaccharides
Authors: Qiaoyan Liu, Bo Song, Sen Tong, Qiuqiong Yang, Huanhuan Zhao, Jia Guo, Xuexia Tian, Renjie Chang and Junzi WuTumor is a serious threat to human health, with extremely high morbidity and mortality rates. However, tumor treatment is challenging, and the development of antitumor drugs has always been a significant research focus. Plant polysaccharides are known to possess various biological activities. They have many pharmacological properties such as immunomodulation, antitumor, antiviral, antioxidative, antithrombotic, and antiradiation effects, reduction of blood pressure and blood sugar levels, and protection from liver injury. Among these effects, the antitumor effect of plant polysaccharides has been widely studied. Plant polysaccharides can inhibit tumor proliferation and growth by inhibiting tumor cell invasion and metastasis, inducing cell apoptosis, affecting the cell cycle, and regulating the tumor microenvironment. They also have the characteristics of safety, high efficiency, and low toxicity, which can alleviate, to a certain extent, the adverse reactions caused by traditional tumor treatment methods such as surgery, radiotherapy, and chemotherapy. Therefore, this paper systematically summarizes the direct antitumor effects of plant polysaccharides, their regulatory effects on the tumor microenvironment, and intervening many common high-incidence tumors in other ways. It also provides data support for the administration of plant polysaccharides in modern tumor drug therapy, enabling the identification of new targets and development of new drugs for tumor therapy.
-
-
-
The Clinical Significance and Prognostic Value of ALDH1 Expression in Non-small Cell Lung Cancer: A Systematic Review and Meta-analysis
Authors: Dong Li, Yu Cao, Cheng-Wen Luo, Li-ping Zhang and Ying-Bo ZouBackground: The results of the association between aldehyde dehydrogenase 1 (ALDH1) expression and prognosis of non-small cell lung cancer (NSCLC) are contradictory. We conducted this meta-analysis to investigate the clinical significance and prognostic value of ALDH1 in NSCLC. Methods: The databases PubMed, Web of Science, EMBASE, the Cochrane Library, Wanfang, and CNKI were systematically queried to identify eligible studies. The retrieval time was from database establishment to August 2023. We evaluated the correlation between ALDH1 expression and clinical features of NSCLC by employing odds ratios (ORs) and 95% confidence intervals (95% CIs). In addition, we used hazard ratios (HRs) and 95% CIs to evaluate the role of ALDH1 expression in the prognosis of NSCLC. Results: Our study included 21 literatures involving 2721 patients. The expression of ALDH1 in NSCLC was higher than that in normal tissues (OR = 6.04, 95% CI: 1.25-29.27, P = 0.026). The expression of ALDH1 was related to TNM stage (OR = 1.81, 95% CI: 1.06-3.09, P = 0.029), tumor grade (OR = 0.29, 95% CI: 0.17-0.48, P < 0.0001), lymph node metastasis (OR = 2.60, 95% CI: 1.52-4.45, P = 0001) and histological subtype (OR = 0.67, 95% CI: 0.52-0.86, P = 0.002). In patients with NSCLC, we found that the over-expression of ALDH1 was significantly associated with poor overall survival (OS) (HR = 1.44, 95% CI: 1.15-1.81, P = 0.002) and disease-free survival (DFS) (HR = 1.74, 95% CI: 1.45-2.10, P < 0.0001). Conclusion: The expression of ALDH1 is closely associated with the clinicopathologic characteristics and prognosis of NSCLC. ALDH1 may serve as a valuable clinical assessment tool and prognostic predictor in NSCLC.
-
-
-
TGF-β Score based on Silico Analysis can Robustly Predict Prognosis and Immunological Characteristics in Lower-grade Glioma: The Evidence from Multicenter Studies
Authors: Weizhong Zhang, Zhiyuan Yan, Feng Zhao, Qinggui He and Hongbo XuIntroduction: Nowadays, mounting evidence shows that variations in TGF-β signaling pathway-related components influence tumor development. Current research has patents describing the use of anti-TGF-β antibodies and checkpoint inhibitors for the treatment of proliferative diseases. Importantly, TGF-β signaling pathway is significant for lower-grade glioma (LGG) to evade host immunity. Loss of particular tumor antigens and shutdown of professional antigenpresenting cell activity may render the anti-tumor response ineffective in LGG patients. However, the prognostic significance of TGF-β related genes in LGG is still unknown. Methods: We collected RNA-seq data from the GTEx database (normal cortical tissues), the Cancer Genome Atlas database (TCGA-LGG), and the Chinese Glioma Genome Atlas database (CGGA-693 and CGGA-325) for conducting our investigation. Results: In addition, previous publications were explored for the 223 regulators of the TGF-β signaling pathway, and 30 regulators with abnormal expression in TCGA and GTEx database were identified. In order to identify hub prognostic regulators, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis were used to screen from differentially expressed genes (DEGs). On the basis of 11 genes from LASSO-Cox regression analysis (NEDD8, CHRD, TGFBR1, TP53, BMP2, LRRC32, THBS2, ID1, NOG, TNF, and SERPINE1), TGF-β score was calculated. Multiple statistical approaches verified the predictive value of the TGF-β score for the training cohort and two external validation cohorts. Considering the importance of the TGF-β signaling pathway in immune regulation, we evaluated the prediction of the TGF-β score for immunological characteristics and the possible application of the immunotherapeutic response using six algorithms (TIMER, CIBERSORT, QUANTISEQ, MCP-counter, XCELL and EPIC) and three immunotherapy cohorts (GSE78820, Imvigor-210 and PRJEB23709). Notably, we compared our risk signature with the signature in ten publications in the meta-cohort (TCGA-LGG, CGGA-693 and CGGA-325), and the TGF-β score had the best predictive efficiency (C-index =0.812). Conclusion: In conclusion, our findings suggest that TGF-β signaling pathway-related signatures are prognostic biomarkers in LGG and provide a novel tool for tumor microenvironment (TME) assessment.
-
-
-
CK2B is a Prognostic Biomarker and a Potential Drug Target for Hepatocellular Carcinoma
Authors: Huiru Dai, Minling Liu, Yuxi Pan, Tingwei Li, Yihang Pan, Zhe-Sheng Chen, Jing Li, Yuchen Liu and Shuo FangBackground: Although casein kinase II subunit beta (CK2B) was previously reported to be involved in human cancers, such as hepatocellular carcinoma (HCC), there has been no systematic assessment of CK2B in HCC. Objective: To assess the potential function of CK2B as a prognostic biomarker and possible druggable target in HCC. Methods: The Cancer Genome Atlas database was accessed to investigate the potential oncogenic and prognostic roles of CK2B in HCC. Diverse analytical methods were used to obtain a fuller understanding of CK2B, including CIBERSORT, The Tumor Immune Estimation Resource (TIMER), gene set enrichment analyses (GSEA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene ontology (GO). Furthermore, the Comparative Toxicogenomic Database (CTD) was used to identify potential drugs to treat CK2B-overexpressing HCC. Patents for these drugs were reviewed using Patentscope® and Worldwide Espacenet®. Results: Upregulated CK2B expression was markedly associated with more aggressive pathological features, including G3, G4 (vs. G1, G2), and T2, T3 (vs. T1). Kaplan-Meier survival curves indicated that patients with HCC with higher expression of CK2B had worse overall survival (P = 0.005), progression-free interval (P = 0.001), and disease-specific survival (P = 0.011). GO and KEGG analysis revealed that CK2B dysregulation affects mitotic chromosome condensation, protein stabilization and binding, regulation of signal transduction of p53 class mediator, and cancer-related pathways. GSEA identified six well-known pathways, including MAPK, WNT, Hedgehog, and TGFβ signaling pathways. Finally, CTD identified six compounds that might represent targeted drugs to treat HCC with CK2B overexpression. A review of patents indicated these compounds showed promising anticancer results; however, whether CK2B interacts with these drugs and improves drug outcomes for patients with HCC was not confirmed. Conclusion: CK2B is a biomarker for HCC prognosis and could be a potential new drug target. Moreover, the association between infiltrating immune cells and CK2B in the HCC tumor microenvironment might provide a solid basis for further investigation and a potent strategy for immunotherapy of HCC.
-
-
-
Targeted Regulation of Osteoblasts and Osteoclasts in Osteosarcoma Patients by CSF3R Receptor Inhibition of Osteolysis Caused by Tumor Inflammation Based on Transcriptional Spectrum Analysis and Drug Library Screening
Authors: Wei Duan, Yu Chen, Jinlu Shan and Qian LiBackground: Osteosarcoma (OS) is a common primary malignant bone tumor that mainly occurs in children and adolescents. The use of IL-8 inhibitor compounds has been reported in patents, which can be used to treat and/or prevent osteosarcoma, but the pathogenesis of osteosarcoma remains to be investigated. At present, osteoblasts and osteoclasts play an important role in the occurrence and development of OS. However, the relationship between osteoblasts and osteoclasts in the specific participation mechanism and inflammatory response of OS patients has not been further studied. Methods: The transcriptome, clinical data, and other data related to OS were downloaded from the GEO database to analyze them with 200 known inflammatory response genes. We set the screening conditions as p < 0.05 and | log2FC| > 0.50, screened the differentially expressed genes (DEGs) related to OS, tested the correlation coefficient between the OS INF gene and clinical risk, and analyzed the survival prognosis. We further enriched and analyzed the DEGs and inflammatory response genes of OS with GO/KEGG to explore the potential biological function and signal pathway mechanism of OS inflammatory response genes. Moreover, the virtual screening of drug sensitivity of OS based on the FDA drug library was also carried out to explore potential therapeutic drugs targeted to regulate OS osteogenesis and osteoclast inflammation, and finally, the molecular dynamics simulation verification of OS core protein and potential drugs was carried out to explore the binding stability and mechanism between potential drugs and core protein. Results: Through differential analysis of GSE39058, GSE36001, GSE87624, and three other data sets closely related to OS osteoblasts and osteoclasts, we found that there was one upregulated gene (CADM1) and one down-regulated gene (PHF15) related to OS. In addition, GSEA enrichment analysis of the DEGs of OS showed that it was mainly involved in the progress of OS through biological functions, such as oxidative photosynthesis, acute junction, and epithelial-mesenchymal transition. The enrichment analysis of OS DEGs revealed that they mainly affect the occurrence and progress of OS by participating in the regulation of the actin skeleton, PI3K Akt signal pathway, complement and coagulation cascade. According to the expression of CSF3R in OS patients, a risk coefficient model and a diagnostic model were established. It was found that the more significant the difference in the CSF3R gene in OS patients, the greater the risk coefficient of disease (p < 0.05). The AUC under the curve of the CSF3R gene was greater than 0.65, which had a good diagnostic significance for OS. The above results showed that the prognosis risk gene CSF3R related to OS inflammation was closely related to the survival status of OS patients. Finally, through the virtual screening of the ZINC drug library and molecular dynamics simulation, it was found that the docking model formed by the core protein CSF3R and the compounds, Leucovorin and Methotrexate, were the most stable, which revealed that the compounds Leucovorin and Methotrexate might play a role in the treatment of OS by combining with the inflammatory response related factor CSF3R of OS. Conclusion: CSF3R participates in the occurrence and development of OS bone destruction by regulating the inflammatory response of osteoblasts and osteoclasts and can affect the survival prognosis of OS patients.
-
-
-
Upregulation of M6A Reader HNRNPA2B1 Associated with Poor Prognosis and Tumor Progression in Lung Adenocarcinoma
Authors: Wei Wang and Shengwei LiBackground: Lung cancer is the most prevalent malignancy worldwide, and lung adenocarcinoma (LUAD) accounts for a substantial proportion of all cases. N6-methyladenosine (m6A) is the most frequent post-transcriptional modification in mRNAs that also plays a role in cancer development. Heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) is a reader of m6A modification, which can affect tumor invasion, migration, and proliferation. Objectives: The purpose of this study was to explore the prognostic factors of LUAD based on m6A through bioinformatics analysis. Materials and Methods: The expression levels and prognostic significance of HNRNPA2B1 in LUAD were analyzed on the basis of data extracted from the UALCAN, GEPIA, NCBI-GEO, Human Protein Atlas, STRING, miRDB, TargetScan, PROMO, Starbase, UCSC Xena browser, TIMER, and TISIDB databases. HNRNPA2B1 protein and mRNA levels in several LUAD cell lines were detected by western blotting and qRT-PCR. CCK8, wound-healing and transwell assays were performed to evaluate the proliferation, invasion, and migration abilities of LUAD cells. Results: HNRNPA2B1 mRNA was found to be significantly overexpressed in LUAD tissues, and its high levels correlated with poor OS and DFS. The genes co-expressed with HNRNPA2B1 were related to mRNA production, cell cycle, and histone binding. To determine the mechanistic basis of HNRNPA2B1 in LUAD, we next predicted the microRNAs and transcription factors that were directly associated with HNRNPA2B1, as well as copy number changes. In addition, it was found that HNRNPA2B1 expression was significantly related to CD4+ T cells, neutrophils, lymphocytes, immunomodulators, and chemokines. Besides, knocking down HNRNPA2B1 in the LUAD cells led to a significant reduction in their proliferation, invasion, and migration rates in vitro. Conclusion: Elevated HNRNPA2B1 is a risk factor in LUAD and portends a poor prognosis.
-
-
-
Fatty Acid Metabolism Signature Contributes to the Molecular Diagnosis of a Malignant Gastric Cancer Subtype with Poor Prognosis and Lower Mutation Burden
Authors: Zhengwei Chen and Guoxiong ChengBackground: Gastric cancer (GC) is a common gastrointestinal tumor with high morbidity and mortality. Fatty acid metabolism (FAM) contributes to GC development. Patents have been issued for the use of compositions comprising fatty acid analogues for the treatment of many clinical conditions. However, its clinical significance and its relationship with tumor-related mutations have not been thoroughly discovered. This study was conducted to analyze and explore FAM-related genes' molecular characteristics, prognostic significance, and association with tumor- related mutations. Methods: The gastric adenocarcinoma's transcriptome, clinical data, and tumor mutation load (TMB) data were downloaded from TCGA and GEO databases. The differentially expressed FAM genes (FAM DEGs) between cancer and control samples were screened, and their correlation with TMB and survival was analyzed. A PPI network of FAM DEGs was constructed, and a downscaling clustering analysis was performed based on the expression of the FAM DEGs. Further immuno- infiltration and GO/KEGG enrichment analyses of the identified FAM clusters were performed to explore their heterogeneity in biological functions. The effects of FAM score and gastric cancer (STAD) on TMB, MSI, survival prognosis, and drug sensitivity were jointly analyzed, and finally, a single-gene analysis of the obtained core targets was performed. Results: Through differential analysis, 68 FAM DEGs were obtained, and they were highly associated with STAD tumor mutation load. In addition, a high FAM DEGs CNV rate was observed. The PPI network showed a complex mutual correlation between the FAM DEGs. Consensus clustering classified the patients into three clusters based on the FAM DEGs, and the clusters presented different survival rates. The GSVA and immune infiltration analysis revealed that metabolism, apoptosis, and immune infiltration-related pathways were variated. In addition, FAM genes, STAD prognostic risk genes, and PCA scores were closely associated with the survival status of STAD patients. FAM score was closely correlated with STAD TMB, MSI, and immunotherapy, and the TMB values in the low FAM score group were significantly higher than those in the high FAM score group. Finally, combining the above results, it was found that the core gene PTGS1 performed best in predicting STAD survival prognosis and TMB/MSI/immunotherapy. Conclusion: Fatty acid metabolism genes affect the development of gastric adenocarcinoma and can predict the survival prognosis, tumor mutational load characteristics, and drug therapy sensitivity of STAD patients, which can help explore more effective immunotherapy targets for GC.
-
-
-
Integrating Bioinformatics and Drug Sensitivity Analyses to Identify Molecular Characteristics Associated with Targeting Necroptosis in Breast Cancer and their Clinical Prognostic Significance
Authors: Chang Zheng, Hanbin Guo, Yongpan Mo and Guowen LiuBackground: Breast cancer accounts for over 1.8 million new cases worldwide annually, and prompt diagnosis and treatment are imperative to prevent mortality. Necroptosis, a form of programmed cell death, is thought to be a critical pathway for cancer cell apoptosis, yet, its relationship with breast cancer progression and molecular mechanisms remains largely unexplored. Objectives: Our study aims to investigate the molecular characteristics and clinical prognostic value of necroptosis-related genes in breast cancer using a comprehensive approach that involves integrated bioinformatics analysis along with drug sensitivity assessment. Methods: Transcriptional, clinical, and tumor mutation burden (TMB) data related to breast cancer from the TCGA and GEO databases were integrated, and the necroptosis gene set was downloaded from the GSEA website for analysis. The screening conditions were set as adjusted p < 0.05 and |log2FC(fold change)| > 0.585 to screen for differential expression genes related to breast cancer necroptosis. Survival prognosis analysis was conducted on breast cancer necroptosis genes. Further analysis was conducted on prognosis-related necroptosis genes, including immune infiltration analysis and GO/KEGG enrichment analysis, to explore the potential biological functions and signaling pathway mechanisms of breast cancer necroptosis genes. Drug sensitivity screening was conducted on the prognosis-related necroptosis to identify potential drugs that target the promotion of necroptosis gene expression, and ultimately, single-gene analysis was performed on the core target genes obtained. Results: Through integrated bioinformatics analysis, 29 differentially expressed mRNAs related to BRCA-Necroptosis were identified, including 18 upregulated mRNAs and 11 downregulated mRNAs. In addition, single-factor analysis of differential genes showed that the expression of HSPA4, PLK1, TNFRSF1B, FLT3, and LEF1 was closely related to BRCA survival prognosis. Based on the expression of these genes, a breast cancer prognosis model was constructed, and it was found that the area under the curve (AUC) of the curve of the risk genes for necroptosis was the largest, indicating that these genes have a certain clinical predictive significance for the occurrence and prognosis of BRCA. Additionally, there were significant differences in clinical characteristics of BRCA patients with different necroptosis gene expressions. Furthermore, GSVA and immune infiltration analysis revealed that Necroptosis-DEGs mainly affect the occurrence and progression of BRCA by participating in immune functions such as APC co-inhibition, APC costimulation, CCR, checkpoint, as well as infiltrating immune cells such as B cells naive, plasma cells, and T cells CD8. Moreover, the necroptosis gene group column chart indicated a 1-year survival rate of 0.979, a 3-year survival rate of 0.883, and a 5-year survival rate of 0.774. The necroptosis gene group and column chart are important indicators for evaluating BRCA prognosis. Finally, drug sensitivity screening of BRCA-Necroptosis genes showed that compounds such as A- 770041, AC220, AP-24534, Bexarotene, and BMS-509744 have certain effects as potential targeted drugs for the treatment of BRCA necroptosis genes. Conclusion: Necroptosis genes are implicated in the pathogenesis and progression of breast cancer and are thought to impact the prognosis and response to drug treatments in individuals with BRCA. Consequently, understanding the role of these genes in breast cancer may aid in identifying more precise and efficacious therapeutic targets.
-
-
-
Identification of the Roles of Coagulation-related Signature and its Key Factor RABIF in Hepatoma Cell Malignancy
Authors: Yanying Chen, Yin Li and Bingyi ZhouBackground: Hepatoma is a high morbidity and mortality cancer, and coagulation is a potential oncogenic mechanism for hepatoma development. Objective: In this study, we aimed to reveal the role of coagulation in hepatoma. Methods: We applied the LASSO to construct a coagulation-related risk score (CRS) and a clinical nomogram with independent validation. The heterogeneity of various aspects, including functional enrichment, SNV, CN, immunocyte infiltration, immune pathways, immune checkpoint, and genomic instability indexes, was evaluated. Besides, the prognostic value of the CRS genes was tested. We selected the critical risky gene related to coagulation from the LASSO coefficients, for which we applied transwell and clone formation assays to confirm its roles in hepatoma cell migration and clone formation ability, respectively. Results: The CRS and the nomogram predicted patients' survival with good accuracy in both two datasets. The high-CRS group was associated with higher cell cycle, DNA repair, TP53 mutation rates, amplification, and lower deletion rates at chromosome 1. For immunocyte infiltration, we noticed increased Treg infiltration and globally upregulated immune checkpoints and genomic instability indexes. Additionally, every single CRS gene affected the patient's survival. Finally, we observed that RABIF was the riskiest gene in the CRS. Its knockdown suppressed hepatoma cell migration and clone formation capability, which could be rescued by RABIF overexpression. Conclusion: We built a robust CRS with great potential as a prognosis and immunotherapeutic indicator. Importantly, we identified RABIF as an oncogene, promoting hepatoma cell migration and clone formation, revealing underlying pathological mechanisms, and providing novel therapeutic targets for hepatoma treatment.
-
Volumes & issues
-
Volume 19 (2024)
-
Volume 18 (2023)
-
Volume 17 (2022)
-
Volume 16 (2021)
-
Volume 15 (2020)
-
Volume 14 (2019)
-
Volume 13 (2018)
-
Volume 12 (2017)
-
Volume 11 (2016)
-
Volume 10 (2015)
-
Volume 9 (2014)
-
Volume 8 (2013)
-
Volume 7 (2012)
-
Volume 6 (2011)
-
Volume 5 (2010)
-
Volume 4 (2009)
-
Volume 3 (2008)
-
Volume 2 (2007)
-
Volume 1 (2006)