Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Cutaneous T-cell Lymphoma (CTCL) is a rare group of non-Hodgkin lymphoma originating from the skin, which is characterized by T-cell lymphoproliferative disorders. Chidamide, a Chinese original antineoplastic agent with independent intellectual property rights, and matrine, an extract of Chinese herbal medicine, both have been reported to exert effects on the treatment of tumors individually. However, chidamide combined with matrine has not been tested for the treatment of CTCL.

Methods

Both HH and Hut78 CTCL cell lines were treated with chidamide (0.4 μmol/L), matrine (0.6 g/L), or chidamide combined with matrine for 24, 48, and 72 h. Cell viability was estimated by MTS assay at each time point. Flow cytometry was then conducted to detect cell apoptosis. The exact mechanism of chidamide combined with matrine on CTCL cells was detected by Western blotting and further validated in xenograft models of NOD/SCID mice.

Results and Discussion

Compared to the single drug, chidamide combined with matrine showed a more significant effect on proliferation inhibition and apoptosis induction on CTCL cells both and . The results from the and studies suggested that matrine could enhance the anti-tumor effect of chidamide by increasing the protein expression of cleaved caspase-3 and decreasing the expression of E-cadherin, NF-κB, p-Bad, and Bcl-2 to activate apoptosis.

Conclusion

Our data have demonstrated chidamide combined with matrine to exhibit elevated antitumor activity in both CTCL cells and xenograft models of NOD/SCID mice, which may be a potential treatment option for CTCL.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928289036240318040756
2024-04-02
2025-07-15
Loading full text...

Full text loading...

References

  1. StuverR. GellerS. Advances in the treatment of mycoses fungoides and Sézary syndrome: A narrative update in skin-directed therapies and immune-based treatments.Front. Immunol.202314128404510.3389/fimmu.2023.128404537868986
    [Google Scholar]
  2. AssafC. IllidgeT.M. WaserN. HeM. LiT. ZomasA. EnnakhilB.N. LittleM. RomeroO.P.L. PimpinelliN. DalalM. BagotM. A retrospective chart review of treatment patterns and overall survival among a cohort of patients with relapsed/refractory mycosis fungoides in France, Germany, Italy, Spain and the United Kingdom.Cancers20231523566910.3390/cancers1523566938067371
    [Google Scholar]
  3. RamelyteE. DummerR. GuenovaE. Investigative drugs for the treatment of cutaneous T-cell lymphomas (CTCL): An update.Expert Opin. Investig. Drugs201928979980910.1080/13543784.2019.165499531398295
    [Google Scholar]
  4. ChenZ. LinY. QinY. QuH. ZhangQ. LiY. WenY. SunJ. TuP. GaoP. WangY. Prognostic factors and survival outcomes among patients with mycosis fungoides in China.JAMA Dermatol.2023159101059106710.1001/jamadermatol.2023.263437585188
    [Google Scholar]
  5. DehnerC.A. RuffW.E. GreilingT. PereiraM.S. RedanzS. McNiffJ. GirardiM. KriegelM.A. Malignant T cell activation by a Bacillus species isolated from cutaneous T-cell lymphoma lesions.JID Innovations20222210008410.1016/j.xjidi.2021.10008435199089
    [Google Scholar]
  6. MorgenrothS. RoggoA. PawlikL. DummerR. RamelyteE. What is new in cutaneous T cell lymphoma?Curr. Oncol. Rep.202325111397140810.1007/s11912‑023‑01464‑837874473
    [Google Scholar]
  7. MangoldA.R. ThompsonA.K. DavisM.D. SauliteI. CozzioA. GuenovaE. HodakE. LaishA.I. PujolR.M. PittelkowM.R. GniadeckiR. Early clinical manifestations of Sézary syndrome: A multicenter retrospective cohort study.J. Am. Acad. Dermatol.201777471972710.1016/j.jaad.2017.05.03628709694
    [Google Scholar]
  8. BenoitB.M. JariwalaN. O’ConnorG. OetjenL.K. WhelanT.M. WerthA. TroxelA.B. SicardH. ZhuL. MillerC. TakeshitaJ. McVicarD.W. KimB.S. RookA.H. WysockaM. CD164 identifies CD4+ T cells highly expressing genes associated with malignancy in Sézary syndrome: The Sézary signature genes, FCRL3, Tox, and miR-214.Arch. Dermatol. Res.20173091111910.1007/s00403‑016‑1698‑827766406
    [Google Scholar]
  9. PavlidisA. PiperiC. PapadavidE. Novel therapeutic approaches for cutaneous T cell lymphomas.Expert Rev. Clin. Immunol.202117662964110.1080/1744666X.2021.191908533890833
    [Google Scholar]
  10. HristovA.C. TejasviT. WilcoxR.A. Cutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management.Am. J. Hematol.202398119320910.1002/ajh.2676036226409
    [Google Scholar]
  11. LatzkaJ. AssafC. BagotM. CozzioA. EORTC consensus recommendations for the treatment of mycosis fungoides/Sézary syndrome - Update 2023.Eur J Cancer202319511334310.1016/j.ejca.2023.113343
    [Google Scholar]
  12. XuS. FossF. New nonchemotherapy treatment options for cutaneous T-cell lymphomas.Expert Rev. Anticancer Ther.20212191017102810.1080/14737140.2021.188285933554707
    [Google Scholar]
  13. QuadriI. ReneauJ.C. HanelW. ChungC.G. Advancements in the treatment of mycosis fungoides and Sézary syndrome: monoclonal antibodies, immunotherapies, and Janus kinase inhibitors.Front. Immunol.202314129125910.3389/fimmu.2023.129125938022633
    [Google Scholar]
  14. LopezA.T. BatesS. GeskinL. Current status of HDAC inhibitors in cutaneous T-cell lymphoma.Am. J. Clin. Dermatol.201819680581910.1007/s40257‑018‑0380‑730173294
    [Google Scholar]
  15. ShiY. DongM. ZhuJ. ZhouD. HuangH. TuP. ZhangW. HongX. ZhaoX. SunJ. LiuY. QiuL. ShenZ.X. FengJ. KeX. Phase II study of chidamide, a new subtype-selective oral histone deacetylase inhibitor, in patients with relapsed or refractory cutaneous T-cell lymphoma.Blood2015126231513151310.1182/blood.V126.23.1513.1513
    [Google Scholar]
  16. ZhangP. ZhangM. Epigenetics in the pathogenesis and treatment of cutaneous T-cell lymphoma.Front. Oncol.20211166396110.3389/fonc.2021.66396134249700
    [Google Scholar]
  17. LuG. JinS. LinS. GongY. ZhangL. YangJ. MouW. DuJ. Update on histone deacetylase inhibitors in peripheral T-cell lymphoma (PTCL).Clin. Epigenetics202315112410.1186/s13148‑023‑01531‑837533111
    [Google Scholar]
  18. ZhaoH. JiangY. LinF. ZhongM. TanJ. ZhouY. LiuL. LiG. DengM. XuB. Chidamide and apatinib are therapeutically synergistic in acute myeloid leukemia stem and progenitor cells.Exp. Hematol. Oncol.20221112910.1186/s40164‑022‑00282‑135581670
    [Google Scholar]
  19. LiuX. LiW. XuL. ChenX. ZhaoR. GuoY. GeJ. YangZ. LiL. ZhangJ. CaoJ. ShaoY. GuoX. TianL. LiuM. Chidamide, a novel histone deacetylase inhibitor, inhibits laryngeal cancer progression in vitro and in vivo. Int. J. Biochem. Cell Biol.202315810639810.1016/j.biocel.2023.10639836933859
    [Google Scholar]
  20. ShiY. DongM. HongX. ZhangW. FengJ. ZhuJ. YuL. KeX. HuangH. ShenZ. FanY. LiW. ZhaoX. QiJ. HuangH. ZhouD. NingZ. LuX. Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma.Ann. Oncol.20152681766177110.1093/annonc/mdv23726105599
    [Google Scholar]
  21. TonozukaY. TanakaH. NomuraK. SakaguchiK. The combination of brentuximab vedotin and chidamide synergistically suppresses the proliferation of T-cell lymphoma cells through the enhancement of apoptosis.Cancer Chemother. Pharmacol.202393213714910.1007/s00280‑023‑04609‑537921901
    [Google Scholar]
  22. ShenW. PeiP. ZhangC. LiJ. HanX. LiuT. ShiX. SuZ. HanG. HuL. YangK. A polymeric hydrogel to eliminate programmed death-ligand 1 for enhanced tumor radio-immunotherapy.ACS Nano20231723239982401110.1021/acsnano.3c0887537988029
    [Google Scholar]
  23. HuangB. GuiM. AnH. ShenJ. Babao Dan alleviates gut immune and microbiota disorders while impacting the TLR4/MyD88/NF-кB pathway to attenuate 5-Fluorouracil-induced intestinal injury.Biomed Pharmacother202316611538710.1016/j.biopha.2023.115387
    [Google Scholar]
  24. GanY. XuY. ZhangX. HuH. XiaoW. YuZ. SunT. ZhangJ. WenC. ZhengS. Revisiting supersaturation of a biopharmaceutical classification system IIB drug: Evaluation via a multi-cup dissolution approach and molecular dynamic simulation.Molecules20232819696210.3390/molecules2819696237836805
    [Google Scholar]
  25. YuY. WangL. NiS. LiD. LiuJ. ChuH.Y. ZhangN. SunM. LiN. RenQ. ZhuoZ. ZhongC. XieD. LiY. ZhangZ.K. ZhangH. LiM. ZhangZ. ChenL. PanX. XiaW. ZhangS. LuA. ZhangB.T. ZhangG. Targeting loop3 of sclerostin preserves its cardiovascular protective action and promotes bone formation.Nat. Commun.2022131424110.1038/s41467‑022‑31997‑835869074
    [Google Scholar]
  26. GuX. LiuY. XuY. Synergistic effect of chidamide and interferon alpha on mycosis fungoides and Sézary syndrome-related cell lines and its possible molecular mechanism.J.Pract. Dermatol.2021142656910.11786/sypfbxzz.1674‑1293.20210201
    [Google Scholar]
  27. BaiR. ZhuJ. BaiZ. MaoQ. ZhangY. HuiZ. LuoX. YeX.Y. XieT. Second generation β-elemene nitric oxide derivatives with reasonable linkers: Potential hybrids against malignant brain glioma.J. Enzyme Inhib. Med. Chem.202237137938510.1080/14756366.2021.201673435012394
    [Google Scholar]
  28. ZhaoJ. LiuY. ZhuL. LiJ. LiuY. LuoJ. XieT. ChenD. Tumor cell membrane-coated continuous electrochemical sensor for GLUT1 inhibitor screening.J. Pharm. Anal.202313667368210.1016/j.jpha.2023.04.01537440905
    [Google Scholar]
  29. NiuM.M. GuoH.X. ShangJ.C. MengX.C. Structural characterization and immunomodulatory activity of a mannose-rich polysaccharide isolated from Bifidobacterium breve H4–2.J. Agric. Food Chem.20237149197911980310.1021/acs.jafc.3c0491638031933
    [Google Scholar]
  30. RashidH. XuY. MuhammadY. WangL. JiangJ. Research advances on anticancer activities of matrine and its derivatives: An updated overview.Eur. J. Med. Chem.201916120523810.1016/j.ejmech.2018.10.03730359819
    [Google Scholar]
  31. WangX. WuF.P. HuangY.R. LiH.D. CaoX.Y. YouY. MengZ.F. SunK.Y. ShenX.Y. Matrine suppresses NLRP3 inflammasome activation via regulating PTPN2/JNK/SREBP2 pathway in sepsis.Phytomedicine202310915457410.1016/j.phymed.2022.15457436610161
    [Google Scholar]
  32. LinY. HeF. WuL. XuY. DuQ. Matrine exerts pharmacological effects through multiple signaling pathways: A comprehensive review.Drug Des. Devel. Ther.20221653356910.2147/DDDT.S34967835256842
    [Google Scholar]
  33. RobeyR.W. ChakrabortyA.R. BassevilleA. LuchenkoV. BahrJ. ZhanZ. BatesS.E. Histone deacetylase inhibitors: Emerging mechanisms of resistance.Mol. Pharm.2011862021203110.1021/mp200329f21899343
    [Google Scholar]
  34. WuF. GuX. ZhangQ. The effects of IFN-α combined with matrine on human cutaneous T-cell lymphoma cell line HH and its molecular mechanism.Int. J. Dermatol. Venereol.2016300211812210.13735/j.cjdv.1001‑7089.201505053
    [Google Scholar]
  35. CaoM. LaiP. LiuX. LiuF. QinY. TuP. WangY. ATF5 promotes malignant T cell survival through the PI3K/AKT/mTOR pathway in cutaneous T cell lymphoma.Front. Immunol.202314128299610.3389/fimmu.2023.128299638223508
    [Google Scholar]
  36. WilcoxR.A. Cutaneous T-cell lymphoma: 2017 update on diagnosis, risk-stratification, and management.Am. J. Hematol.201792101085110210.1002/ajh.2487628872191
    [Google Scholar]
  37. LiuT. WuZ. HeY. XiaoY. XiaC. Single and dual target inhibitors based on Bcl-2: Promising anti-tumor agents for cancer therapy.Eur. J. Med. Chem.202020111244610.1016/j.ejmech.2020.11244632563811
    [Google Scholar]
  38. LiuY. ZhangY. TanZ. WangJ. HuY. SunJ. BaoM. HuangP. GeM. ChaiY.J. ZhengC. Lysyl oxidase promotes anaplastic thyroid carcinoma cell proliferation and metastasis mediated via BMP1.Gland Surg.202211124525710.21037/gs‑21‑90835242686
    [Google Scholar]
  39. ChenS. ZengJ. HuangL. PengY. YanZ. ZhangA. ZhaoX. LiJ. ZhouZ. WangS. JingS. HuM. LiY. WangD. WangW. YuH. MiaoJ. LiJ. DengY. LiY. LiuT. XuD. RNA adenosine modifications related to prognosis and immune infiltration in osteosarcoma.J. Transl. Med.202220122810.1186/s12967‑022‑03415‑635568866
    [Google Scholar]
  40. ChengB. PanW. XiaoY. DingZ. ZhouY. FeiX. LiuJ. SuZ. PengX. ChenJ. HDAC-targeting epigenetic modulators for cancer immunotherapy.Eur. J. Med. Chem.202426511612910.1016/j.ejmech.2024.11612938211468
    [Google Scholar]
  41. SchrumpD.S. Cytotoxicity mediated by histone deacetylase inhibitors in cancer cells: mechanisms and potential clinical implications.Clin. Cancer Res.200915123947395710.1158/1078‑0432.CCR‑08‑278719509170
    [Google Scholar]
  42. ShiY. JiaB. XuW. LiW. LiuT. LiuP. ZhaoW. ZhangH. SunX. YangH. ZhangX. JinJ. JinZ. LiZ. QiuL. DongM. HuangX. LuoY. WangX. WangX. WuJ. XuJ. YiP. ZhouJ. HeH. LiuL. ShenJ. TangX. WangJ. YangJ. ZengQ. ZhangZ. CaiZ. ChenX. DingK. HouM. HuangH. LiX. LiangR. LiuQ. SongY. SuH. GaoY. LiuL. LuoJ. SuL. SunZ. TanH. WangH. WangJ. WangS. ZhangH. ZhangX. ZhouD. BaiO. WuG. ZhangL. ZhangY. Chidamide in relapsed or refractory peripheral T cell lymphoma: A multicenter real-world study in China.J. Hematol. Oncol.20171016910.1186/s13045‑017‑0439‑628298231
    [Google Scholar]
  43. ChenJ. ZuoZ. GaoY. YaoX. GuanP. WangY. LiZ. LiuZ. HongJ.H. DengP. ChanJ.Y. CheahD.M.Z. LimJ. ChaiK.X.Y. ChiaB.K.H. PangJ.W.L. KohJ. HuangD. HeH. SunY. LiuL. LiuS. HuangY. WangX. YouH. SarafS.A. GrigoropoulosN.F. LiX. BeiJ. KangT. LimS.T. TehB.T. HuangH. OngC.K. TanJ. Aberrant JAK-STAT signaling-mediated chromatin remodeling impairs the sensitivity of NK/T-cell lymphoma to chidamide.Clin. Epigenetics20231511910.1186/s13148‑023‑01436‑636740715
    [Google Scholar]
  44. XiaoY. YuY. HuL. YangY. YuanY. ZhangW. LuoJ. YuL. Matrine alleviates sepsis-induced myocardial injury by inhibiting ferroptosis and apoptosis.Inflammation20234651684169610.1007/s10753‑023‑01833‑237219694
    [Google Scholar]
  45. OuX. ChenY. ChengX. ZhangX. HeQ. Potentiation of resveratrol-induced apoptosis by matrine in human hepatoma HepG2 cells.Oncol. Rep.20143262803280910.3892/or.2014.351225269486
    [Google Scholar]
  46. GuX. WuF. ZhangQ. ZhangC. Effects of chidamide combined with curcumin on hunman cutaneous T-cell lymphoma cell line Hut78 and their molecular mechanisms.Chin. J. Dermatol.2016490211211810.3760/cma.j.issn.0412‑4030.2016.02.008
    [Google Scholar]
  47. ShengX. ZhuP. ZhaoY. ZhangJ. LiH. ZhaoH. QinJ. Effect of PI3K/AKT/mTOR signaling pathway on regulating and controlling the anti-invasion and metastasis of hepatoma cells by bufalin.Recent Pat. Anticancer Drug Discov.2021161546510.2174/22123970MTEzaODMD433530915
    [Google Scholar]
  48. TakuboT. KanashimaH. TeradaY. ShibataH. AoyamaY. NakamaeH. YamamuraR. ShimaE. MakitaK. TanakaK. OhtaK. YamaneT. HinoM. KamitaniT. TatsumiN. OhshimaK. E-cadherin expression in lymph nodes of three patients with non-Hodgkin’s lymphoma.Haematologia2002321677210.1163/15685590276026278112243557
    [Google Scholar]
  49. GalazS. EspadaJ. StockertJ.C. PachecoM. Sanz-RodríguezF. ArranzR. RelloS. CañeteM. VillanuevaA. EstellerM. JuarranzA. Loss of E‐cadherin mediated cell–cell adhesion as an early trigger of apoptosis induced by photodynamic treatment.J. Cell. Physiol.20052051869610.1002/jcp.2037415880654
    [Google Scholar]
  50. LiY. ZhouZ. QuJ. GongP. WeiY. SunY. Role of microRNA-4739 in enhancing cisplatin chemosensitivity by negative regulation of RHBDD2 in human cervical cancer cells.Cell. Mol. Biol. Lett.20242912010.1186/s11658‑024‑00532‑638267862
    [Google Scholar]
  51. JacobsG. HellmigS. HuseK. TitzA. FrankeA. KwiatkowskiR. OttS. KosmahlM. FischbachW. LuciusR. KlapperW. FölschU.R. HampeJ. SchreiberS. RosenstielP. Polymorphisms in the 3′-untranslated region of the CDH1 gene are a risk factor for primary gastric diffuse large B-cell lymphoma.Haematologica201196798799510.3324/haematol.2010.03312621459793
    [Google Scholar]
  52. QianY. WuX. YokoyamaY. OkuzakiD. TaguchiM. HiroseH. WangJ. HataT. InoueA. HirakiM. OhtsukaM. TakahashiH. HaraguchiN. MizushimaT. TanakaS. MoriM. YamamotoH. E-cadherin-Fc chimera protein matrix enhances cancer stem-like properties and induces mesenchymal features in colon cancer cells.Cancer Sci.2019110113520353210.1111/cas.1419331505062
    [Google Scholar]
  53. HanH.J. KwonH.Y. SohnE.J. KoH. KimB. JungK. LewJ.H. KimS.H. Suppression of E-cadherin mediates gallotannin induced apoptosis in Hep G2 hepatocelluar carcinoma cells.Int. J. Biol. Sci.201410549049910.7150/ijbs.749524795530
    [Google Scholar]
  54. BrouxhonS.M. KyrkanidesS. TengX. RajaV. O’BanionM.K. ClarkeR. ByersS. SilberfeldA. TornosC. MaL. Monoclonal antibody against the ectodomain of E-cadherin (DECMA-1) suppresses breast carcinogenesis: Involvement of the HER/PI3K/Akt/mTOR and IAP pathways.Clin. Cancer Res.201319123234324610.1158/1078‑0432.CCR‑12‑274723620408
    [Google Scholar]
  55. ChenX. ZhaoW. ZhuW. YuL. ZhuX. DingY. ZhengQ. Neochamaejasmine A Promotes Apoptosis and Cell Cycle Arrest in B16F10 Melanoma Cells via JNK and p38 MAPK Signaling Pathway.Recent Pat Anticancer Drug Discov202217441642610.2174/157489281766622011410563935049439
    [Google Scholar]
  56. XuY. YeH. Progress in understanding the mechanisms of resistance to BCL-2 inhibitors.Exp. Hematol. Oncol.20221113110.1186/s40164‑022‑00283‑035598030
    [Google Scholar]
  57. BuiN.L.C. PandeyV. ZhuT. MaL. Basappa LobieP.E. Bad phosphorylation as a target of inhibition in oncology.Cancer Lett.201841517718610.1016/j.canlet.2017.11.01729175460
    [Google Scholar]
  58. ZhangC.L. KamarashevJ. QinJ.Z. BurgG. DummerR. DöbbelingU. Expression of apoptosis regulators in cutaneous T‐cell lymphoma (CTCL) cells.J. Pathol.2003200224925410.1002/path.134112754746
    [Google Scholar]
  59. WangY. LiW. ZhangQ. GuX. HeX. MenY. ZhangC. Targeting phosphorylation of p21-activated kinase 1 at Thr423 induces cell cycle arrest and apoptosis in cutaneous T-cell lymphoma cells.Acta Derm. Venereol.201999111022102810.2340/00015555‑326331304555
    [Google Scholar]
  60. WeiS. SunT. DuJ. ZhangB. XiangD. LiW. Xanthohumol, a prenylated flavonoid from Hops, exerts anticancer effects against gastric cancer in vitro.Oncol. Rep.20184063213322210.3892/or.2018.672330272303
    [Google Scholar]
  61. HuangA. ZhouW. Mn-based cGAS-STING activation for tumor therapy.Chin. J. Cancer. Res.2023351194310.21147/j.issn.1000‑9604.2023.01.04
    [Google Scholar]
  62. SorsA. Jean-LouisF. PelletC. LarocheL. DubertretL. CourtoisG. BachelezH. MichelL. Down-regulating constitutive activation of the NF-κB canonical pathway overcomes the resistance of cutaneous T-cell lymphoma to apoptosis.Blood200610762354236310.1182/blood‑2005‑06‑253616219794
    [Google Scholar]
  63. QuY. QuB. WangX. WuR. ZhangX. Knockdown of NF-κB p65 subunit expression suppresses growth of nude mouse lung tumour cell xenografts by inhibition of Bcl-2 apoptotic pathway.Cell Biochem. Funct.201533532032510.1002/cbf.311726178579
    [Google Scholar]
  64. YuanZ. JiangH. ZhuX. LiuX. LiJ. Ginsenoside Rg3 promotes cytotoxicity of Paclitaxel through inhibiting NF-κB signaling and regulating Bax/Bcl-2 expression on triple-negative breast cancer.Biomed. Pharmacother.20178922723210.1016/j.biopha.2017.02.03828231544
    [Google Scholar]
  65. HardwickJ.M. SoaneL. Multiple functions of BCL-2 family proteins.Cold Spring Harb. Perspect. Biol.201352a00872210.1101/cshperspect.a00872223378584
    [Google Scholar]
  66. OltersdorfT. ElmoreS.W. ShoemakerA.R. ArmstrongR.C. AugeriD.J. BelliB.A. BrunckoM. DeckwerthT.L. DingesJ. HajdukP.J. JosephM.K. KitadaS. KorsmeyerS.J. KunzerA.R. LetaiA. LiC. MittenM.J. NettesheimD.G. NgS. NimmerP.M. O’ConnorJ.M. OleksijewA. PetrosA.M. ReedJ.C. ShenW. TahirS.K. ThompsonC.B. TomaselliK.J. WangB. WendtM.D. ZhangH. FesikS.W. RosenbergS.H. An inhibitor of Bcl-2 family proteins induces regression of solid tumours.Nature2005435704267768110.1038/nature0357915902208
    [Google Scholar]
  67. JungJ.T. KimD.H. KwakE.K. KimJ.G. ParkT.I. SohnS.K. DoY.R. KwonK.Y. SongH.S. ParkE.H. LeeK.B. Clinical role of Bcl-2, Bax, or p53 overexpression in peripheral T-cell lymphomas.Ann. Hematol.200685957558110.1007/s00277‑006‑0127‑z16673127
    [Google Scholar]
  68. FroehlichT.C. Müller-DeckerK. BraunJ.D. AlbrechtT. SchroederA. GülowK. GoerdtS. KrammerP.H. NicolayJ.P. Combined inhibition of Bcl-2 and NFκB synergistically induces cell death in cutaneous T-cell lymphoma.Blood2019134544545510.1182/blood.201900154531167801
    [Google Scholar]
  69. GootenbergJ.E. RuscettiF.W. MierJ.W. GazdarA. GalloR.C. Human cutaneous T cell lymphoma and leukemia cell lines produce and respond to T cell growth factor.J. Exp. Med.198115451403141810.1084/jem.154.5.14036975346
    [Google Scholar]
  70. StarkebaumG. LoughranT.P.Jr WatersC.A. RuscettiF.W. Establishment of an IL-2 independent, human T-cell line possessing only the p70 IL-2 receptor.Int. J. Cancer199149224625310.1002/ijc.29104902181879969
    [Google Scholar]
  71. GillR.P.K. GantchevJ. VillarrealM.A. RamchatesinghB. NetchiporoukE. AkilovO.E. ØdumN. GniadeckiR. KoralovS.B. LitvinovI.V. Understanding cell lines, patient-derived xenograft and genetically engineered mouse models used to study cutaneous T-cell lymphoma.Cells202211459310.3390/cells1104059335203244
    [Google Scholar]
  72. NetchiporoukE. LitvinovI.V. MoreauL. GilbertM. SassevilleD. DuvicM. Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression.Cell Cycle201413213331333510.4161/15384101.2014.96506125485578
    [Google Scholar]
  73. PatilK. KuttikrishnanS. KhanA.Q. AhmadF. AlamM. BuddenkotteJ. AhmadA. SteinhoffM. UddinS. Molecular pathogenesis of Cutaneous T cell Lymphoma: Role of chemokines, cytokines, and dysregulated signaling pathways.Semin. Cancer Biol.202286Pt 338239910.1016/j.semcancer.2021.12.00334906723
    [Google Scholar]
  74. MatsuokaH. FujimuraT. MoriH. AramoriI. MutohS. Mechanism of HDAC inhibitor FR235222-mediated IL-2 transcriptional repression in Jurkat cells.Int. Immunopharmacol.20077111422143210.1016/j.intimp.2007.05.02217761346
    [Google Scholar]
  75. LiT. WongV.K.W. YiX.Q. WongY.F. ZhouH. LiuL. Matrine induces cell anergy in human Jurkat T cells through modulation of mitogen-activated protein kinases and nuclear factor of activated T-cells signaling with concomitant up-regulation of anergy-associated genes expression.Biol. Pharm. Bull.2010331404610.1248/bpb.33.4020045933
    [Google Scholar]
/content/journals/pra/10.2174/0115748928289036240318040756
Loading
/content/journals/pra/10.2174/0115748928289036240318040756
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test