Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Objective

The objective of this study is to investigate the expression and regulatory mechanisms of A disintegrin and metalloproteinase domain 12 (ADAM12) in colorectal cancer (CRC) tissues and cells.

Methods

Download and analyze the expression levels of ADAM12 in the TCGA and GSE68468 datasets. Collect paraffin-preserved specimens from the Chongqing University Jiangjin Hospital from April 2017 to December 2019 and detect the expression of ADAM12 through immunohistochemistry. Cell experiments were conducted using colorectal cancer cell lines (SW480, HCT116), and cells with high expression of ADAM12 were selected for silencing experiments, and cell proliferation ability using CCK-8, and migration ability of cells in each group using scratch assay and Transwell invasion assay. The EMT markers (E-cadherin, N-cadherin, Vimentin, Twist) and the Wnt/β-catenin markers (β-catenin, GSK-3β, p-GSK-3β, C-MYC, MMP-7) were detected using western blot. We construct a nude mouse CRC tumor model and validate the effect of ADAM12 on EMT and Wnt/β-catenin through immunohistochemistry and Western blot.

Results

Bioinformatics showed that increased expression of ADAM12 was strongly correlated with patient prognosis. Immunohistochemistry showed that elevated ADAM12 was associated with vascular invasion ( < 0.05), neurological invasion ( < 0.01), lymph node metastasis ( < 0.01), and TNM staging ( < 0.001). Experiments on cell function revealed that the ADAM12 overexpression group augmented CRC cells' proliferation and migration. After overexpression of ADAM12, the expression of N-cadherin, Vimentin, and Twist increased, while the expression of E-cadherin decreased ( < 0.01). The expression of Proteins related to Wnt/β-catenin: β-catenin, p-GSK-3 β, C-MYC and MMP-7 increased ( < 0.01), and Wnt/β-catenin inhibitor MSAB can counteract the effect of ADAM12 on EMT in CRC cells. The subcutaneous tumor formation experiment results in nude mice showed that ADAM12 promoted tumor growth and induced EMT compared to the control group.

Conclusion

ADAM12 overexpression through the Wnt/β-catenin signal axis controls the EMT of CRC to promote invasion and metastasis.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928305105240417101251
2024-04-23
2025-05-10
Loading full text...

Full text loading...

References

  1. XiY. XuP. Global colorectal cancer burden in 2020 and projections to 2040.Transl. Oncol.2021141010117410.1016/j.tranon.2021.10117434243011
    [Google Scholar]
  2. ZhouQ. PerakisS.O. UlzP. MohanS. RiedlJ.M. TalakicE. LaxS. TötschM. HoeflerG. BauernhoferT. PichlerM. GergerA. GeiglJ.B. HeitzerE. SpeicherM.R. Cell-free DNA analysis reveals POLR1D-mediated resistance to bevacizumab in colorectal cancer.Genome Med.20201212010.1186/s13073‑020‑0719‑632087735
    [Google Scholar]
  3. JineshG.G. BrohlA.S. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis.Signal Transduct. Target. Ther.20227129610.1038/s41392‑022‑01132‑635999218
    [Google Scholar]
  4. GuptaP.B. PastushenkoI. SkibinskiA. BlanpainC. KuperwasserC. Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance.Cell Stem Cell2019241657810.1016/j.stem.2018.11.01130554963
    [Google Scholar]
  5. IbrahimH.M. AbdelrahmanA.E. ElwanA. BakryA. FahmyM.M. AbdelhamidM.I. AbdelwanisA.H. FouadE.M. Prognostic impact of FSTL3, ADAM12, and FAT4 in patients of colon cancer: Clinicopathologic study.Appl. Immunohistochem. Mol. Morphol.2023311067368110.1097/PAI.000000000000115737751246
    [Google Scholar]
  6. ParkY.L. ParkS.Y. OhH.H. ChungM.W. HongJ.Y. KimK.H. MyungD.S. ChoS.B. LeeW.S. KimH.S. JooY.E. A disintegrin and metalloprotease 12 promotes tumor progression by inhibiting apoptosis in human colorectal cancer.Cancers2021138192710.3390/cancers1308192733923541
    [Google Scholar]
  7. GugnoniM. SancisiV. ManzottiG. GandolfiG. CiarrocchiA. Autophagy and epithelial–mesenchymal transition: An intricate interplay in cancer.Cell Death Dis.2016712e252010.1038/cddis.2016.41527929542
    [Google Scholar]
  8. ArimuraN. OkadaM. TayaS. DewaK. TsuzukiA. UetakeH. MiyashitaS. HashizumeK. ShimaokaK. EgusaS. NishiokaT. YanagawaY. YamakawaK. InoueY.U. InoueT. KaibuchiK. HoshinoM. DSCAM regulates delamination of neurons in the developing midbrain.Sci. Adv.2020636eaba169310.1126/sciadv.aba169332917586
    [Google Scholar]
  9. KalluriR. WeinbergR.A. The basics of epithelial-mesenchymal transition.J. Clin. Invest.200911961420142810.1172/JCI3910419487818
    [Google Scholar]
  10. ChenH.T. LiuH. MaoM.J. TanY. MoX.Q. MengX.J. CaoM.T. ZhongC.Y. LiuY. ShanH. JiangG.M. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy.Mol. Cancer201918110110.1186/s12943‑019‑1030‑231126310
    [Google Scholar]
  11. TorresC.M. BiranA. BurneyM.J. PatelH. BrownhillH.T. CohenA.H.S. LiY. HamoB.R. NyeE. DeneS.B. ChakravartyP. EfroniS. MatthewsN. MisteliT. MeshorerE. ScaffidiP. The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity.Science20163536307aaf164410.1126/science.aaf164427708074
    [Google Scholar]
  12. LiangY. RongX. LuoY. LiP. HanQ. WeiL. WangE. Corrigendum to “A novel long non-coding RNA LINC00355 promotes proliferation of lung adenocarcinoma cells by down-regulating miR-195 and up-regulating the expression of CCNE1” [Cell Signal. 2020 Feb;66:109462. doi: 10.1016/j.cellsig.2019.109462].Cell. Signal.20207310971510.1016/j.cellsig.2020.10971532709464
    [Google Scholar]
  13. YuF. YuC. LiF. ZuoY. WangY. YaoL. WuC. WangC. YeL. Wnt/β-catenin signaling in cancers and targeted therapies.Signal Transduct. Target. Ther.20216130710.1038/s41392‑021‑00701‑534456337
    [Google Scholar]
  14. HanM. WangS. FritahS. WangX. ZhouW. YangN. NiS. HuangB. ChenA. LiG. MileticH. ThorsenF. BjerkvigR. LiX. WangJ. Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling.Brain2020143251253010.1093/brain/awz40631891366
    [Google Scholar]
  15. EdelingM. RagiG. HuangS. PavenstädtH. SusztakK. Developmental signalling pathways in renal fibrosis: The roles of notch, Wnt and hedgehog.Nat. Rev. Nephrol.201612742643910.1038/nrneph.2016.5427140856
    [Google Scholar]
  16. AielloN.M. BajorD.L. NorgardR.J. SahmoudA. BhagwatN. PhamM.N. CornishT.C. DonahueI.C.A. VonderheideR.H. StangerB.Z. Metastatic progression is associated with dynamic changes in the local microenvironment.Nat. Commun.2016711281910.1038/ncomms1281927628423
    [Google Scholar]
  17. NaT.Y. SchectersonL. MendonsaA.M. GumbinerB.M. The functional activity of E-cadherin controls tumor cell metastasis at multiple steps.Proc. Natl. Acad. Sci.2020117115931593710.1073/pnas.191816711732127478
    [Google Scholar]
  18. BianJ. DannappelM. WanC. FiresteinR. Transcriptional regulation of Wnt/β-catenin pathway in colorectal cancer.Cells202099212510.3390/cells909212532961708
    [Google Scholar]
  19. HiromasaY.T. SatoT. KurisakiT. KamijoK. NabeshimaY. SeharaF.A. A metalloprotease-disintegrin participating in myoblast fusion.Nature1995377655065265610.1038/377652a07566181
    [Google Scholar]
  20. OhH.H. ParkY.L. ParkS.Y. JooY.E. A disintegrin and metalloprotease 12 contributes to colorectal cancer metastasis by regulating epithelial‑mesenchymal transition.Int. J. Oncol.20236245010.3892/ijo.2023.549836866761
    [Google Scholar]
  21. Nyren-EricksonE.K. JonesJ.M. SrivastavaD.K. MallikS. A disintegrin and metalloproteinase-12 (ADAM12): Function, roles in disease progression, and clinical implications.Biochim. Biophys. Acta, Gen. Subj.20131830104445445510.1016/j.bbagen.2013.05.01123680494
    [Google Scholar]
  22. KveiborgM. AlbrechtsenR. CouchmanJ.R. WewerU.M. Cellular roles of ADAM12 in health and disease.Int. J. Biochem. Cell Biol.20084091685170210.1016/j.biocel.2008.01.02518342566
    [Google Scholar]
  23. WangJ. ZhangZ. JiangJ. TangL. WangX. WangZ. YangX. YuX. HuangC. ChenF. WanH. YeS. KDM2A plays a dual role in regulating the expression of malignancy-related genes in esophageal squamous cell carcinoma.Biochem. Biophys. Res. Commun.2022624535810.1016/j.bbrc.2022.07.03535932580
    [Google Scholar]
  24. LongS. WangJ. WengF. PeiZ. ZhouS. SunG. XiangD. ECM1 regulates the resistance of colorectal cancer to 5-FU treatment by modulating apoptotic cell death and epithelial-mesenchymal transition induction.Front. Pharmacol.202213100591510.3389/fphar.2022.100591536408224
    [Google Scholar]
  25. LongS. WangJ. WengF. XiangD. SunG. Extracellular matrix protein 1 regulates colorectal cancer cell proliferative, migratory, invasive and epithelial-mesenchymal transition activities through the PI3K/AKT/GSK3β/snail signaling axis.Front. Oncol.20221288915910.3389/fonc.2022.88915935574325
    [Google Scholar]
  26. XuJ. WangY. JiangJ. YinC. ShiB. ADAM12 promotes clear cell renal cell carcinoma progression and triggers EMT via EGFR/ERK signaling pathway.J. Transl. Med.20232115610.1186/s12967‑023‑03913‑136717944
    [Google Scholar]
  27. O’BrienS. ChidiacR. AngersS. Modulation of Wnt–β-catenin signaling with antibodies: Therapeutic opportunities and challenges.Trends Pharmacol. Sci.202344635436510.1016/j.tips.2023.03.00837085400
    [Google Scholar]
  28. ShibueT. WeinbergR.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications.Nat. Rev. Clin. Oncol.2017141061162910.1038/nrclinonc.2017.4428397828
    [Google Scholar]
  29. ZhaoH. MingT. TangS. RenS. YangH. LiuM. TaoQ. XuH. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target.Mol. Cancer202221114410.1186/s12943‑022‑01616‑735836256
    [Google Scholar]
  30. KrishnamurthyN. KurzrockR. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors.Cancer Treat. Rev.201862506010.1016/j.ctrv.2017.11.00229169144
    [Google Scholar]
  31. ZhuY. GanX. PanF. NiX. MyattL. WangW. SunK. Role of EZH2-mediated H3K27me3 in placental ADAM12-S expression: Implications for fetoplacental growth.BMC Med.202220118910.1186/s12916‑022‑02391‑435610640
    [Google Scholar]
  32. WangY. ZhangJ. CaoH. HanF. ZhangH. XuE. Methylation status of ADAM12 promoter are associated with its expression levels in colorectal cancer.Pathol. Res. Pract.202122115344910.1016/j.prp.2021.15344933930608
    [Google Scholar]
  33. WangR. GodetI. YangY. SalmanS. LuH. LyuY. ZuoQ. WangY. ZhuY. ChenC. HeJ. GilkesD.M. SemenzaG.L. Hypoxia-inducible factor-dependent ADAM12 expression mediates breast cancer invasion and metastasis.Proc. Natl. Acad. Sci.202111819e202049011810.1073/pnas.202049011833952697
    [Google Scholar]
  34. MaX. WuZ. ZhangJ. ShaoX. ShenH. Increased ADAM12 expression predicts poor prognosis in cervical cancer patients before general anesthesia.Clin. Lab.20216702/202110.7754/Clin.Lab.2020.20061133616346
    [Google Scholar]
  35. PiotrowskiK.B. BlascoL.P. PetersenS.J. EefsenR.L. IllemannM. OriaV.O. CamposK.I.A. LoprestiA.M. AlbrechtsenR. SørensenC.S. SunX.F. KveiborgM. GnosaS. ADAM12 expression is upregulated in cancer cells upon radiation and constitutes a prognostic factor in rectal cancer patients following radiotherapy.Cancer Gene Ther.202330101369138110.1038/s41417‑023‑00643‑w37495855
    [Google Scholar]
/content/journals/pra/10.2174/0115748928305105240417101251
Loading
/content/journals/pra/10.2174/0115748928305105240417101251
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test