Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Colorectal cancer is a common malignant tumor, with about one million people diagnosed with it worldwide each year. Recent studies have found that metformin can inhibit the production of inflammatory factors and regulate the polarization of immune cells. However, whether metformin can regulate the inflammatory microenvironment and delay the progression of colorectal cancer by inhibiting the inflammatory response has not been deeply studied yet.

Objectives

This study aimed to explore the molecular mechanism by which metformin inhibits the expression of NLRP3 inflammasome, regulates the inflammatory microenvironment, and delays the progression of colorectal cancer through cell experiments.

Methods

In this research, NLRP3 was knocked down in human colorectal cancer cells, and metformin was added to them. Cell proliferation ability was detected by CCK8, and cell migration and invasion abilities were assessed by Transwell assay. The apoptosis rate was determined by flow cytometry. In addition, the expression of NLRP3 inflammatory vesicles and inflammatory factors in each group of cells was studied by qRT-PCR and Western blotting. Finally, clinical colorectal cancer samples were analyzed by immunohistochemistry.

Results

The results of the study showed that NLRP3 expression was significantly increased in colorectal cancer cell lines and human colorectal cancer tissues. Knockdown of NLRP3 significantly inhibited tumor cell proliferation, migration, and invasion. In addition, the proliferation, migration and invasion of tumor cells were also significantly reduced by the addition of metformin intervention. Furthermore, qRT-PCR and WB results demonstrated that the expression of IL-1β, IL-6, TNF-α, TGF-β, and IL-10 was down-regulated in LS1034 tumor cells after NLRP3 knockdown. In addition, metformin intervention also resulted in different degrees of downregulation of NLRP3 and inflammatory factor expression ( <0.05). Notably, the reduction in inflammatory factors was more pronounced after the combination of NLRP3 knockdown and metformin intervention.

Conclusion

Metformin can inhibit the expression of NLRP3 inflammasome, thereby suppressing the expression of inflammation-related factors, reducing the damage of the inflammatory microenvironment to normal cells, and delaying the progression of colorectal cancer.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928274081240201060643
2024-02-09
2025-04-25
Loading full text...

Full text loading...

References

  1. DalyM. PaquetteI. Surveillance, epidemiology, and end results (SEER) and SEER-medicare databases: Use in clinical research for improving colorectal cancer outcomes.Clin. Colon Rectal Surg.201932106106810.1055/s‑0038‑167335530647547
    [Google Scholar]
  2. MöllerL. WellmannI. StangA. KajüterH. The epidemiology of colorectal cancer in younger and older patients.Dtsch. Arztebl. Int.20231201627728310.3238/arztebl.m2023.004136919357
    [Google Scholar]
  3. WetwittayakhlangP. GolovicsP.A. GoncziL. LakatosL. LakatosP.L. KurtiZ. Stable Incidence and Risk Factors of Colorectal Cancer in Ulcerative Colitis:A Population-based Cohort between 1977-2020.Clin. Gastroenterol. Hepatol.2024221191193.e310.1016/j.cgh.2023.03.02237004972
    [Google Scholar]
  4. ReisS.K. SoccaE.A.R. de SouzaB.R. GenaroS.C. DuránN. FávaroW.J. Effects of combined OncoTherad immunotherapy and probiotic supplementation on modulating the chronic inflammatory process in colorectal carcinogenesis.Tissue Cell20227510174710.1016/j.tice.2022.10174735149440
    [Google Scholar]
  5. RatsimandresyR.A. IndramohanM. DorfleutnerA. StehlikC. The AIM2 inflammasome is a central regulator of intestinal homeostasis through the IL-18/IL-22/STAT3 pathway.Cell. Mol. Immunol.201714112714210.1038/cmi.2016.3527524110
    [Google Scholar]
  6. KryczekI. LinY. NagarshethN. PengD. ZhaoL. ZhaoE. VatanL. SzeligaW. DouY. OwensS. ZgodzinskiW. MajewskiM. WallnerG. FangJ. HuangE. ZouW. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L.Immunity201440577278410.1016/j.immuni.2014.03.01024816405
    [Google Scholar]
  7. XiaoZ. WangX. ChenX. ZhouJ. ZhuH. ZhangJ. DengW. Prognostic role of preoperative inflammatory markers in postoperative patients with colorectal cancer.Front. Oncol.202313106434310.3389/fonc.2023.106434337064153
    [Google Scholar]
  8. VafaeiS. TaheriH. HajimomeniY. Fakhre YaseriA. Abolhasani ZadehF. The role of NLRP3 inflammasome in colorectal cancer: potential therapeutic target.Clin. Transl. Oncol.202224101881188910.1007/s12094‑022‑02861‑435689136
    [Google Scholar]
  9. TangY.L. TaoY. ZhuL. ShenJ.L. ChengH. Role of NLRP3 inflammasome in hepatocellular carcinoma: A double-edged sword.Int. Immunopharmacol.202311811010710.1016/j.intimp.2023.11010737028274
    [Google Scholar]
  10. SunC.C. LiL. TaoH.Q. JiangZ.C. WangL. WangH.J. The role of NLRP3 inflammasome in digestive system malignancy.Front. Cell Dev. Biol.202210105161210.3389/fcell.2022.105161236619871
    [Google Scholar]
  11. XieS. LiangJ. ZhaoY. ZhangJ. ChenX. JiangH. ZhangZ. MaS. ZhangS. The second-generation tyrosine kinase inhibitor afatinib inhibits IL-1β secretion via blocking assembly of NLRP3 inflammasome independent of epidermal growth factor receptor signaling in macrophage.Mol. Immunol.202315313514510.1016/j.molimm.2022.11.00936495818
    [Google Scholar]
  12. Dupaul-ChicoineJ. YeretssianG. DoironK. BergstromK.S.B. McIntireC.R. LeBlancP.M. MeunierC. TurbideC. GrosP. BeaucheminN. VallanceB.A. SalehM. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases.Immunity201032336737810.1016/j.immuni.2010.02.01220226691
    [Google Scholar]
  13. ZakiM.H. VogelP. MalireddiR.K.S. Body-MalapelM. AnandP.K. BertinJ. GreenD.R. LamkanfiM. KannegantiT.D. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis.Cancer Cell201120564966010.1016/j.ccr.2011.10.02222094258
    [Google Scholar]
  14. WangC.W. HuangY.C. ChanF.N. SuS.C. KuoY.H. HuangS.F. HungM.W. LinH.C. ChangW.L. ChangT.C. A gut microbial metabolite of ginsenosides, compound K, induces intestinal glucose absorption and Na + /glucose cotransporter 1 gene expression through activation of cAMP response element binding protein.Mol. Nutr. Food Res.201559467068410.1002/mnfr.20140068825600494
    [Google Scholar]
  15. LiT. HanL. MaS. LinW. BaX. YanJ. HuangY. TuS. QinK. Interaction of gut microbiota with the tumor microenvironment: A new strategy for antitumor treatment and traditional Chinese medicine in colorectal cancer.Front. Mol. Biosci.202310114032510.3389/fmolb.2023.114032536950522
    [Google Scholar]
  16. KumarAnsu KhandelwalSwati Combination comprising chloroquine, metformin and statin for management of cancer, composition and methods thereof.U.S Patent 202203050002022
  17. YoussefM.E. Abd El-FattahE.E. AbdelhamidA.M. EissaH. El-AhwanyE. AminN.A. HettaH.F. MahmoudM.H. BatihaG.E.S. GobbaN. Ahmed GaafarA.G. SaberS. Interference With the AMPKα/mTOR/NLRP3 Signaling and the IL-23/IL-17 Axis Effectively Protects Against the Dextran Sulfate Sodium Intoxication in Rats: A New Paradigm in Empagliflozin and Metformin Reprofiling for the Management of Ulcerative Colitis.Front. Pharmacol.20211271998410.3389/fphar.2021.71998434489707
    [Google Scholar]
  18. SinghK. LiptrotS. TouS. MehiganB. McCormickP. RaviN. ReynoldsJ. Al ChalabiH. A multicentre study assessing the role of routine colonoscopy after acute uncomplicated diverticulitis and the incidence of colorectal cancer diagnosis.Int. J. Colorectal Dis.20233818410.1007/s00384‑023‑04374‑036976397
    [Google Scholar]
  19. CaseyY. DembJ. EnweremN. LiuL. JacksonC. EarlesA. BustamanteR. MahataS. ShahS. GuptaS. Risk of Incident and Fatal Colorectal Cancer after young-onset adenoma diagnosis: a national cohort study.Am. J. Gastroenterol.202311891656166310.14309/ajg.000000000000229637053557
    [Google Scholar]
  20. MottaR. Cabezas-CamareroS. Torres-MattosC. RiquelmeA. CalleA. MontenegroP. SoteloM.J. Personalizing first-line treatment in advanced colorectal cancer: Present status and future perspectives.J. Clin. Transl. Res.20217677178534988329
    [Google Scholar]
  21. ØgaardN. ReinertT. HenriksenT.V. FrydendahlA. AagaardE. ØrntoftM.B.W. LarsenM.Ø. KnudsenA.R. MortensenF.V. AndersenC.L. Tumour-agnostic circulating tumour DNA analysis for improved recurrence surveillance after resection of colorectal liver metastases: A prospective cohort study.Eur. J. Cancer202216316317610.1016/j.ejca.2021.12.02635074652
    [Google Scholar]
  22. DengQ. GengY. ZhaoL. LiR. ZhangZ. LiK. LiangR. ShaoX. HuangM. ZuoD. WuY. MaQ. NLRP3 inflammasomes in macrophages drive colorectal cancer metastasis to the liver.Cancer Lett.2019442213010.1016/j.canlet.2018.10.03030392787
    [Google Scholar]
  23. GuoW. SunY. LiuW. WuX. GuoL. CaiP. WuX. WuX. ShenY. ShuY. GuY. XuQ. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer.Autophagy201410697298510.4161/auto.2837424879148
    [Google Scholar]
  24. LiangL. SunW. WeiX. WangL. RuanH. ZhangJ. LiS. ZhaoB. LiM. CaiZ. HuangJ. Oxymatrine suppresses colorectal cancer progression by inhibiting NLRP3 inflammasome activation through mitophagy induction in vitro and in vivo. Phytother. Res.20233783342336210.1002/ptr.780836974424
    [Google Scholar]
  25. ZhangZ. ChenY. YinY. ChenY. ChenQ. BingZ. ZhengY. HouY. ShenS. ChenY. WangT. Candida tropicalis induces NLRP3 inflammasome activation via glycogen metabolism-dependent glycolysis and JAK-STAT1 signaling pathway in myeloid-derived suppressor cells to promote colorectal carcinogenesis.Int. Immunopharmacol.2022113Pt B10943010.1016/j.intimp.2022.10943036384075
    [Google Scholar]
  26. WangS.L. ZhangM.M. ZhouH. SuG.Q. DingY. XuG.H. WangX. LiC.F. HuangW.F. YiL.T. Inhibition of NLRP3 attenuates sodium dextran sulfate-induced inflammatory bowel disease through gut microbiota regulation.Biomed. J.202346510058010.1016/j.bj.2023.01.00436758943
    [Google Scholar]
  27. WenJ. XuanB. LiuY. WangL. HeL. MengX. ZhouT. WangY. NLRP3 inflammasome-induced pyroptosis in digestive system tumors.Front. Immunol.202314107460610.3389/fimmu.2023.107460637081882
    [Google Scholar]
  28. GodaraA. SiddiquiN.S. HachemH. TsichlisP.N. MartellR.E. SaifM.W. Prospective Evaluation of Effect of Metformin on Activation of AMP-activated Protein Kinase (AMPK) and Disease Control in a Sub-group Analysis of Patients with GI Malignancies.Journal of Cellular Signaling202012354110.33696/Signaling.1.00832601620
    [Google Scholar]
  29. GeorgopoulosN.S. ToliaM. MauriD. KamposiorasK. CharalampakisN. TsoukalasN. GkantaifiA. Metformin: A Promising Radiosensitizer in Neoadjuvant Rectal Cancer Treatment.Rev. Recent Clin. Trials202318317218010.2174/157488711866623042811434937132307
    [Google Scholar]
  30. BuckleyC.E. O’BrienR.M. NugentT.S. DonlonN.E. O’ConnellF. ReynoldsJ.V. HafeezA. O’RíordáinD.S. HannonR.A. NearyP. KalbassiR. MehiganB.J. McCormickP.H. DunneC. KellyM.E. LarkinJ.O. O’SullivanJ. Lynam-LennonN. Metformin is a metabolic modulator and radiosensitiser in rectal cancer.Front. Oncol.202313121691110.3389/fonc.2023.121691137601689
    [Google Scholar]
  31. GashK.J. ChambersA.C. CottonD.E. WilliamsA.C. ThomasM.G. Potentiating the effects of radiotherapy in rectal cancer: the role of aspirin, statins and metformin as adjuncts to therapy.Br. J. Cancer2017117221021910.1038/bjc.2017.17528641310
    [Google Scholar]
  32. SehdevA. ShihY.C.T. VekhterB. BissonnetteM.B. OlopadeO.I. PoliteB.N. Metformin for primary colorectal cancer prevention in patients with diabetes: A case‐control study in a US population.Cancer201512171071107810.1002/cncr.2916525424411
    [Google Scholar]
  33. FernandesJ.M. JandreyE.H.F. KoyamaF.C. LeiteK.R.M. CamargoA.A. CostaÉ.T. PerezR.O. AsprinoP.F. Metformin as an Alternative Radiosensitizing Agent to 5-Fluorouracil During Neoadjuvant Treatment for Rectal Cancer.Dis. Colon Rectum202063791892610.1097/DCR.000000000000162632229782
    [Google Scholar]
/content/journals/pra/10.2174/0115748928274081240201060643
Loading
/content/journals/pra/10.2174/0115748928274081240201060643
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): apoptosis; Colorectal cancer; inflammation; metformin; microenvironment; NLRP3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test