Skip to content
2000
image of Comprehensive Analysis of Prognostic Alternative Splicing Signatures in Tumor Immune Infiltration in Bladder Cancer

Abstract

Background

Bladder cancer exhibits substantial heterogeneity encompassing genetic expressions and histological features. This heterogeneity is predominantly attributed to alternative splicing (AS) and AS-regulated splicing factors (SFs), which, in turn, influence bladder cancer development, progression, and response to treatment.

Objective

This study aimed to explore the immune landscape of aberrant AS in bladder cancer and establish the prognostic signatures for survival prediction.

Methods

Bladder cancer-related RNA-Seq, transcriptome, and corresponding clinical information were downloaded from The Cancer Genome Atlas (TCGA). Gene set enrichment analysis (GSEA) was used to identify significantly enriched pathways of cancer-related AS events. The underlying interactions among differentially expressed genes (DEGs) and cancer-related AS events were assessed by a protein-protein interaction network. Univariate and multivariate Cox regression analyses were performed to identify crucial prognostic DEGs that co-occurred with cancer-related AS events (DEGAS) for overall survival. The area under the curve (AUC) of receiver operating characteristic (ROC) curves was used to assess the efficiency of the prognostic signatures. The CIBERSORT algorithm was used to explore the abundance of immune infiltrating cells.

Results

A total of 3755 cancer-related AS events and 3110 DEGs in bladder cancer were identified. Among them, 379 DEGs co-occurred with cancer-related AS events (DEGAS), of which 102 DEGAS were associated with 14 dysregulated SFs. GSEA and KEGG analysis showed that cancer-related AS events were predominantly enriched in pathways related to immunity, tumorigenesis, and treatment difficulties of bladder cancer. Multivariate Cox regression analysis identified 8 DEGAS (CABP1, KCNN2, TNFRSF13B, PCDH7, SNRPA1, APOLD1, CX3CL1, and DENND5A) significantly associated with OS, and they were further integrated into the prediction model with good AUCs at 3-year, 5-year and 7-year ROC curves (all>0.7). Immune infiltration analysis revealed the significant enrichment of three immune cell types (B cells naïve, dendritic cells resting, and dendritic cell activated) in high-risk bladder cancer patients.

Conclusion

This study not only unveiled comprehensive prognostic signatures of AS events in bladder cancer but also established a robust prognostic model based on survival-related DEGAS. These aberrant AS events, dysregulated SFs, and the identified 8 DEGAS may have significant clinical potential as therapeutic targets for bladder cancer.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928329276241020184935
2024-10-29
2024-11-26
Loading full text...

Full text loading...

References

  1. Saginala K. Barsouk A. Aluru J.S. Rawla P. Padala S.A. Barsouk A. Epidemiology of bladder cancer. Med. Sci. (Basel) 2020 8 1 15 10.3390/medsci8010015 32183076
    [Google Scholar]
  2. Richters A. Aben K.K.H. Kiemeney L.A.L.M. The global burden of urinary bladder cancer: An update. World J. Urol. 2020 38 8 1895 1904 10.1007/s00345‑019‑02984‑4 31676912
    [Google Scholar]
  3. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  4. Key statistics for bladder cancer. 2024 Available from: https://www.cancer.org/cancer/types/bladder-cancer/about/key-statistics.html
  5. Mushtaq J. Thurairaja R. Nair R. Bladder cancer. Surgery 2019 37 9 529 537 10.1016/j.mpsur.2019.07.003
    [Google Scholar]
  6. Freedman N.D. Silverman D.T. Hollenbeck A.R. Schatzkin A. Abnet C.C. Association between smoking and risk of bladder cancer among men and women. JAMA 2011 306 7 737 745 10.1001/jama.2011.1142 21846855
    [Google Scholar]
  7. Safiri S. Kolahi A.A. Naghavi M. Global, regional and national burden of bladder cancer and its attributable risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. BMJ Glob. Health 2021 6 11 e004128 10.1136/bmjgh‑2020‑004128 34844997
    [Google Scholar]
  8. Abdolahinia Z. Pakmanesh H. Mirzaee M. Bazrafshan A. Shafiei Bafti M. Shahesmaeili A. Opium and cigarette smoking are independently associated with bladder cancer: The findings of a matched case - Control study. Asian Pac. J. Cancer Prev. 2021 22 10 3385 3391 10.31557/APJCP.2021.22.10.3385 34711016
    [Google Scholar]
  9. Gu J. Wu X. Genetic susceptibility to bladder cancer risk and outcome. Per. Med. 2011 8 3 365 374 10.2217/pme.11.15 21927616
    [Google Scholar]
  10. Zhang X. Zhang Y. Bladder cancer and genetic mutations. Cell Biochem. Biophys. 2015 73 1 65 69 10.1007/s12013‑015‑0574‑z 27352265
    [Google Scholar]
  11. Wigner P. Grębowski R. Bijak M. Saluk-Bijak J. Szemraj J. The interplay between oxidative stress, inflammation and angiogenesis in bladder cancer development. Int. J. Mol. Sci. 2021 22 9 4483 10.3390/ijms22094483 33923108
    [Google Scholar]
  12. Khalifa M.K. Bakr N.M. Ramadan A. Abd Elwahab K.M. Desoky E. Nageeb A.M. Swellam M. Implications of targeted next-generation sequencing for bladder cancer: Report of four cases. J. Genet. Eng. Biotechnol. 2021 19 1 91 10.1186/s43141‑021‑00182‑7 34152511
    [Google Scholar]
  13. Ule J. Blencowe B.J. Alternative splicing regulatory networks: Functions, mechanisms, and evolution. Mol. Cell 2019 76 2 329 345 10.1016/j.molcel.2019.09.017 31626751
    [Google Scholar]
  14. Gallego-Paez L.M. Bordone M.C. Leote A.C. Saraiva-Agostinho N. Ascensão-Ferreira M. Barbosa-Morais N.L. Alternative splicing: The pledge, the turn, and the prestige. Hum. Genet. 2017 136 9 1015 1042 10.1007/s00439‑017‑1790‑y 28374191
    [Google Scholar]
  15. Ladomery M. Aberrant alternative splicing is another hallmark of cancer. Int. J. Cell Biol. 2013 2013 1 6 10.1155/2013/463786 24101931
    [Google Scholar]
  16. Bonnal S.C. López-Oreja I. Valcárcel J. Roles and mechanisms of alternative splicing in cancer — Implications for care. Nat. Rev. Clin. Oncol. 2020 17 8 457 474 10.1038/s41571‑020‑0350‑x 32303702
    [Google Scholar]
  17. Craene B.D. Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 2013 13 2 97 110 10.1038/nrc3447 23344542
    [Google Scholar]
  18. Zhang Y. Qian J. Gu C. Yang Y. Alternative splicing and cancer: A systematic review. Signal Transduct. Target. Ther. 2021 6 1 78 10.1038/s41392‑021‑00486‑7 33623018
    [Google Scholar]
  19. Wang Y. Zhang H. Jiao B. Nie J. Li X. Wang W. Wang H. The roles of alternative splicing in tumor-immune cell interactions. Curr. Cancer Drug Targets 2020 20 10 729 740 10.2174/1568009620666200619123725 32560607
    [Google Scholar]
  20. Bruni D. Angell H.K. Galon J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 2020 20 11 662 680 10.1038/s41568‑020‑0285‑7 32753728
    [Google Scholar]
  21. Joseph M. Enting D. Immune responses in bladder cancer-role of immune cell populations, prognostic factors and therapeutic implications. Front. Oncol. 2019 9 1270 10.3389/fonc.2019.01270 31824850
    [Google Scholar]
  22. Efstathiou J.A. Mouw K.W. Gibb E.A. Liu Y. Wu C.L. Drumm M.R. da Costa J.B. du Plessis M. Wang N.Q. Davicioni E. Feng F.Y. Seiler R. Black P.C. Shipley W.U. Miyamoto D.T. Impact of immune and stromal infiltration on outcomes following bladder-sparing trimodality therapy for muscle-invasive bladder cancer. Eur. Urol. 2019 76 1 59 68 10.1016/j.eururo.2019.01.011 30712971
    [Google Scholar]
  23. Liu Z. Zhu Y. Xu L. Zhang J. Xie H. Fu H. Zhou Q. Chang Y. Dai B. Xu J. Tumor stroma-infiltrating mast cells predict prognosis and adjuvant chemotherapeutic benefits in patients with muscle invasive bladder cancer. OncoImmunology 2018 7 9 e1474317 10.1080/2162402X.2018.1474317 30393586
    [Google Scholar]
  24. Ryan M.C. Cleland J. Kim R. Wong W.C. Weinstein J.N. SpliceSeq: A resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts. Bioinformatics 2012 28 18 2385 2387 10.1093/bioinformatics/bts452 22820202
    [Google Scholar]
  25. Ryan M. Wong W.C. Brown R. Akbani R. Su X. Broom B. Melott J. Weinstein J. TCGASpliceSeq a compendium of alternative mRNA splicing in cancer. Nucleic Acids Res. 2016 44 D1 D1018 D1022 10.1093/nar/gkv1288 26602693
    [Google Scholar]
  26. Franz M. Lopes C.T. Huck G. Dong Y. Sumer O. Bader G.D. Cytoscape.js: A graph theory library for visualisation and analysis. Bioinformatics 2016 32 2 309 311 10.1093/bioinformatics/btv557 26415722
    [Google Scholar]
  27. Szklarczyk D. Franceschini A. Kuhn M. Simonovic M. Roth A. Minguez P. Doerks T. Stark M. Muller J. Bork P. Jensen L.J. Mering C. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011 39 Database D561 D568 10.1093/nar/gkq973 21045058
    [Google Scholar]
  28. Giulietti M. Piva F. D’Antonio M. D’Onorio De Meo P. Paoletti D. Castrignanò T. D’Erchia A.M. Picardi E. Zambelli F. Principato G. Pavesi G. Pesole G. SpliceAid-F: A database of human splicing factors and their RNA-binding sites. Nucleic Acids Res. 2013 41 D1 D125 D131 10.1093/nar/gks997 23118479
    [Google Scholar]
  29. Newman A.M. Liu C.L. Green M.R. Gentles A.J. Feng W. Xu Y. Hoang C.D. Diehn M. Alizadeh A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015 12 5 453 457 10.1038/nmeth.3337 25822800
    [Google Scholar]
  30. Chen B. Khodadoust M.S. Liu C.L. Newman A.M. Alizadeh A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. 2018 1711 243 259 10.1007/978‑1‑4939‑7493‑1_12 29344893
    [Google Scholar]
  31. Bajikar S.S. Wang C.C. Borten M.A. Pereira E.J. Atkins K.A. Janes K.A. Tumor-suppressor inactivation of gdf11 occurs by precursor sequestration in triple-negative breast cancer. Dev. Cell 2017 43 4 418 435.e13 10.1016/j.devcel.2017.10.027 29161592
    [Google Scholar]
  32. Li Z.X. Zheng Z.Q. Wei Z.H. Zhang L.L. Li F. Lin L. Liu R.Q. Huang X.D. Lv J.W. Chen F.P. He X.J. Guan J.L. Kou J. Ma J. Zhou G.Q. Sun Y. Comprehensive characterization of the alternative splicing landscape in head and neck squamous cell carcinoma reveals novel events associated with tumorigenesis and the immune microenvironment. Theranostics 2019 9 25 7648 7665 10.7150/thno.36585 31695792
    [Google Scholar]
  33. Hong S. Huang Y. Cao Y. Chen X. Han J.D.J. Approaches to uncovering cancer diagnostic and prognostic molecular signatures. Mol. Cell. Oncol. 2014 1 2 e957981 10.4161/23723548.2014.957981 27308330
    [Google Scholar]
  34. Van Hoeck A. Tjoonk N.H. van Boxtel R. Cuppen E. Portrait of a cancer: Mutational signature analyses for cancer diagnostics. BMC Cancer 2019 19 1 457 10.1186/s12885‑019‑5677‑2 31092228
    [Google Scholar]
  35. Malone E.R. Oliva M. Sabatini P.J.B. Stockley T.L. Siu L.L. Molecular profiling for precision cancer therapies. Genome Med. 2020 12 1 8 10.1186/s13073‑019‑0703‑1 31937368
    [Google Scholar]
  36. Conroy M.J. Lysaght J. CX3CL1 signaling in the tumor microenvironment. Adv. Exp. Med. Biol. 2020 1231 1 12 10.1007/978‑3‑030‑36667‑4_1 32060841
    [Google Scholar]
  37. Liu P. Liang Y. Jiang L. Wang H. Wang S. Dong J. CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway. Int. J. Oncol. 2018 53 4 1544 1556 10.3892/ijo.2018.4487 30066854
    [Google Scholar]
  38. Liu Y. Ma H. Dong T. Yan Y. Sun L. Wang W. Clinical significance of expression level of CX3CL1–CX3CR1 axis in bone metastasis of lung cancer. Clin. Transl. Oncol. 2021 23 2 378 388 10.1007/s12094‑020‑02431‑6 32638214
    [Google Scholar]
  39. Que Z.J. Yao J.L. Zhou Z.Y. Yu P. Luo B. Li H.G. Liu J.X. Xu H.X. Tian J.H. Jinfukang inhibits lung cancer metastasis by upregulating CX3CL1 to recruit NK cells to kill CTCs. J. Ethnopharmacol. 2021 275 114175 10.1016/j.jep.2021.114175 33933571
    [Google Scholar]
  40. Liang Y. Yi L. Liu P. Jiang L. Wang H. Hu A. Sun C. Dong J. CX3CL1 involves in breast cancer metastasizing to the spine via the Src/FAK signaling pathway. J. Cancer 2018 9 19 3603 3612 10.7150/jca.26497 30310518
    [Google Scholar]
  41. Park M.H. Lee J.S. Yoon J.H. High expression of CX3CL1 by tumor cells correlates with a good prognosis and increased tumor‐infiltrating CD8+ T cells, natural killer cells, and dendritic cells in breast carcinoma. J. Surg. Oncol. 2012 106 4 386 392 10.1002/jso.23095 22422195
    [Google Scholar]
  42. Jiang G. Wang H. Huang D. Wu Y. Ding W. Zhou Q. Ding Q. Zhang N. Na R. Xu K. The clinical implications and molecular mechanism of CX3CL1 expression in urothelial bladder cancer. Front. Oncol. 2021 11 752860 10.3389/fonc.2021.752860 34671562
    [Google Scholar]
  43. de Mattos Barbosa M.G. Lefferts A.R. Huynh D. Liu H. Zhang Y. Fu B. Barnes J. Samaniego M. Bram R.J. Geha R.S. Shikanov A. Prak E.T.L. Farkash E.A. Platt J.L. Cascalho M. TNFRSF13B genotypes control immune-mediated pathology by regulating the functions of innate B cells. JCI Insight 2021 6 17 e150483 10.1172/jci.insight.150483 34283811
    [Google Scholar]
  44. Hinterleitner C. Zhou Y. Tandler C. Heitmann J.S. Kropp K.N. Hinterleitner M. Koch A. Hartkopf A.D. Zender L. Salih H.R. Maurer S. Platelet-expressed TNFRSF13B (TACI) predicts breast cancer progression. Front. Oncol. 2021 11 642170 10.3389/fonc.2021.642170 33816291
    [Google Scholar]
  45. Abo-Elfadl M.T. Gamal-Eldeen A.M. Ismail M.F. Shahin N.N. Silencing of the cytokine receptor TNFRSF13B: A new therapeutic target for triple-negative breast cancer. Cytokine 2020 125 154790 10.1016/j.cyto.2019.154790 31400636
    [Google Scholar]
  46. Li C. Enomoto M. Rossi A.M. Seo M.D. Rahman T. Stathopulos P.B. Taylor C.W. Ikura M. Ames J.B. CaBP1, a neuronal Ca 2+ sensor protein, inhibits inositol trisphosphate receptors by clamping intersubunit interactions. Proc. Natl. Acad. Sci. USA 2013 110 21 8507 8512 10.1073/pnas.1220847110 23650371
    [Google Scholar]
  47. Mochel F. Rastetter A. Ceulemans B. Platzer K. Yang S. Shinde D.N. Helbig K.L. Lopergolo D. Mari F. Renieri A. Benetti E. Canitano R. Waisfisz Q. Plomp A.S. Huisman S.A. Wilson G.N. Cathey S.S. Louie R.J. Del Gaudio D. Waggoner D. Kacker S. Nugent K.M. Roeder E.R. Bruel A.L. Thevenon J. Ehmke N. Horn D. Holtgrewe M. Kaiser F.J. Kamphausen S.B. Abou Jamra R. Weckhuysen S. Dalle C. Depienne C. Variants in the SK2 channel gene ( KCNN2 ) lead to dominant neurodevelopmental movement disorders. Brain 2020 143 12 3564 3573 10.1093/brain/awaa346 33242881
    [Google Scholar]
  48. Li L. Liu X. Ma X. Deng X. Ji T. Hu P. Wan R. Qiu H. Cui D. Gao L. Identification of key candidate genes and pathways in glioblastoma by integrated bioinformatical analysis. Exp. Ther. Med. 2019 18 5 3439 3449 10.3892/etm.2019.7975 31602219
    [Google Scholar]
  49. Yuan P. Ling L. Gao X. Sun T. Miao J. Yuan X. Liu J. Wang Z. Liu B. Identification of RNA-binding protein SNRPA1 for prognosis in prostate cancer. Aging (Albany NY) 2021 13 2 2895 2911 10.18632/aging.202387 33460399
    [Google Scholar]
  50. Feng J. Guo J. Zhao P. Shen J. Chai B. Wang J. mTOR up-regulation of SNRPA1 contributes to hepatocellular carcinoma development. Biosci. Rep. 2020 40 6 BSR20193815 10.1042/BSR20193815 32420585
    [Google Scholar]
  51. Zeng Q. Lei F. Chang Y. Gao Z. Wang Y. Gao Q. Niu P. Li Q. An oncogenic gene, SNRPA1, regulates PIK3R1, VEGFC, MKI67, CDK1 and other genes in colorectal cancer. Biomed. Pharmacother. 2019 117 109076 10.1016/j.biopha.2019.109076 31203132
    [Google Scholar]
  52. Zhang S. Fu X. The clinical significance and biological function of PCDH7 in cervical cancer. Cancer Manag. Res. 2021 13 3841 3847 10.2147/CMAR.S298072 34012292
    [Google Scholar]
  53. Lin Y.L. Wang Y.L. Fu X.L. Li W.P. Wang Y.H. Ma J.G. Low expression of protocadherin7 (PCDH7) is a potential prognostic biomarker for primary non-muscle invasive bladder cancer. Oncotarget 2016 7 19 28384 28392 10.18632/oncotarget.8635 27070091
    [Google Scholar]
  54. Chen L. Xiang Z. Chen X. Zhu X. Peng X. A seven-gene signature model predicts overall survival in kidney renal clear cell carcinoma. Hereditas 2020 157 1 38 10.1186/s41065‑020‑00152‑y 32883362
    [Google Scholar]
  55. Li Y. Xu J. Xiong H. Ma Z. Wang Z. Kipreos E.T. Dalton S. Zhao S. Cancer driver candidate genes AVL9, DENND5A and NUPL1 contribute to MDCK cystogenesis. Oncoscience 2014 1 12 854 865 10.18632/oncoscience.107 25621300
    [Google Scholar]
  56. Lamm D.L. Blumenstein B.A. Crissman J.D. Montie J. Gottesman J. Lowe B.A. Sarosdy M.F. Bohl R.D. Grossman H.B. Beck T.M. Leimert J.T. Crawford D. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: A randomized Southwest Oncology Group Study. J. Urol. 2000 163 4 1124 1129 10.1016/S0022‑5347(05)67707‑5 10737480
    [Google Scholar]
  57. Liu Y. Yang W. Zhao L. Liang Z. Shen W. Hou Q. Wang Z. Jiang J. Ying S. Immune analysis of expression of IL-17 relative ligands and their receptors in bladder cancer: Comparison with polyp and cystitis. BMC Immunol. 2016 17 1 36 10.1186/s12865‑016‑0174‑8 27716046
    [Google Scholar]
  58. Wang L. Yi T. Kortylewski M. Pardoll D.M. Zeng D. Yu H. IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway. J. Exp. Med. 2009 206 7 1457 1464 10.1084/jem.20090207 19564351
    [Google Scholar]
  59. Liu C. Liu R. Wang B. Lian J. Yao Y. Sun H. Zhang C. Fang L. Guan X. Shi J. Han S. Zhan F. Luo S. Yao Y. Zheng T. Zhang Y. Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer. J. Immunother. Cancer 2021 9 1 e001895 10.1136/jitc‑2020‑001895 33462141
    [Google Scholar]
  60. Guo F.F. Cui J.W. The role of tumor-infiltrating B cells in tumor immunity. J. Oncol. 2019 2019 1 9 10.1155/2019/2592419 31662750
    [Google Scholar]
  61. Kohli K. Pillarisetty V.G. Dendritic cells in the tumor microenvironment. Adv. Exp. Med. Biol. 2020 1273 29 38 10.1007/978‑3‑030‑49270‑0_2 33119874
    [Google Scholar]
  62. Corcione A. Ferretti E. Bertolotto M. Fais F. Raffaghello L. Gregorio A. Tenca C. Ottonello L. Gambini C. Furtado G. Lira S. Pistoia V. CX3CR1 is expressed by human B lymphocytes and mediates [corrected] CX3CL1 driven chemotaxis of tonsil centrocytes. PLoS One 2009 4 12 e8485 10.1371/journal.pone.0008485 20041188
    [Google Scholar]
  63. Sutti S. Bruzzì S. Heymann F. Liepelt A. Krenkel O. Toscani A. Ramavath N. Cotella D. Albano E. Tacke F. CX3CR1 mediates the development of monocyte-derived dendritic cells during hepatic inflammation. Cells 2019 8 9 1099 10.3390/cells8091099 31540356
    [Google Scholar]
  64. Sutti S. Heymann F. Bruzzì S. Peusquens J. Trautwein C. Albano E. Tacke F. CX3CR1 modulates the anti-inflammatory activity of hepatic dendritic cells in response to acute liver injury. Clin. Sci. (Lond.) 2017 131 17 2289 2301 10.1042/CS20171025 28739980
    [Google Scholar]
  65. Wu L. Lian W. Zhao L. Calcium signaling in cancer progression and therapy. FEBS J. 2021 288 21 6187 6205 10.1111/febs.16133 34288422
    [Google Scholar]
  66. Sheng Q.J. Tian W.Y. Dou X.G. Zhang C. Li Y.W. Han C. Fan Y.X. Lai P.P. Ding Y. Programmed death 1, ligand 1 and 2 correlated genes and their association with mutation, immune infiltration and clinical outcomes of hepatocellular carcinoma. World J. Gastrointest. Oncol. 2020 12 11 1255 1271 10.4251/wjgo.v12.i11.1255 33250959
    [Google Scholar]
/content/journals/pra/10.2174/0115748928329276241020184935
Loading
/content/journals/pra/10.2174/0115748928329276241020184935
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: alternative splicing ; tumor immune ; Bladder cancer ; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test