Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Bladder cancer exhibits substantial heterogeneity encompassing genetic expressions and histological features. This heterogeneity is predominantly attributed to alternative splicing (AS) and AS-regulated splicing factors (SFs), which, in turn, influence bladder cancer development, progression, and response to treatment.

Objective

This study aimed to explore the immune landscape of aberrant AS in bladder cancer and establish the prognostic signatures for survival prediction.

Methods

Bladder cancer-related RNA-Seq, transcriptome, and corresponding clinical information were downloaded from The Cancer Genome Atlas (TCGA). Gene set enrichment analysis (GSEA) was used to identify significantly enriched pathways of cancer-related AS events. The underlying interactions among differentially expressed genes (DEGs) and cancer-related AS events were assessed by a protein-protein interaction network. Univariate and multivariate Cox regression analyses were performed to identify crucial prognostic DEGs that co-occurred with cancer-related AS events (DEGAS) for overall survival. The area under the curve (AUC) of receiver operating characteristic (ROC) curves was used to assess the efficiency of the prognostic signatures. The CIBERSORT algorithm was used to explore the abundance of immune infiltrating cells.

Results

A total of 3755 cancer-related AS events and 3110 DEGs in bladder cancer were identified. Among them, 379 DEGs co-occurred with cancer-related AS events (DEGAS), of which 102 DEGAS were associated with 14 dysregulated SFs. GSEA and KEGG analysis showed that cancer-related AS events were predominantly enriched in pathways related to immunity, tumorigenesis, and treatment difficulties of bladder cancer. Multivariate Cox regression analysis identified 8 DEGAS (CABP1, KCNN2, TNFRSF13B, PCDH7, SNRPA1, APOLD1, CX3CL1, and DENND5A) significantly associated with OS, and they were further integrated into the prediction model with good AUCs at 3-year, 5-year and 7-year ROC curves (all>0.7). Immune infiltration analysis revealed the significant enrichment of three immune cell types (B cells naïve, dendritic cells resting, and dendritic cell activated) in high-risk bladder cancer patients.

Conclusion

This study not only unveiled comprehensive prognostic signatures of AS events in bladder cancer but also established a robust prognostic model based on survival-related DEGAS. These aberrant AS events, dysregulated SFs, and the identified 8 DEGAS may have significant clinical potential as therapeutic targets for bladder cancer.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928329276241020184935
2024-10-29
2025-04-25
Loading full text...

Full text loading...

References

  1. SaginalaK. BarsoukA. AluruJ.S. RawlaP. PadalaS.A. BarsoukA. Epidemiology of bladder cancer.Med. Sci. (Basel)2020811510.3390/medsci8010015 32183076
    [Google Scholar]
  2. RichtersA. AbenK.K.H. KiemeneyL.A.L.M. The global burden of urinary bladder cancer: An update.World J. Urol.20203881895190410.1007/s00345‑019‑02984‑4 31676912
    [Google Scholar]
  3. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  4. Key statistics for bladder cancer.2024Available from: https://www.cancer.org/cancer/types/bladder-cancer/about/key-statistics.html
  5. MushtaqJ. ThurairajaR. NairR. Bladder cancer.Surgery201937952953710.1016/j.mpsur.2019.07.003
    [Google Scholar]
  6. FreedmanN.D. SilvermanD.T. HollenbeckA.R. SchatzkinA. AbnetC.C. Association between smoking and risk of bladder cancer among men and women.JAMA2011306773774510.1001/jama.2011.1142 21846855
    [Google Scholar]
  7. SafiriS. KolahiA.A. NaghaviM. Global, regional and national burden of bladder cancer and its attributable risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019.BMJ Glob. Health2021611e00412810.1136/bmjgh‑2020‑004128 34844997
    [Google Scholar]
  8. AbdolahiniaZ. PakmaneshH. MirzaeeM. BazrafshanA. Shafiei BaftiM. ShahesmaeiliA. Opium and cigarette smoking are independently associated with bladder cancer: The findings of a matched case - Control study.Asian Pac. J. Cancer Prev.202122103385339110.31557/APJCP.2021.22.10.3385 34711016
    [Google Scholar]
  9. GuJ. WuX. Genetic susceptibility to bladder cancer risk and outcome.Per. Med.20118336537410.2217/pme.11.15 21927616
    [Google Scholar]
  10. ZhangX. ZhangY. Bladder cancer and genetic mutations.Cell Biochem. Biophys.2015731656910.1007/s12013‑015‑0574‑z 27352265
    [Google Scholar]
  11. WignerP. GrębowskiR. BijakM. Saluk-BijakJ. SzemrajJ. The interplay between oxidative stress, inflammation and angiogenesis in bladder cancer development.Int. J. Mol. Sci.2021229448310.3390/ijms22094483 33923108
    [Google Scholar]
  12. KhalifaM.K. BakrN.M. RamadanA. Implications of targeted next-generation sequencing for bladder cancer: Report of four cases.J. Genet. Eng. Biotechnol.20211919110.1186/s43141‑021‑00182‑7 34152511
    [Google Scholar]
  13. UleJ. BlencoweB.J. Alternative splicing regulatory networks: Functions, mechanisms, and evolution.Mol. Cell201976232934510.1016/j.molcel.2019.09.017 31626751
    [Google Scholar]
  14. Gallego-PaezL.M. BordoneM.C. LeoteA.C. Saraiva-AgostinhoN. Ascensão-FerreiraM. Barbosa-MoraisN.L. Alternative splicing: The pledge, the turn, and the prestige.Hum. Genet.201713691015104210.1007/s00439‑017‑1790‑y 28374191
    [Google Scholar]
  15. LadomeryM. Aberrant alternative splicing is another hallmark of cancer.Int. J. Cell Biol.201320131610.1155/2013/463786 24101931
    [Google Scholar]
  16. BonnalS.C. López-OrejaI. ValcárcelJ. Roles and mechanisms of alternative splicing in cancer — Implications for care.Nat. Rev. Clin. Oncol.202017845747410.1038/s41571‑020‑0350‑x 32303702
    [Google Scholar]
  17. CraeneB.D. BerxG. Regulatory networks defining EMT during cancer initiation and progression.Nat. Rev. Cancer20131329711010.1038/nrc3447 23344542
    [Google Scholar]
  18. ZhangY. QianJ. GuC. YangY. Alternative splicing and cancer: A systematic review.Signal Transduct. Target. Ther.2021617810.1038/s41392‑021‑00486‑7 33623018
    [Google Scholar]
  19. WangY. ZhangH. JiaoB. The roles of alternative splicing in tumor-immune cell interactions.Curr. Cancer Drug Targets2020201072974010.2174/1568009620666200619123725 32560607
    [Google Scholar]
  20. ParkJ. ParkJ. ChungY.J. Alternative splicing: A new breakthrough for understanding tumorigenesis and potential clinical applications.Genes Genomics202345439340010.1038/s41568‑020‑0285‑7 32753728
    [Google Scholar]
  21. CentaJ.L. HastingsM.L. Targeting alternative splicing for therapeutic interventions.Methods Mol. Biol.20222537213610.3389/fonc.2019.01270 31824850
    [Google Scholar]
  22. LangF. SornP. SuchanM. Prediction of tumor-specific splicing from somatic mutations as a source of neoantigen candidates.Bioinform. Adv.202441vbae08010.1016/j.eururo.2019.01.011 30712971
    [Google Scholar]
  23. BruniD. AngellH.K. GalonJ. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy.Nat. Rev. Cancer2020201166268010.1080/2162402X.2018.1474317 30393586
    [Google Scholar]
  24. RyanM.C. ClelandJ. KimR. WongW.C. WeinsteinJ.N. SpliceSeq: A resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts.Bioinformatics201228182385238710.1093/bioinformatics/bts452 22820202
    [Google Scholar]
  25. RyanM. WongW.C. BrownR. TCGASpliceSeq a compendium of alternative mRNA splicing in cancer.Nucleic Acids Res.201644D1D1018D102210.1093/nar/gkv1288 26602693
    [Google Scholar]
  26. FranzM. LopesC.T. HuckG. DongY. SumerO. BaderG.D. Cytoscape.js: A graph theory library for visualisation and analysis.Bioinformatics201632230931110.1093/bioinformatics/btv557 26415722
    [Google Scholar]
  27. SzklarczykD FranceschiniA KuhnM The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored.Nucleic Acids Res201139DatabaseD561810.1093/nar/gkq973 21045058
    [Google Scholar]
  28. GiuliettiM. PivaF. D’AntonioM. SpliceAid-F: A database of human splicing factors and their RNA-binding sites.Nucleic Acids Res.201341D1D125D13110.1093/nar/gks997 23118479
    [Google Scholar]
  29. NewmanA.M. LiuC.L. GreenM.R. Robust enumeration of cell subsets from tissue expression profiles.Nat. Methods201512545345710.1038/nmeth.3337 25822800
    [Google Scholar]
  30. ChenB. KhodadoustM.S. LiuC.L. NewmanA.M. AlizadehA.A. Profiling tumor infiltrating immune cells with CIBERSORT.Methods Mol. Biol.2018171124325910.1007/978‑1‑4939‑7493‑1_12 29344893
    [Google Scholar]
  31. BajikarS.S. WangC.C. BortenM.A. PereiraE.J. AtkinsK.A. JanesK.A. Tumor-suppressor inactivation of gdf11 occurs by precursor sequestration in triple-negative breast cancer.Dev. Cell2017434418435.e1310.1016/j.devcel.2017.10.027 29161592
    [Google Scholar]
  32. LiZ.X. ZhengZ.Q. WeiZ.H. Comprehensive characterization of the alternative splicing landscape in head and neck squamous cell carcinoma reveals novel events associated with tumorigenesis and the immune microenvironment.Theranostics20199257648766510.7150/thno.36585 31695792
    [Google Scholar]
  33. HongS. HuangY. CaoY. ChenX. HanJ.D.J. Approaches to uncovering cancer diagnostic and prognostic molecular signatures.Mol. Cell. Oncol.201412e95798110.4161/23723548.2014.957981 27308330
    [Google Scholar]
  34. Van HoeckA. TjoonkN.H. van BoxtelR. CuppenE. Portrait of a cancer: Mutational signature analyses for cancer diagnostics.BMC Cancer201919145710.1186/s12885‑019‑5677‑2 31092228
    [Google Scholar]
  35. MaloneE.R. OlivaM. SabatiniP.J.B. StockleyT.L. SiuL.L. Molecular profiling for precision cancer therapies.Genome Med.2020121810.1186/s13073‑019‑0703‑1 31937368
    [Google Scholar]
  36. ConroyM.J. LysaghtJ. CX3CL1 signaling in the tumor microenvironment.Adv. Exp. Med. Biol.2020123111210.1007/978‑3‑030‑36667‑4_1 32060841
    [Google Scholar]
  37. LiuP. LiangY. JiangL. WangH. WangS. DongJ. CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway.Int. J. Oncol.20185341544155610.3892/ijo.2018.4487 30066854
    [Google Scholar]
  38. LiuY. MaH. DongT. YanY. SunL. WangW. Clinical significance of expression level of CX3CL1–CX3CR1 axis in bone metastasis of lung cancer.Clin. Transl. Oncol.202123237838810.1007/s12094‑020‑02431‑6 32638214
    [Google Scholar]
  39. QueZ.J. YaoJ.L. ZhouZ.Y. Jinfukang inhibits lung cancer metastasis by upregulating CX3CL1 to recruit NK cells to kill CTCs.J. Ethnopharmacol.202127511417510.1016/j.jep.2021.114175 33933571
    [Google Scholar]
  40. LiangY. YiL. LiuP. CX3CL1 involves in breast cancer metastasizing to the spine via the Src/FAK signaling pathway.J. Cancer20189193603361210.7150/jca.26497 30310518
    [Google Scholar]
  41. ParkM.H. LeeJ.S. YoonJ.H. High expression of CX3CL1 by tumor cells correlates with a good prognosis and increased tumor‐infiltrating CD8+ T cells, natural killer cells, and dendritic cells in breast carcinoma.J. Surg. Oncol.2012106438639210.1002/jso.23095 22422195
    [Google Scholar]
  42. JiangG. WangH. HuangD. The clinical implications and molecular mechanism of CX3CL1 expression in urothelial bladder cancer.Front. Oncol.20211175286010.3389/fonc.2021.752860 34671562
    [Google Scholar]
  43. de Mattos BarbosaM.G. LeffertsA.R. HuynhD. TNFRSF13B genotypes control immune-mediated pathology by regulating the functions of innate B cells.JCI Insight2021617e15048310.1172/jci.insight.150483 34283811
    [Google Scholar]
  44. HinterleitnerC. ZhouY. TandlerC. Platelet-expressed TNFRSF13B (TACI) predicts breast cancer progression.Front. Oncol.20211164217010.3389/fonc.2021.642170 33816291
    [Google Scholar]
  45. Abo-ElfadlM.T. Gamal-EldeenA.M. IsmailM.F. ShahinN.N. Silencing of the cytokine receptor TNFRSF13B: A new therapeutic target for triple-negative breast cancer.Cytokine202012515479010.1016/j.cyto.2019.154790 31400636
    [Google Scholar]
  46. LiC. EnomotoM. RossiA.M. CaBP1, a neuronal Ca 2+ sensor protein, inhibits inositol trisphosphate receptors by clamping intersubunit interactions.Proc. Natl. Acad. Sci. USA2013110218507851210.1073/pnas.1220847110 23650371
    [Google Scholar]
  47. MochelF. RastetterA. CeulemansB. Variants in the SK2 channel gene (KCNN2) lead to dominant neurodevelopmental movement disorders.Brain2020143123564357310.1093/brain/awaa346 33242881
    [Google Scholar]
  48. LiL. LiuX. MaX. Identification of key candidate genes and pathways in glioblastoma by integrated bioinformatical analysis.Exp. Ther. Med.20191853439344910.3892/etm.2019.7975 31602219
    [Google Scholar]
  49. YuanP. LingL. GaoX. Identification of RNA-binding protein SNRPA1 for prognosis in prostate cancer.Aging (Albany NY)20211322895291110.18632/aging.202387 33460399
    [Google Scholar]
  50. FengJ. GuoJ. ZhaoP. ShenJ. ChaiB. WangJ. mTOR up-regulation of SNRPA1 contributes to hepatocellular carcinoma development.Biosci. Rep.2020406BSR2019381510.1042/BSR20193815 32420585
    [Google Scholar]
  51. ZengQ. LeiF. ChangY. An oncogenic gene, SNRPA1, regulates PIK3R1, VEGFC, MKI67, CDK1 and other genes in colorectal cancer.Biomed. Pharmacother.201911710907610.1016/j.biopha.2019.109076 31203132
    [Google Scholar]
  52. ZhangS. FuX. The clinical significance and biological function of PCDH7 in cervical cancer.Cancer Manag. Res.2021133841384710.2147/CMAR.S298072 34012292
    [Google Scholar]
  53. LinY.L. WangY.L. FuX.L. LiW.P. WangY.H. MaJ.G. Low expression of protocadherin7 (PCDH7) is a potential prognostic biomarker for primary non-muscle invasive bladder cancer.Oncotarget2016719283842839210.18632/oncotarget.8635 27070091
    [Google Scholar]
  54. ChenL. XiangZ. ChenX. ZhuX. PengX. A seven-gene signature model predicts overall survival in kidney renal clear cell carcinoma.Hereditas202015713810.1186/s41065‑020‑00152‑y 32883362
    [Google Scholar]
  55. LiY. XuJ. XiongH. Cancer driver candidate genes AVL9, DENND5A and NUPL1 contribute to MDCK cystogenesis.Oncoscience201411285486510.18632/oncoscience.107 25621300
    [Google Scholar]
  56. LammD.L. BlumensteinB.A. CrissmanJ.D. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: A randomized Southwest Oncology Group Study.J. Urol.200016341124112910.1016/S0022‑5347(05)67707‑5 10737480
    [Google Scholar]
  57. LiuY. YangW. ZhaoL. Immune analysis of expression of IL-17 relative ligands and their receptors in bladder cancer: Comparison with polyp and cystitis.BMC Immunol.20161713610.1186/s12865‑016‑0174‑8 27716046
    [Google Scholar]
  58. WangL. YiT. KortylewskiM. PardollD.M. ZengD. YuH. IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway.J. Exp. Med.200920671457146410.1084/jem.20090207 19564351
    [Google Scholar]
  59. LiuC. LiuR. WangB. Blocking IL-17A enhances tumor response to anti-PD-1 immunotherapy in microsatellite stable colorectal cancer.J. Immunother. Cancer202191e00189510.1136/jitc‑2020‑001895 33462141
    [Google Scholar]
  60. GuoF.F. CuiJ.W. The role of tumor-infiltrating B cells in tumor immunity.J. Oncol.201920191910.1155/2019/2592419 31662750
    [Google Scholar]
  61. KohliK. PillarisettyV.G. Dendritic cells in the tumor microenvironment.Adv. Exp. Med. Biol.20201273293810.1007/978‑3‑030‑49270‑0_2 33119874
    [Google Scholar]
  62. CorcioneA. FerrettiE. BertolottoM. CX3CR1 is expressed by human B lymphocytes and mediates [corrected] CX3CL1 driven chemotaxis of tonsil centrocytes.PLoS One2009412e848510.1371/journal.pone.0008485 20041188
    [Google Scholar]
  63. SuttiS. BruzzìS. HeymannF. CX3CR1 mediates the development of monocyte-derived dendritic cells during hepatic inflammation.Cells201989109910.3390/cells8091099 31540356
    [Google Scholar]
  64. SuttiS. HeymannF. BruzzìS. CX3CR1 modulates the anti-inflammatory activity of hepatic dendritic cells in response to acute liver injury.Clin. Sci. (Lond.)2017131172289230110.1042/CS20171025 28739980
    [Google Scholar]
  65. WuL. LianW. ZhaoL. Calcium signaling in cancer progression and therapy.FEBS J.2021288216187620510.1111/febs.16133 34288422
    [Google Scholar]
  66. ShengQ.J. TianW.Y. DouX.G. Programmed death 1, ligand 1 and 2 correlated genes and their association with mutation, immune infiltration and clinical outcomes of hepatocellular carcinoma.World J. Gastrointest. Oncol.202012111255127110.4251/wjgo.v12.i11.1255 33250959
    [Google Scholar]
/content/journals/pra/10.2174/0115748928329276241020184935
Loading
/content/journals/pra/10.2174/0115748928329276241020184935
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): alternative splicing; Bladder cancer; prognosis; splicing factor; TCGA; tumor immune
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test