Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Curcumin has been reported to have anti-hepatocellular carcinoma (HCC) effects, but the underlying mechanism is not well known.

Objectives

To investigate whether membrane-associated RING-CH 1 (MARCH1) is involved in the curcumin-induced growth suppression in HCC and its underlying molecular mechanism. A few recent patents for curcumin for cancer are also reviewed in this article.

Methods

The effect of curcumin on growth inhibition of HCC cells was analyzed through and experiments, and the expression levels of MARCH1, Bcl-2, VEGF, cyclin B1, cyclin D1, and JAK2/STAT3 signaling molecules were measured in HCC cells and the xenograft tumors in nude mice. Cell transfection with MARCH1 siRNAs or expression plasmid was used to explore the role of MARCH1 in the curcumin-induced growth inhibition of HCC cells.

Results

Curcumin inhibited cell proliferation, promoted apoptosis, and arrested the cell cycle at the G2/M phase in HCC cells with the decrease of Bcl-2, VEGF, cyclin B1, and cyclin D1 expression as well as JAK2 and STAT3 phosphorylation, resulting in the growth suppression of HCC cells. MARCH1 is highly expressed in HCC cells, and its expression was downregulated after curcumin treatment in a dose-dependent manner. The knockdown of MARCH1 by siRNA decreased the phosphorylation levels of JAK2 and STAT3 and inhibited the growth of HCC cells. In contrast, opposite results were observed when HCC cells overexpressed MARCH1. A xenograft tumor model in nude mice also showed that curcumin downregulated MARCH1 expression and decelerated the growth of transplanted HCC with the downregulation of JAK2/STAT3 signaling and functional molecules. The ADC value of MRI analysis showed that curcumin slowed down the progression of HCC.

Conclusion

Our results demonstrated that curcumin may inhibit the activation of JAK2/STAT3 signaling pathway by downregulating MARCH1 expression, resulting in the growth suppression of HCC. MARCH1 may be a novel target of curcumin in HCC treatment.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928261490231124055059
2024-01-08
2025-06-22
Loading full text...

Full text loading...

References

  1. VillanuevaA. Hepatocellular carcinoma.N. Engl. J. Med.2019380151450146210.1056/NEJMra1713263 30970190
    [Google Scholar]
  2. LlovetJ.M. KelleyR.K. VillanuevaA. Hepatocellular carcinoma.Nat. Rev. Dis. Primers202171610.1038/s41572‑020‑00240‑3 33479224
    [Google Scholar]
  3. GolabiP. FazelS. OtgonsurenM. SayinerM. LocklearC.T. YounossiZ.M. Mortality assessment of patients with hepatocellular carcinoma according to underlying disease and treatment modalities.Medicine2017969e590410.1097/MD.0000000000005904 28248853
    [Google Scholar]
  4. ChenZ. XieH. HuM. Recent progress in treatment of hepatocellular carcinoma.Am. J. Cancer Res.202010929933036 33042631
    [Google Scholar]
  5. XiangY. GuoZ. ZhuP. ChenJ. HuangY. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science.Cancer Med.2019851958197510.1002/cam4.2108 30945475
    [Google Scholar]
  6. AlmatroodiS.A. SyedM.A. RahmaniA.H. Potential therapeutic targets of curcumin, most abundant active compound of turmeric spice: Role in the management of various types of cancer.Recent Patents Anticancer Drug Discov.202116132910.2174/1574892815999201102214602 33143616
    [Google Scholar]
  7. XiaoQ. DengG. WuL. Curcumin, extraction method thereof and natural anti-inflammatory composition.Patent CN1156268712023
  8. KertJ. Composition for antimicrobial photodynamic therapy.Patent US20224097292022
  9. LiX. JiaY. MouR. WangL. Application of traditional Chinese medicine monomer curcumin in preparation of medicine for treating tumors.Patent CN1148486172022
  10. LiR. ZhangJ. ZhouY. Transcriptome investigation and in vitro verification of curcumin-induced HO-1 as a feature of ferroptosis in breast cancer cells.Oxid. Med. Cell. Longev.2020202011810.1155/2020/3469840 33294119
    [Google Scholar]
  11. LinX. WangL. ZhaoL. Curcumin micelles suppress gastric tumor cell growth by upregulating ROS generation, disrupting redox equilibrium and affecting mitochondrial bioenergetics.Food Funct.20201154146415910.1039/D0FO00260G 32347864
    [Google Scholar]
  12. ZhengY. YangX. TanJ. Curcumin suppresses the stemness of non‐small cell lung cancer cells via promoting the nuclear‐cytoplasm translocation of TAZ.Environ. Toxicol.20213661135114210.1002/tox.23112 33539684
    [Google Scholar]
  13. Ruiz de PorrasV. LayosL. Martínez-BalibreaE. Curcumin: A therapeutic strategy for colorectal cancer?Semin. Cancer Biol.20217332133010.1016/j.semcancer.2020.09.004 32942023
    [Google Scholar]
  14. ZhouC. HuC. WangB. FanS. JinW. Curcumin suppresses cell proliferation, migration, and invasion through modulating miR-21-5p/SOX6 axis in hepatocellular carcinoma.Cancer Biother. Radiopharm.2020373410.1089/cbr.2020.3734 32757994
    [Google Scholar]
  15. BaiC. ZhaoJ. SuJ. Curcumin induces mitochondrial apoptosis in human hepatoma cells through BCLAF1-mediated modulation of PI3K/AKT/GSK-3β signaling.Life Sci.202230612080410.1016/j.lfs.2022.120804 35882275
    [Google Scholar]
  16. MatsukiY. Ohmura-HoshinoM. GotoE. Novel regulation of MHC class II function in B cells.EMBO J.200726384685410.1038/sj.emboj.7601556 17255932
    [Google Scholar]
  17. CorcoranK. JabbourM. BhagwandinC. DeymierM.J. TheisenD.L. LybargerL. Ubiquitin-mediated regulation of CD86 protein expression by the ubiquitin ligase membrane-associated RING-CH-1 (MARCH1).J. Biol. Chem.201128643371683718010.1074/jbc.M110.204040 21896490
    [Google Scholar]
  18. NagarajanA. PetersenM.C. NasiriA.R. MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels.Nat. Commun.2016711263910.1038/ncomms12639 27577745
    [Google Scholar]
  19. KishtaO.A. SabourinA. SimonL. March1 E3 ubiquitin ligase modulates features of allergic asthma in an ovalbumin-induced mouse model of lung inflammation.J. Immunol. Res.2018201811710.1155/2018/3823910 29854835
    [Google Scholar]
  20. XiaoF. LiS. SunY. ChangP. MARCH1 gene serving as diagnosis and treatment marker of rheumatoid arthritis and osteoarthritis.Patent CN1085597722019
  21. FengW. ZhongG. ciRs-6 upregulates March1 to suppress bladder cancer growth by sponging miR-653.Aging 20191123112021122310.18632/aging.102525
    [Google Scholar]
  22. MengY. HuJ. ChenY. YuT. HuL. Silencing MARCH1 suppresses proliferation, migration and invasion of ovarian cancer SKOV3 cells via downregulation of NF-κB and Wnt/β-catenin pathways.Oncol. Rep.20163652463247010.3892/or.2016.5076 27633480
    [Google Scholar]
  23. LiuL. GuoB. HanY. XuS. LiuS. MARCH1 silencing suppresses growth of oral squamous cell carcinoma through regulation of PHLPP2.Clin. Transl. Oncol.20222471311132110.1007/s12094‑021‑02769‑5 35122633
    [Google Scholar]
  24. YuC. XianY. LuoX. Inhibitor for inhibiting virus replication and cancer cell proliferation.Patent CN1158450382023
  25. XieL. DaiH. LiM. MARCH1 encourages tumour progression of hepatocellular carcinoma via regulation of PI3K‐AKT‐β‐catenin pathways.J. Cell. Mol. Med.20192353386340110.1111/jcmm.14235 30793486
    [Google Scholar]
  26. DaiH. LiM. YangW. Resveratrol inhibits the malignant progression of hepatocellular carcinoma via MARCH1-induced regulation of PTEN/AKT signaling.Aging20201212117171173110.18632/aging.103338 32530437
    [Google Scholar]
  27. YangW. FengQ. LiM. Sinomenine suppresses development of hepatocellular carcinoma cells via inhibiting MARCH1 and AMPK/STAT3 signaling pathway.Front. Mol. Biosci.2021868426210.3389/fmolb.2021.684262 34179090
    [Google Scholar]
  28. YangW. SuJ. LiM. Myricetin induces autophagy and cell cycle arrest of HCC by inhibiting MARCH1-regulated Stat3 and p38 MAPK signaling pathways.Front. Pharmacol.20211270952610.3389/fphar.2021.709526 34733155
    [Google Scholar]
  29. Mengie AyeleT. Tilahun MucheZ. Behaile TeklemariamA. BogaleA. Chekol AbebeE. Role of JAK2/STAT3 signaling pathway in the tumorigenesis, chemotherapy resistance, and treatment of solid tumors: A systemic review.J. Inflamm. Res.2022151349136410.2147/JIR.S353489 35241923
    [Google Scholar]
  30. LiangQ. GongM. ZouJ.H. A phosphoglycerate mutase 1 allosteric inhibitor overcomes drug resistance to EGFR-targeted therapy via disrupting IL-6/JAK2/STAT3 signaling pathway in lung adenocarcinoma.Drug Resist. Updat.20236810095710.1016/j.drup.2023.100957 36990047
    [Google Scholar]
  31. KirsteinM.M. VogelA. The pathogenesis of hepatocellular carcinoma.Dig. Dis.201432554555310.1159/000360499 25034287
    [Google Scholar]
  32. LiaoX. BuY. JiaQ. Traditional Chinese medicine as supportive care for the management of liver cancer: Past, present, and future.Genes Dis.20207337037910.1016/j.gendis.2019.10.016 32884991
    [Google Scholar]
  33. ShishodiaS. Molecular mechanisms of curcumin action: Gene expression.Biofactors2013391375510.1002/biof.1041 22996381
    [Google Scholar]
  34. LiJ. WeiH. LiuY. Curcumin inhibits hepatocellular carcinoma via regulating miR-21/TIMP3 axis.Evid. Based Complement. Alternat. Med.2020202011310.1155/2020/2892917 32724322
    [Google Scholar]
  35. ShaoJ. ShiC.J. LiY. LincROR mediates the suppressive effects of curcumin on hepatocellular carcinoma through inactivating Wnt/β-Catenin signaling.Front. Pharmacol.20201184710.3389/fphar.2020.00847 32714183
    [Google Scholar]
  36. WuJ. XiaL. YaoX. The E3 ubiquitin ligase MARCH1 regulates antimalaria immunity through interferon signaling and T cell activation.Proc. Natl. Acad. Sci.202011728165671657810.1073/pnas.2004332117 32606244
    [Google Scholar]
  37. YuanK. YeJ. LiuZ. Complement C3 overexpression activates JAK2/STAT3 pathway and correlates with gastric cancer progression.J. Exp. Clin. Cancer Res.2020391910.1186/s13046‑019‑1514‑3 31928530
    [Google Scholar]
  38. WuX. TaoP. ZhouQ. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway.Oncotarget2017813207412075010.18632/oncotarget.15119 28186964
    [Google Scholar]
  39. HuY. ZhouN. ZhuQ. Curcumin inhibits proliferation and invasion of papillary thyroid carcinoma cells by inhibiting the JAK2/STAT3 pathway.J. BUON202126416351641 34565029
    [Google Scholar]
  40. SunY. LiuL. WangY. Curcumin inhibits the proliferation and invasion of MG-63 cells through inactivation of the p-JAK2/p-STAT3 pathway.OncoTargets Ther.2019122011202110.2147/OTT.S172909 30936718
    [Google Scholar]
  41. YangC.L. LiuY.Y. MaY.G. Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase-STAT3 signalling pathway.PLoS One201275e3796010.1371/journal.pone.0037960 22662257
    [Google Scholar]
  42. MenonS.S. GuruvayoorappanC. SakthivelK.M. RasmiR.R. Ki-67 protein as a tumour proliferation marker.Clin. Chim. Acta2019491394510.1016/j.cca.2019.01.011 30653951
    [Google Scholar]
  43. MelincoviciC.S. BoşcaA.B. ŞuşmanS. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis.Rom. J. Morphol. Embryol.2018592455467 30173249
    [Google Scholar]
  44. GuoA.C. CummingsT.J. DashR.C. ProvenzaleJ.M. Lymphomas and high-grade astrocytomas: Comparison of water diffusibility and histologic characteristics.Radiology2002224117718310.1148/radiol.2241010637 12091680
    [Google Scholar]
  45. TsushimaY. Takahashi-TaketomiA. EndoK. Magnetic resonance (MR) differential diagnosis of breast tumors using apparent diffusion coefficient (ADC) on 1.5-T.J. Magn. Reson. Imaging200930224925510.1002/jmri.21854 19629992
    [Google Scholar]
  46. Reyes-PérezJ.A. Villaseñor-NavarroY. Jiménez de los SantosM.E. Pacheco-BravoI. Calle-LojaM. Sollozo-DupontI. The apparent diffusion coefficient (ADC) on 3-T MRI differentiates myometrial invasion depth and histological grade in patients with endometrial cancer.Acta Radiol.20206191277128610.1177/0284185119898658 31955608
    [Google Scholar]
  47. GuoL. TaoH. LiuX. Auxiliary brain glioma grading system based on image processing.Patent CN1147824482022
  48. PapaevangelouE. AlmeidaG.S. JaminY. RobinsonS.P. deSouzaN.M. Diffusion-weighted MRI for imaging cell death after cytotoxic or apoptosis-inducing therapy.Br. J. Cancer201511291471147910.1038/bjc.2015.134 25880014
    [Google Scholar]
  49. NgT.S.C. WertD. SohiH. Serial diffusion MRI to monitor and model treatment response of the targeted nanotherapy CRLX101.Clin. Cancer Res.20131992518252710.1158/1078‑0432.CCR‑12‑2738 23532891
    [Google Scholar]
/content/journals/pra/10.2174/0115748928261490231124055059
Loading
/content/journals/pra/10.2174/0115748928261490231124055059
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): anti-tumor activity; curcumin; Hepatocellular carcinoma; JAK2; MARCH1; STAT3
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test