Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

The development of cancer has been a multistep process involving mutation, proliferation, survival, invasion, and metastasis. Of all the characteristics of cancer, metastasis is believed to be the hallmark as it is responsible for the highest number of cancer-related deaths. In connection with this, Matrix metalloproteinases (MMPs), that has a role in metastasis, are one of the novel therapeutic targets. MMPs belong to the family of zinc-dependent endopeptidases and are capable of degrading the components of the extracellular matrix (ECM). The role of MMPs in ECM remodeling includes tissue morphogenesis, uterine cycling, growth, tissue repair, and angiogenesis. During pathological conditions, MMPs play a critical role in the excessive degradation of ECM which includes arthritis, tumour invasion, tumour metastasis, and several other autoimmune disorders. Moreover, they are believed to be involved in many physiological aspects of the cell, such as proliferation, migration, differentiation, angiogenesis, and apoptosis. It is reported that dysregulation of MMP in a variety of cancer subtypes have a dual role in tumour growth and metastasis processes. Further, multiple studies suggest the therapeutic potential of targeting MMP in invading cancer. The expression of MMP-2 correlates with the clinical characteristics of cancer patients, and its expression profile is a new diagnostic and prognostic biomarker for a variety of human diseases. Hence, manipulating the expression or function of MMP-2 may be a potential treatment strategy for different diseases, including cancers. Hence, the present review discusses the therapeutic potential of targeting MMP in various types of cancers and their recent patents.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928251754230922095544
2023-10-09
2025-01-01
Loading full text...

Full text loading...

References

  1. Cancer. Avaialable from: https://www.who.int/news-room/fact-sheets/detail/cancer(accessed 27 January 2023).
  2. LeeE.Y.H.P. MullerW.J. Oncogenes and tumor suppressor genes.Cold Spring Harb. Perspect. Biol.2010210a00323610.1101/cshperspect.a003236 20719876
    [Google Scholar]
  3. Cancer.Avaialable from: https://www.who.int/health-topics/cancer (accessed 27 January 2023).
  4. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.001 31854162
    [Google Scholar]
  5. Cancer Facts & Figures Cancer | Cancer Death Rate Drops. 2022Avaialable from: https://www.cancer.org/latest-news/facts-and-figures-2022.html(accessed 27 January 2023).
  6. Cancer invasion and metastasis: Molecular and cellular perspective- madame curie bioscience database - NCBI Bookshelf.Avaialable from: https://www.ncbi.nlm.nih.gov/books/NBK164700/ (accessed 27 January 2023).
  7. SeyfriedTN HuysentruytLC On the origin of cancer metastasis. Crit Rev Oncog2013181 - 2437310.1615/CritRevOncog.v18.i1‑2.40 23237552
    [Google Scholar]
  8. VermaR.P. HanschC. Matrix metalloproteinases (MMPs): Chemical–biological functions and (Q)SARs.Bioorg. Med. Chem.20071562223226810.1016/j.bmc.2007.01.011 17275314
    [Google Scholar]
  9. IyerR.P. PattersonN.L. FieldsG.B. LindseyM.L. The history of matrix metalloproteinases: milestones, myths, and misperceptions.Am. J. Physiol. Heart Circ. Physiol.20123038H919H93010.1152/ajpheart.00577.2012 22904159
    [Google Scholar]
  10. KleinT. BischoffR. Physiology and pathophysiology of matrix metalloproteases.Amino Acids201141227129010.1007/s00726‑010‑0689‑x 20640864
    [Google Scholar]
  11. LaronhaH. CaldeiraJ. Structure and function of human matrix metalloproteinases.Cells202095107610.3390/cells9051076 32357580
    [Google Scholar]
  12. Jabłońska-TrypućA MatejczykM RosochackiS. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs.J Enzyme Inhib Med Chem201631sup11778310.3109/14756366.2016.1161620 27028474
    [Google Scholar]
  13. Cabral-PachecoG.A. Garza-VelozI. Castruita-De la RosaC. The roles of matrix metalloproteinases and their inhibitors in human diseases.Int. J. Mol. Sci.20202124973910.3390/ijms21249739 33419373
    [Google Scholar]
  14. MurphyG. Tissue inhibitors of metalloproteinases.Genome Biol.2011121123310.1186/gb‑2011‑12‑11‑233 22078297
    [Google Scholar]
  15. BiljanaE. BorisV. CenaD. Matrix metalloproteinases (with accent to collagenases).J. Cell Anim. Biol.201157113120
    [Google Scholar]
  16. LiN-G. ShiZ-H. TangY.P. DuanJ.A. Selective matrix metalloproteinase inhibitors for cancer.Curr. Med. Chem.200916293805382710.2174/092986709789178037 19747139
    [Google Scholar]
  17. DasS. AminS.A. JhaT. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies.Eur. J. Med. Chem.202122311362310.1016/j.ejmech.2021.113623 34157437
    [Google Scholar]
  18. MacaulayV.M. O’ByrneK.J. SaundersM.P. Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions.Clin. Cancer Res.199953513520 10100701
    [Google Scholar]
  19. LeeH.M. CiancioS.G. TüterG. RyanM.E. KomaroffE. GolubL.M. Subantimicrobial dose doxycycline efficacy as a matrix metalloproteinase inhibitor in chronic periodontitis patients is enhanced when combined with a non-steroidal anti-inflammatory drug.J. Periodontol.200475345346310.1902/jop.2004.75.3.453 15088884
    [Google Scholar]
  20. PetersonJ.T. Matrix metalloproteinase inhibitor development and the remodeling of drug discovery.Heart Fail. Rev.200491637910.1023/B:HREV.0000011395.11179.af 14739769
    [Google Scholar]
  21. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases | Nature Reviews Drug Discovery.Available from: https://www.nature.com/articles/nrd2308(accessed 27 January 2023).
  22. WalrathJ.C. HawesJ.J. Van DykeT. ReillyK.M. Genetically engineered mouse models in cancer research.Adv. Cancer Res.201010611316410.1016/S0065‑230X(10)06004‑5 20399958
    [Google Scholar]
  23. CheonD.J. OrsulicS. Mouse models of cancer.Annu. Rev. Pathol.2011619511910.1146/annurev.pathol.3.121806.154244 20936938
    [Google Scholar]
  24. RodríguezD. MorrisonC.J. OverallC.M. Matrix metalloproteinases: What do they not do? New substrates and biological roles identified by murine models and proteomics.Biochim. Biophys. Acta Mol. Cell Res.201018031395410.1016/j.bbamcr.2009.09.015 19800373
    [Google Scholar]
  25. HannB. BalmainA. Building ‘validated’ mouse models of human cancer.Curr. Opin. Cell Biol.200113677878410.1016/S0955‑0674(00)00283‑0 11698196
    [Google Scholar]
  26. ScroyenI. HemmeryckxB. LijnenH.R. From mice to men: Mouse models in obesity research: What can we learn?Thromb. Haemost.20131101063464010.1160/TH12‑11‑0873 23446493
    [Google Scholar]
  27. DingL. ZhaoY. WarrenC.L. SullivanR. EliceiriK.W. ShullJ.D. Association of cellular and molecular responses in the rat mammary gland to 17β-estradiol with susceptibility to mammary cancer.BMC Cancer201313157310.1186/1471‑2407‑13‑573 24304664
    [Google Scholar]
  28. SonJ. LeeJ.H. KimH.N. HaH. LeeZ.H. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction.Biochem. Biophys. Res. Commun.2010398230931410.1016/j.bbrc.2010.06.087 20599715
    [Google Scholar]
  29. ZhangY. DavisC. RyanJ. JanneyC. PeñaM.M.O. Development and characterization of a reliable mouse model of colorectal cancer metastasis to the liver.Clin. Exp. Metastasis201330790391810.1007/s10585‑013‑9591‑8 23748471
    [Google Scholar]
  30. Łukaszewicz-ZającM. MroczkoB. SzmitkowskiM. Gastric cancer: The role of matrix metalloproteinases in tumor progression.Clin. Chim. Acta201141219-201725173010.1016/j.cca.2011.06.003 21693112
    [Google Scholar]
  31. SaidA. RaufmanJ.P. XieG. The role of matrix metalloproteinases in colorectal cancer.Cancers20146136637510.3390/cancers6010366 24518611
    [Google Scholar]
  32. WernerJ.A. RathckeI.O. MandicR. The role of matrix metalloproteinases in squamous cell carcinomas of the head and neck.Clin. Exp. Metastasis200219427528210.1023/A:1015531319087 12090467
    [Google Scholar]
  33. VihinenP. KähäriV.M. Matrix metalloproteinases in cancer: Prognostic markers and therapeutic targets.Int. J. Cancer200299215716610.1002/ijc.10329 11979428
    [Google Scholar]
  34. CathcartJ. Pulkoski-GrossA. CaoJ. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas.Genes Dis.201521263410.1016/j.gendis.2014.12.002 26097889
    [Google Scholar]
  35. ItohY. NagaseH. Matrix metalloproteinases in cancer.Essays Biochem.200238213610.1042/bse0380021 12463159
    [Google Scholar]
  36. KessenbrockK. PlaksV. WerbZ. Matrix metalloproteinases: Regulators of the tumor microenvironment.Cell20101411526710.1016/j.cell.2010.03.015 20371345
    [Google Scholar]
  37. MMP2 gene: MedlinePlus Genetics. Available from: https://medlineplus.gov/genetics/gene/mmp2/(accessed 27 January 2023).
  38. MatrixMetalloproteinases Its Implications in Cardiovascular Disorders | Presentations | PharmaXChange.info.2011Available from: https://pharmaxchange.info/2011/11/matrix-metalloproteinases-its-implications-in-cardiovascular-disorders/ (accessed 27 January 2023).
    [Google Scholar]
  39. SenguptaS. JanaS. BiswasS. MandalP.K. BhattacharyyaA. Cooperative involvement of NFAT and SnoN mediates transforming growth factor-β (TGF-β) induced EMT in metastatic breast cancer (MDA-MB 231) cells.Clin. Exp. Metastasis20133081019103110.1007/s10585‑013‑9600‑y 23832742
    [Google Scholar]
  40. WieczorekE. JablonskaE. WasowiczW. ReszkaE. Matrix metalloproteinases and genetic mouse models in cancer research: A mini-review.Tumour Biol.201536116317510.1007/s13277‑014‑2747‑6 25352026
    [Google Scholar]
  41. RoeheA.V. FrazzonA.P.G. AgnesG. DaminA.P. HartmanA.A. GraudenzM.S. Detection of polymorphisms in the promoters of matrix metalloproteinases 2 and 9 genes in breast cancer in South Brazil: Preliminary results.Breast Cancer Res. Treat.2007102112312410.1007/s10549‑006‑9273‑1 17260100
    [Google Scholar]
  42. How Cancer Spreads (Metastasis). CancerQuest.Available from: https://www.cancerquest.org/cancer-biology/metastasis(accessed 30 January 2023).
  43. OsborneC.K. BardouV. HoppT.A. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer.J. Natl. Cancer Inst.200395535336110.1093/jnci/95.5.353 12618500
    [Google Scholar]
  44. StankovicS. KonjevicG. GopcevicK. JovicV. InicM. JurisicV. Activity of MMP-2 and MMP-9 in sera of breast cancer patients.Pathol. Res. Pract.2010206424124710.1016/j.prp.2009.12.003 20092959
    [Google Scholar]
  45. RadenkovicS. KonjevicG. JurisicV. KaradzicK. NikitovicM. GopcevicK. Values of MMP-2 and MMP-9 in tumor tissue of basal-like breast cancer patients.Cell Biochem. Biophys.201468114315210.1007/s12013‑013‑9701‑x 23812723
    [Google Scholar]
  46. LiH. QiuZ. LiF. WangC. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis.Oncol. Lett.20171455865587010.3892/ol.2017.6924 29113219
    [Google Scholar]
  47. JezierskaA. MotylT. Matrix metalloproteinase-2 involvement in breast cancer progression: A mini-review.Med. Sci. Monit.2009152RA32RA40 19182722
    [Google Scholar]
  48. UkajiT. LinY. OkadaS. UmezawaK. Inhibition of MMP-2-mediated cellular invasion by NF-κB inhibitor DHMEQ in 3D culture of breast carcinoma MDA-MB-231 cells: A model for early phase of metastasis.Biochem. Biophys. Res. Commun.20174851768110.1016/j.bbrc.2017.02.022 28188787
    [Google Scholar]
  49. DasK. PrasadR. AnsariS.A. RoyA. MukherjeeA. SenP. Matrix metalloproteinase-2: A key regulator in coagulation proteases mediated human breast cancer progression through autocrine signaling.Biomed. Pharmacother.201810539540610.1016/j.biopha.2018.05.155 29870887
    [Google Scholar]
  50. NilssonU.W. GarvinS. DabrosinC. MMP-2 and MMP-9 activity is regulated by estradiol and tamoxifen in cultured human breast cancer cells.Breast Cancer Res. Treat.2007102325326110.1007/s10549‑006‑9335‑4 17031577
    [Google Scholar]
  51. AyeM.M. MaC. LinH. BowerK.A. WigginsR.C. LuoJ. Ethanol-induced in vitro invasion of breast cancer cells: The contribution of MMP-2 by fibroblasts.Int. J. Cancer2004112573874610.1002/ijc.20497 15386367
    [Google Scholar]
  52. CiY. ZhangY. LiuY. Myricetin suppresses breast cancer metastasis through down-regulating the activity of matrix metalloproteinase (MMP)-2/9.Phytother. Res.20183271373138110.1002/ptr.6071 29532526
    [Google Scholar]
  53. YaoY. ZhaoK. YuZ. Wogonoside inhibits invasion and migration through suppressing TRAF2/4 expression in breast cancer.J. Exp. Clin. Cancer Res.201736110310.1186/s13046‑017‑0574‑5 28774312
    [Google Scholar]
  54. TaoD. LiangJ. PanY. In Vitro and In Vivo study on the effect of lysosome-associated protein transmembrane 4 beta on the progression of breast cancer.J. Breast Cancer201922337538610.4048/jbc.2019.22.e43 31598338
    [Google Scholar]
  55. BrennerH. RothenbacherD. ArndtV. Epidemiology of stomach cancer.Cancer Epidemiology.Totowa, NJHumana Press200946747710.1007/978‑1‑60327‑492‑0_23
    [Google Scholar]
  56. SitarzR. SkieruchaM. MielkoJ. OfferhausJ. MaciejewskiR. PolkowskiW. Gastric cancer: Epidemiology, prevention, classification, and treatment.Cancer Manag. Res.20181023924810.2147/CMAR.S149619 29445300
    [Google Scholar]
  57. KabelA.M. MarghalaniA.M. Bin SalmanT.O. FaqeehF.J. AsiriM.K. Gastric carcinoma: Insights into risk factors, methods of diagnosis, possible lines of management, and the role of primary care.J. Family Med. Prim. Care2020962659266310.4103/jfmpc.jfmpc_527_20 32984103
    [Google Scholar]
  58. CurranS. MurrayG.I. Matrix metalloproteinases in tumour invasion and metastasis.J. Pathol.1999189330030810.1002/(SICI)1096‑9896(199911)189:3<300::AID‑PATH456>3.0.CO;2‑C 10547590
    [Google Scholar]
  59. YasuiW. OueN. AungP.P. MatsumuraS. ShutohM. NakayamaH. Molecular-pathological prognostic factors of gastric cancer: A review.Gastric Cancer200582869410.1007/s10120‑005‑0320‑0 15864715
    [Google Scholar]
  60. WernerM. BeckerK.F. KellerG. HöflerH. Gastric adenocarcinoma: Pathomorphology and molecular pathology.J. Cancer Res. Clin. Oncol.2001127420721610.1007/s004320000195 11315254
    [Google Scholar]
  61. JooY.E. RewJ.S. SeoY.H. Cyclooxygenase-2 overexpression correlates with vascular endothelial growth factor expression and tumor angiogenesis in gastric cancer.J. Clin. Gastroenterol.2003371283310.1097/00004836‑200307000‑00009 12811205
    [Google Scholar]
  62. KatayamaA. BandohN. KishibeK. Expressions of matrix metalloproteinases in early-stage oral squamous cell carcinoma as predictive indicators for tumor metastases and prognosis.Clin. Cancer Res.200410263464010.1158/1078‑0432.CCR‑0864‑02 14760086
    [Google Scholar]
  63. PartykaR. GonciarzM. JałowieckiP. KokocińskaD. ByrczekT. VEGF and metalloproteinase 2 (MMP 2) expression in gastric cancer tissue.Med. Sci. Monit.2012184BR130BR13410.12659/MSM.882614 22460086
    [Google Scholar]
  64. ZhaoL. NiuH. LiuY. LOX inhibition downregulates MMP-2 and MMP-9 in gastric cancer tissues and cells.J. Cancer201910266481649010.7150/jca.33223 31777578
    [Google Scholar]
  65. ShekariN. JavadianM. GhasemiM. BaradaranB. DarabiM. KazemiT. Synergistic beneficial effect of docosahexaenoic acid (dha) and docetaxel on the expression level of matrix metalloproteinase-2 (MMP-2) and MicroRNA-106b in gastric cancer.J. Gastrointest. Cancer2020511707510.1007/s12029‑019‑00205‑0 30680612
    [Google Scholar]
  66. ZhaoY. WangQ. ZengY. XieY. ZhouJ. Gastrin/CCK-B receptor signaling promotes cell invasion and metastasis by upregulating mmp-2 and vegf expression in gastric cancer.J. Cancer202213113414510.7150/jca.51854 34976177
    [Google Scholar]
  67. WangC. TangC. Inhibition of human gastric cancer metastasis by ocreotide in vitro and in vivo.Zhonghua Yi Xue Za Zhi20028211922 11953120
    [Google Scholar]
  68. RehdersA StoeckleinNH GürayA RiedigerR AlexanderA KnoefelWT Vascular invasion in pancreatic cancer: Tumor biology or tumor topography?Surgery 20121523)(1S1435110.1016/j.surg.2012.05.01222766363
    [Google Scholar]
  69. Pancreatic cancer: A gene may be key to stopping the spread.Available from: https://www.medicalnewstoday.com/articles/pancreatic-cancer-new-discovery-may-be-key-to-stopping-cancer-growth(accessed 30 January 2023).
  70. KelegS. BüchlerP. LudwigR. BüchlerM.W. FriessH. Invasion and metastasis in pancreatic cancer.Mol. Cancer2003211410.1186/1476‑4598‑2‑14 12605717
    [Google Scholar]
  71. EllenriederV. AlberB. LacherU. Role of MT-MMPs and MMP-2 in pancreatic cancer progression.Int. J. Cancer2000851142010.1002/(SICI)1097‑0215(20000101)85:1<14::AID‑IJC3>3.0.CO;2‑O 10585576
    [Google Scholar]
  72. IdeT. KitajimaY. MiyoshiA. Tumor–stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway.Int. J. Cancer2006119122750275910.1002/ijc.22178 16998831
    [Google Scholar]
  73. HeY. LiuX. ChenZ. Interaction between cancer cells and stromal fibroblasts is required for activation of the uPAR-uPA-MMP-2 cascade in pancreatic cancer metastasis.Clin. Cancer Res.200713113115312410.1158/1078‑0432.CCR‑06‑2088 17545513
    [Google Scholar]
  74. ZhiY.H. SongM.M. WangP.L. ZhangT. YinZ.Y. Suppression of matrix metalloproteinase-2 via RNA interference inhibits pancreatic carcinoma cell invasiveness and adhesion.World J. Gastroenterol.20091591072107810.3748/wjg.15.1072 19266599
    [Google Scholar]
  75. ZhangZ.X. ZhouJ. ZhangY. ZhuD.M. LiD.C. ZhaoH. Knockdown of angiopoietin-2 suppresses metastasis in human pancreatic carcinoma by reduced matrix metalloproteinase-2.Mol. Biotechnol.201353333634410.1007/s12033‑012‑9532‑9 22457202
    [Google Scholar]
  76. LiY. ZhangD.W. LinD.Q. CaoL.Q. Peroxisome proliferator-activated receptor-γ inhibits pancreatic cancer cell invasion and metastasis via regulating MMP-2 expression through PTEN.Mol. Med. Rep.20151246255626010.3892/mmr.2015.4224 26299428
    [Google Scholar]
  77. PatilP.S. SaklaniA. GambhireP. Colorectal cancer in india: An audit from a tertiary center in a low prevalence area.Indian J. Surg. Oncol.20178448449010.1007/s13193‑017‑0655‑0 29203978
    [Google Scholar]
  78. BW S, CP W.World Cancer Report.2014 Available from: https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014(accessed 30 January 2023).
    [Google Scholar]
  79. Risks and causes of bowel cancer | Cancer Research UK.Available from: https://www.cancerresearchuk.org/about-cancer/bowel-cancer/risks-causes(accessed 30 January 2023).
  80. ZuckerS. VacircaJ. Role of matrix metalloproteinases (MMPs) in colorectal cancer.Cancer Metastasis Rev.2004231/210111710.1023/A:1025867130437 15000152
    [Google Scholar]
  81. GroblewskaM. MroczkoB. GrykoM. Serum levels and tissue expression of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinases 2 (TIMP-2) in colorectal cancer patients.Tumour Biol.20143543793380210.1007/s13277‑013‑1502‑8 24395652
    [Google Scholar]
  82. BabykuttyS. SubojP. SrinivasP. NairA.S. ChandramohanK. GopalaS. Insidious role of nitric oxide in migration/invasion of colon cancer cells by upregulating MMP-2/9 via activation of cGMP-PKG-ERK signaling pathways.Clin. Exp. Metastasis201229547149210.1007/s10585‑012‑9464‑6 22419013
    [Google Scholar]
  83. ZareZ. Silibinin inhibits TGF-β-induced MMP-2 and MMP-9 Through smad signaling pathway in colorectal cancer HT-29 cells. bccr202112510.18502/bccr.v12i2.5752
    [Google Scholar]
  84. NieS. ZhouJ. BaiF. JiangB. ChenJ. ZhouJ. Role of endothelin a receptor in colon cancer metastasis: In vitro and in vivo evidence.Mol. Carcinog.201453S1E85E9110.1002/mc.22036 23818293
    [Google Scholar]
  85. Bladder cancer statistics | World Cancer Research Fund International. WCRF International.Available from: https://www.wcrf.org/cancer-trends/bladder-cancer-statistics/ (accessed 30 January 2023).
  86. FlaigT.W. SpiessP.E. AgarwalN. NCCN guidelines insights: Bladder cancer, version 5.2018.J. Natl. Compr. Canc. Netw.20181691041105310.6004/jnccn.2018.0072 30181416
    [Google Scholar]
  87. LenisA.T. LecP.M. ChamieK. MshsM. Bladder cancer.JAMA2020324191980199110.1001/jama.2020.17598 33201207
    [Google Scholar]
  88. LipponenP.K. EskelinenM.J. KivirantaJ. PesonenE. Prognosis of transitional cell bladder cancer: A multivariate prognostic score for improved prediction.J. Urol.199114661535154010.1016/S0022‑5347(17)38159‑4 1942335
    [Google Scholar]
  89. DaviesB. WaxmanJ. WasanH. Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion.Cancer Res.1993532253655369 8221672
    [Google Scholar]
  90. SrivastavaP. KapoorR. MittalR.D. Association of single nucleotide polymorphisms in promoter of matrix metalloproteinase-2, 8 genes with bladder cancer risk in Northern India.Urol. Oncol.201331224725410.1016/j.urolonc.2011.01.001 21784671
    [Google Scholar]
  91. HuangS.T. ChangC.C. PangJ.H.S. Drynaria fortunei promoted angiogenesis associated with modified MMP-2/TIMP-2 balance and activation of VEGF ligand/receptors expression.Front. Pharmacol.2018997910.3389/fphar.2018.00979 30298000
    [Google Scholar]
  92. VasalaK. PääkköP. Turpeenniemi-HujanenT. Matrix metalloproteinase-2 immunoreactive protein as a prognostic marker inbladder cancer.Urology200362595295710.1016/S0090‑4295(03)00660‑5 14624933
    [Google Scholar]
  93. YouJ. MadiganM.C. RoweA. SajinovicM. RussellP.J. JacksonP. An inverse relationship between KAI1 expression, invasive ability, and MMP-2 expression and activity in bladder cancer cell lines.Urol. Oncol.201230450250810.1016/j.urolonc.2010.02.013 20864363
    [Google Scholar]
  94. LiaoC.L. ChuY.L. LinH.Y. Bis demethoxycurcumin suppresses migration and invasion of human cervical cancer hela cells via Inhibition of NF-ĸB, MMP-2 and -9 Pathways.Anticancer Res.20183873989399710.21873/anticanres.12686 29970522
    [Google Scholar]
  95. AhmedN. KadifeE. RazaA. ShortM. JubinskyP.T. KannourakisG. Ovarian cancer, cancer stem cells and current treatment strategies: A potential role of magmas in the current treatment methods.Cells20209371910.3390/cells9030719 32183385
    [Google Scholar]
  96. LengyelE. Ovarian cancer development and metastasis.Am. J. Pathol.201017731053106410.2353/ajpath.2010.100105 20651229
    [Google Scholar]
  97. YangM.Q. ElnitskiL. A Systems biology comparison of ovarian cancers implicates putative somatic driver mutations through protein-protein interaction models.PLoS One20161110e016335310.1371/journal.pone.0163353 27788148
    [Google Scholar]
  98. RossingM.A. DalingJ.R. WeissN.S. MooreD.E. SelfS.G. Ovarian tumors in a cohort of infertile women.N. Engl. J. Med.19943311277177610.1056/NEJM199409223311204 8065405
    [Google Scholar]
  99. VennA. WatsonL. BruinsmaF. GilesG. HealyD. Risk of cancer after use of fertility drugs with in-vitro fertilisation.Lancet199935491901586159010.1016/S0140‑6736(99)05203‑4 10560672
    [Google Scholar]
  100. KoshiyamaM. MatsumuraN. KonishiI. Recent concepts of ovarian carcinogenesis: Type I and type II.BioMed Res. Int.2014201411110.1155/2014/934261 24868556
    [Google Scholar]
  101. CurryT.E.Jr OsteenK.G. The matrix metalloproteinase system: Changes, regulation, and impact throughout the ovarian and uterine reproductive cycle.Endocr. Rev.200324442846510.1210/er.2002‑0005 12920150
    [Google Scholar]
  102. BrunJ.L. CortezA. LesieurB. UzanS. RouzierR. DaraïE. Expression of MMP-2, −7, −9, MT1-MMP and TIMP-1 and −2 has no prognostic relevance in patients with advanced epithelial ovarian cancer.Oncol. Rep.20122741049105710.3892/or.2011.1608 22200690
    [Google Scholar]
  103. DavidsonB. GoldbergI. GotliebW.H. High levels of MMP-2, MMP-9, MT1-MMP and TIMP-2 mRNA correlate with poor survival in ovarian carcinoma.Clin. Exp. Metastasis1999171079980810.1023/A:1006723011835 11089877
    [Google Scholar]
  104. KennyH.A. LengyelE. MMP-2 functions as an early response protein in ovarian cancer metastasis.Cell Cycle20098568368810.4161/cc.8.5.7703 19221481
    [Google Scholar]
  105. SakataK. ShigemasaK. NagaiN. OhamaK. Expression of matrix metalloproteinases (MMP-2, MMP-9, MT1-MMP) and their inhibitors (TIMP-1, TIMP-2) in common epithelial tumors of the ovary.Int. J. Oncol.200017467368110.3892/ijo.17.4.673 10995877
    [Google Scholar]
  106. RoomiM.W. MonterreyJ.C. KalinovskyT. RathM. NiedzwieckiA. In vitro modulation of MMP-2 and MMP-9 in human cervical and ovarian cancer cell lines by cytokines, inducers and inhibitors.Oncol. Rep.2010233605614 20126997
    [Google Scholar]
  107. ZhangA. MengL. WangQ. Enhanced in vitro invasiveness of ovarian cancer cells through up-regulation of VEGF and induction of MMP-2.Oncol. Rep.200615483183610.3892/or.15.4.831 16525667
    [Google Scholar]
  108. JeleniewiczW. CybulskiM. NowakowskiA. MMP-2 mRNA expression in ovarian cancer tissues predicts patients’ response to platinum-taxane chemotherapy.Anticancer Res.20193941821182710.21873/anticanres.13289 30952722
    [Google Scholar]
  109. TorreL.A. BrayF. SiegelR.L. FerlayJ. Lortet-TieulentJ. JemalA. Global cancer statistics, 2012.CA Cancer J. Clin.20156528710810.3322/caac.21262 25651787
    [Google Scholar]
  110. FerlayJ. ColombetM. SoerjomataramI. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018.Eur. J. Cancer201810335638710.1016/j.ejca.2018.07.005 30100160
    [Google Scholar]
  111. LordickF. MarietteC. HaustermansK. ObermannováR. ArnoldD. Oesophageal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.2016275v50v5710.1093/annonc/mdw329 27664261
    [Google Scholar]
  112. HögnerA. Thuss-PatienceP. Immune checkpoint inhibition in oesophago-gastric carcinoma.Pharmaceuticals202114215110.3390/ph14020151 33673374
    [Google Scholar]
  113. AugoffK. GrabowskiK. RabczynskiJ. KolondraA. TabolaR. SikorskiA.F. Expression of decorin in esophageal cancer in relation to the expression of three isoforms of transforming growth factor-β (TGF-β1, -β2, and -β3) and matrix metalloproteinase-2 activity.Cancer Invest.200927444345210.1080/07357900802527221 19212830
    [Google Scholar]
  114. LiY. MaJ. GuoQ. Overexpression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma.Dis. Esophagus200922866466710.1111/j.1442‑2050.2008.00928.x 19191857
    [Google Scholar]
  115. KoyamaH. IwataH. KuwabaraY. IwaseH. KobayashiS. FujiiY. Gelatinolytic activity of matrix metalloproteinase-2 and -9 in oesophageal carcinoma: A study using in situ zymography.Eur. J. Cancer200036162164217010.1016/S0959‑8049(00)00297‑5 11044656
    [Google Scholar]
  116. KataokaM. YamagataS. TakagiH. Matrix metalloproteinase 2 and 9 in esophageal cancer.Int. J. Oncol.19968477377910.3892/ijo.8.4.773 21544425
    [Google Scholar]
  117. GroblewskaM. MroczkoB. KozlowskiM. NiklinskiJ. LaudanskiJ. SzmitkowskiM. Serum matrix metalloproteinase 2 and tissue inhibitor of matrix metalloproteinases 2 in esophageal cancer patients.Folia Histochem. Cytobiol.201250459059810.5603/FHC.2012.0083 23264224
    [Google Scholar]
  118. QiY LiX ZhaoS. MiR-29b inhibits the progression of esophageal squamous cell carcinoma by targeting MMP-2.neo 20156238490
    [Google Scholar]
  119. LiangF. WangY.G. WangC. Metformin inhibited growth, invasion and metastasis of esophageal squamous cell carcinoma in Vitro and in Vivo.Cell. Physiol. Biochem.20185131276128610.1159/000495539 30481793
    [Google Scholar]
  120. GaoJ. WangY. YangJ. RNF128 promotes invasion and metastasis via the EGFR/MAPK/MMP-2 pathway in esophageal squamous cell carcinoma.Cancers201911684010.3390/cancers11060840 31216681
    [Google Scholar]
  121. ChenS. ShenZ. GaoL. TPM3 mediates epithelial-mesenchymal transition in esophageal cancer via MMP2/MMP9.Ann. Transl. Med.20219161338810.21037/atm‑21‑4043 34532475
    [Google Scholar]
  122. FerlayJ. ColombetM. SoerjomataramI. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.31937 30350310
    [Google Scholar]
  123. BenardV.B. JacksonJ.E. GreekA. A population study of screening history and diagnostic outcomes of women with invasive cervical cancer.Cancer Med.202110124127413710.1002/cam4.3951 34018674
    [Google Scholar]
  124. CastilloM. AstudilloA. ClaveroO. VelascoJ. IbáñezR. de SanjoséS. Poor cervical cancer screening attendance and false negatives. a call for organized screening.PLoS One2016118e016140310.1371/journal.pone.0161403 27547971
    [Google Scholar]
  125. JanssensS. LijnenH. What has been learned about the cardiovascular effects of matrix metalloproteinases from mouse models?Cardiovasc. Res.200669358559410.1016/j.cardiores.2005.12.010 16426591
    [Google Scholar]
  126. SheuB-C. LienH-C. HoH-N. Increased expression and activation of gelatinolytic matrix metalloproteinases is associated with the progression and recurrence of human cervical cancer.Cancer Res.2003631965376542 14559848
    [Google Scholar]
  127. WangP.H. KoJ.L. TsaiH.T. Clinical significance of matrix metalloproteinase-2 in cancer of uterine cervix: A semiquantitative study of immunoreactivities using tissue array.Gynecol. Oncol.2008108353354210.1016/j.ygyno.2007.11.018 18177928
    [Google Scholar]
  128. GaiottoM.A.M. FocchiJ. RibaltaJ.L.C. Comparative study of MMP-2 (matrix metalloproteinase 2) immune expression in normal uterine cervix, intraepithelial neoplasias, and squamous cells cervical carcinoma.Am. J. Obstet. Gynecol.200419051278128210.1016/j.ajog.2003.12.017 15167830
    [Google Scholar]
  129. AhmedM.I. SalahyE.E. TawfiqH. KhalifaA. HassanM.M. Matrix metalloproteinase-2, squamous cell carcinoma antigen, and tissue polypeptide-specific antigen expression in Egyptian patients with cervical carcinoma: Relationship with prognosis.Dis. Markers200420633334310.1155/2004/983243 15665394
    [Google Scholar]
  130. RauvalaM. AglundK. PuistolaU. Matrix metalloproteinases-2 and -9 in cervical cancer: Different roles in tumor progression.Int. J. Gynecol. Cancer20061631297130210.1136/ijgc‑00009577‑200605000‑00052 16803520
    [Google Scholar]
  131. NasrM. AyyadS.B. El-LamieI.K.I. MikhailM.Y. Expression of matrix metalloproteinase-2 in preinvasive and invasive carcinoma of the uterine cervix.Eur. J. Gynaecol. Oncol.2005262199202 15857029
    [Google Scholar]
  132. Baltazar-RodriguezL.M. Anaya-VenturaA. Andrade-SotoM. Polymorphism in the matrix metalloproteinase-2 gene promoter is associated with cervical neoplasm risk in Mexican women.Biochem. Genet.2008463-413714410.1007/s10528‑007‑9136‑4 18210196
    [Google Scholar]
  133. Azevedo MartinsJ.M. Rabelo-SantosS.H. do Amaral WestinM.C. ZeferinoL.C. Tumoral and stromal expression of MMP-2, MMP-9, MMP-14, TIMP-1, TIMP-2, and VEGF-A in cervical cancer patient survival: A competing risk analysis.BMC Cancer202020166010.1186/s12885‑020‑07150‑3 32669083
    [Google Scholar]
  134. WangC. WangY. LiuC. MengX. HangZ. Kinetochore-associated protein 1 promotes the invasion and tumorigenicity of cervical cancer cells via matrix metalloproteinase-2 and matrix metalloproteinase-9.Bioengineered20221349495950710.1080/21655979.2022.2061144 35389773
    [Google Scholar]
  135. LiangY. WakeleeH.A. Adjuvant chemotherapy of completely resected early stage non-small cell lung cancer (NSCLC).Transl. Lung Cancer Res.201325403410 25806259
    [Google Scholar]
  136. UramotoH. TanakaF. Recurrence after surgery in patients with NSCLC.Transl. Lung Cancer Res.201434242249 25806307
    [Google Scholar]
  137. TaylorM.D. NagjiA.S. BhamidipatiC.M. Tumor recurrence after complete resection for non-small cell lung cancer.Ann. Thorac. Surg.20129361813182110.1016/j.athoracsur.2012.03.031 22542070
    [Google Scholar]
  138. NSCLC Meta-analysis Collaborative Group. Preoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data.Lancet201438399281561157110.1016/S0140‑6736(13)62159‑5 24576776
    [Google Scholar]
  139. WaserN.A. AdamA. SchweikertB. 1243P Pathologic response as early endpoint for survival following neoadjuvant therapy (NEO-AT) in resectable non-small cell lung cancer (rNSCLC): Systematic literature review and meta-analysis.Ann. Oncol.202031S80610.1016/j.annonc.2020.08.116
    [Google Scholar]
  140. WuY.L. TsuboiM. HeJ. Osimertinib in resected EGFR -mutated non–small-cell lung cancer.N. Engl. J. Med.2020383181711172310.1056/NEJMoa2027071 32955177
    [Google Scholar]
  141. FelipE. AltorkiN. ZhouC. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB–IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase 3 trial.Lancet2021398103081344135710.1016/S0140‑6736(21)02098‑5 34555333
    [Google Scholar]
  142. YuC. PanK. XingD. Correlation between a single nucleotide polymorphism in the matrix metalloproteinase-2 promoter and risk of lung cancer.Cancer Res.2002622264306433 12438229
    [Google Scholar]
  143. ZhouY. YuC. MiaoX. Functional haplotypes in the promoter of matrix metalloproteinase-2 and lung cancer susceptibility.Carcinogenesis20052661117112110.1093/carcin/bgi057 15731163
    [Google Scholar]
  144. ItohT. TaniokaM. YoshidaH. YoshiokaT. NishimotoH. ItoharaS. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice.Cancer Res.199858510481051 9500469
    [Google Scholar]
  145. PasslickB. SienelW. Seen-HiblerR. Overexpression of matrix metalloproteinase 2 predicts unfavorable outcome in early-stage non-small cell lung cancer.Clin. Cancer Res.200061039443948 11051242
    [Google Scholar]
  146. HillionJ. WoodL.J. MukherjeeM. Upregulation of MMP-2 by HMGA1 promotes transformation in undifferentiated, large-cell lung cancer.Mol. Cancer Res.20097111803181210.1158/1541‑7786.MCR‑08‑0336 19903768
    [Google Scholar]
  147. WangR. KeZ. WangF. GOLPH3 overexpression is closely correlated with poor prognosis in human non-small cell lung cancer and mediates its metastasis through upregulating MMP-2 and MMP-9.Cell. Physiol. Biochem.201535396998210.1159/000369753 25659977
    [Google Scholar]
  148. ChettyC. LakkaS.S. BhoopathiP. RaoJ.S. MMP-2 alters VEGF expression via αVβ3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells.Int. J. Cancer201012751081109510.1002/ijc.25134 20027628
    [Google Scholar]
  149. ChaoW. DengJ.S. LiP.Y. KuoY.H. HuangG.J. Inotilone from inonotus linteus suppresses lung cancer metastasis in vitro and in vivo through ROS-mediated PI3K/AKT/MAPK signaling pathways.Sci. Rep.201991234410.1038/s41598‑019‑38959‑z 30787353
    [Google Scholar]
  150. KawakitaD. MatsuoK. Alcohol and head and neck cancer.Cancer Metastasis Rev.201736342543410.1007/s10555‑017‑9690‑0 28815324
    [Google Scholar]
  151. CohenN. FedewaS. ChenA.Y. Epidemiology and demographics of the head and neck cancer population.Oral Maxillofac. Surg. Clin. North Am.201830438139510.1016/j.coms.2018.06.001 30078696
    [Google Scholar]
  152. CarnielliC.M. MacedoC.C.S. De RossiT. Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer.Nat. Commun.201891359810.1038/s41467‑018‑05696‑2 30185791
    [Google Scholar]
  153. MoratinJ. HornD. MetzgerK. Squamous cell carcinoma of the mandible: Patterns of metastasis and disease recurrence in dependence of localization and therapy.J. Craniomaxillofac. Surg.202048121158116310.1016/j.jcms.2020.10.006 33199211
    [Google Scholar]
  154. MuzaffarJ. BariS. KirtaneK. ChungC.H. Recent advances and future directions in clinical management of head and neck squamous cell carcinoma.Cancers202113233810.3390/cancers13020338 33477635
    [Google Scholar]
  155. Ala-ahoR. AhonenM. GeorgeS.J. Targeted inhibition of human collagenase-3 (MMP-13) expression inhibits squamous cell carcinoma growth in vivo.Oncogene200423305111512310.1038/sj.onc.1207678 15094779
    [Google Scholar]
  156. MaekawaK. SatoH. FurukawaM. YoshizakiT. Inhibition of cervical lymph node metastasis by marimastat (BB-2516) in an orthotopic oral squamous cell carcinoma implantation model.Clin. Exp. Metastasis200219651351810.1023/A:1020329411957 12405288
    [Google Scholar]
  157. YamashitaT. FujiiM. TomitaT. The inhibitory effect of matrix metalloproteinase inhibitor ONO-4817 on lymph node metastasis in tongue carcinoma.Anticancer Res.2003233B22972302 12894506
    [Google Scholar]
  158. LynchC.C. MatrisianL.M. Matrix metalloproteinases in tumor–host cell communication.Differentiation2002709-1056157310.1046/j.1432‑0436.2002.700909.x 12492497
    [Google Scholar]
  159. CoussensL.M. TinkleC.L. HanahanD. WerbZ. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis.Cell2000103348149010.1016/S0092‑8674(00)00139‑2 11081634
    [Google Scholar]
  160. KuraharaS. ShinoharaM. IkebeT. Expression of MMPS, MT-MMP, and TIMPs in squamous cell carcinoma of the oral cavity: Correlations with tumor invasion and metastasis.Head Neck199921762763810.1002/(SICI)1097‑0347(199910)21:7<627::AID‑HED7>3.0.CO;2‑2 10487950
    [Google Scholar]
  161. RosenthalE.L. McCroryA. TalbertM. CarrollW. MagnusonJ.S. PetersG.E. Expression of proteolytic enzymes in head and neck cancer-associated fibroblasts.Arch. Otolaryngol. Head Neck Surg.2004130894394710.1001/archotol.130.8.943 15313864
    [Google Scholar]
  162. O-charoenrat P, Khantapura P. The role of genetic polymorphisms in the promoters of the matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 genes in head and neck cancer.Oral Oncol.200642325726710.1016/j.oraloncology.2005.07.008 16275157
    [Google Scholar]
  163. ZhouG. ZhaiY. CuiY. Functional polymorphisms and haplotypes in the promoter of the MMP2 gene are associated with risk of nasopharyngeal carcinoma.Hum. Mutat.200728111091109710.1002/humu.20570 17607721
    [Google Scholar]
  164. LiuW.W. ZengZ.Y. WuQ.L. HouJ.H. ChenY.Y. Overexpression of MMP‐2 in laryngeal squamous cell carcinoma: A potential indicator for poor prognosis.Otolaryngol. Head Neck Surg.2005132339540010.1016/j.otohns.2004.09.050 15746850
    [Google Scholar]
  165. Kamyab-Hesari.The expression of MMP-2 and Ki-67 in head and neck melanoma, and their correlation with clinic-pathologic indicesAvailable from: https://www.cancerjournal.net/article.asp?issn=0973-1482;year=2014;volume=10;issue=3;spage=696;epage=700;aulast=Kamyab- Hesari (accessed 10 June 2022).
    [Google Scholar]
  166. KoontongkaewS. AmornphimolthamP. MonthanpisutP. SaensukT. LeelakriangsakM. Fibroblasts and extracellular matrix differently modulate MMP activation by primary and metastatic head and neck cancer cells.Med. Oncol.201229269070310.1007/s12032‑011‑9871‑6 21380786
    [Google Scholar]
  167. TomitaT. FujiiM. TokumaruY. Granulocyte-macrophage colony-stimulating factor upregulates matrix metalloproteinase-2 (MMP-2) and membrane type-1 MMP (MT1-MMP) in human head and neck cancer cells.Cancer Lett.20001561839110.1016/S0304‑3835(00)00446‑8 10840163
    [Google Scholar]
  168. ZhangW. MatrisianL.M. HolmbeckK. VickC.C. RosenthalE.L. Fibroblast-derived MT1-MMP promotes tumor progression in vitro and in vivo.BMC Cancer2006615210.1186/1471‑2407‑6‑52 16515711
    [Google Scholar]
/content/journals/pra/10.2174/0115748928251754230922095544
Loading
/content/journals/pra/10.2174/0115748928251754230922095544
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test