Skip to content
2000
image of Selinexor as a Therapeutic Target: Advances in Non-small Cell and Small Cell Lung Cancer Treatment Strategies

Abstract

Selinexor treats lung cancer, particularly non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). This review summarizes the prevalence and types of lung cancer and emphasizes the challenges associated with current treatments like resistance and limited effectiveness. Selinexor is a selective inhibitor of nuclear export (SINE) that has emerged as a potential therapy that targets the nuclear export of tumor suppressor proteins. The mechanisms of selinexor, its potential in combination therapies, and challenges like side effects and drug resistance are explained in this review. Key findings highlight the effectiveness of selinexor in preclinical studies, particularly against KRAS-mutant NSCLC and in combination with chemotherapy for SCLC. The review concludes with a discussion of future directions and underscores the potential of selinexor to improve the treatment strategies for lung cancer.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928322627241016120142
2024-10-29
2024-11-30
Loading full text...

Full text loading...

References

  1. Leiter A. Veluswamy R.R. Wisnivesky J.P. The global burden of lung cancer: current status and future trends. Nat. Rev. Clin. Oncol. 2023 20 9 624 639 10.1038/s41571‑023‑00798‑3 37479810
    [Google Scholar]
  2. Barta J.A. Powell C.A. Wisnivesky J.P. Global epidemiology of lung cancer. Ann. Glob. Health 2019 85 1 8 10.5334/aogh.2419 30741509
    [Google Scholar]
  3. Xiao Y. Liu P. Wei J. Zhang X. Guo J. Lin Y. Recent progress in targeted therapy for non-small cell lung cancer. Front. Pharmacol. 2023 14 1125547 10.3389/fphar.2023.1125547 36909198
    [Google Scholar]
  4. Rudin C.M. Ismaila N. Hann C.L. Malhotra N. Movsas B. Norris K. Pietanza M.C. Ramalingam S.S. Turrisi A.T. III Giaccone G. Treatment of small-cell lung cancer: American society of clinical oncology endorsement of the american college of chest physicians guideline. J. Clin. Oncol. 2015 33 34 4106 4111 10.1200/JCO.2015.63.7918 26351333
    [Google Scholar]
  5. Byers L.A. Rudin C.M. Small cell lung cancer: Where do we go from here? Cancer 2015 121 5 664 672 10.1002/cncr.29098 25336398
    [Google Scholar]
  6. Ranganathan P. Kashyap T. Yu X. Meng X. Lai T.H. McNeil B. Bhatnagar B. Shacham S. Kauffman M. Dorrance A.M. Blum W. Sampath D. Landesman Y. Garzon R. XPO1 inhibition using selinexor synergizes with chemotherapy in acute myeloid leukemia by targeting DNA repair and restoring topoisomerase iiα to the nucleus. Clin. Cancer Res. 2016 22 24 6142 6152 10.1158/1078‑0432.CCR‑15‑2885 27358488
    [Google Scholar]
  7. Kashyap T. Argueta C. Unger T. Klebanov B. Debler S. Senapedis W. Crochiere M.L. Lee M.S. Kauffman M. Shacham S. Landesman Y. Selinexor reduces the expression of DNA damage repair proteins and sensitizes cancer cells to DNA damaging agents. Oncotarget 2018 9 56 30773 30786 10.18632/oncotarget.25637 30112106
    [Google Scholar]
  8. Quintanal-Villalonga A. Taniguchi H. Hao Y. Chow A. Zhan Y.A. Chavan S.S. Uddin F. Allaj V. Manoj P. Shah N.S. Chan J.M. Offin M. Ciampricotti M. Ray-Kirton J. Egger J. Bhanot U. Linkov I. Asher M. Roehrl M.H. Qiu J. de Stanchina E. Hollmann T.J. Koche R.P. Sen T. Poirier J.T. Rudin C.M. Inhibition of XPO1 sensitizes small cell lung cancer to first- and second-line chemotherapy. Cancer Res. 2022 82 3 472 483 10.1158/0008‑5472.CAN‑21‑2964 34815254
    [Google Scholar]
  9. Landes J.R. Moore S.A. Bartley B.R. Doan H.Q. Rady P.L. Tyring S.K. The efficacy of selinexor (KPT-330), an XPO1 inhibitor, on non-hematologic cancers: A comprehensive review. J. Cancer Res. Clin. Oncol. 2023 149 5 2139 2155 10.1007/s00432‑022‑04247‑z 35941226
    [Google Scholar]
  10. Eutectic form of Selinexor. Patent CN 113423468 A, 2020
  11. Preparation method of Selinexor and its intermediates. Patent US 9079865 B2, 2015
  12. Preparation method of Selinexor and its intermediates. Patent CN 112679477 B, 2020
  13. Meissner T. Krause E. Vinkemeier U. Ratjadone and leptomycin B block CRM1‐dependent nuclear export by identical mechanisms. FEBS Lett. 2004 576 1-2 27 30 10.1016/j.febslet.2004.08.056 15474004
    [Google Scholar]
  14. Fukuda M. Asano S. Nakamura T. Adachi M. Yoshida M. Yanagida M. Nishida E. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 1997 390 6657 308 311 10.1038/36894 9384386
    [Google Scholar]
  15. Hutten S. Kehlenbach R.H. CRM1-mediated nuclear export: To the pore and beyond. Trends Cell Biol. 2017 17 4 193 201 10.1016/j.tcb.2007.02.003
    [Google Scholar]
  16. Gupta A. Saltarski J.M Therapeutic Targeting of Nuclear Export Inhibition in Lung Cancer. J Thorac Oncol. 2017 12 1446 1450 10.1016/j.tcb.2007.02.003
    [Google Scholar]
  17. Gao W. Lu C. Chen L. Keohavong P. Overexpression of CRM1: A characteristic feature in a transformed phenotype of lung carcinogenesis and a molecular target for lung cancer adjuvant therapy. J. Thorac. Oncol. 2015 10 5 815 825 10.1097/JTO.0000000000000485 25629636
    [Google Scholar]
  18. Nagasaka M. Asad M.F.B. Al Hallak M.N. Uddin M.H. Sukari A. Baca Y. Xiu J. Magee D. Mamdani H. Uprety D. Kim C. Xia B. Liu S.V. Nieva J.J. Lopes G. Bepler G. Borghaei H. Demeure M.J. Raez L.E. Ma P.C. Puri S. Korn W.M. Azmi A.S. Impact of XPO1 mutations on survival outcomes in metastatic non-small cell lung cancer (NSCLC). Lung Cancer 2021 160 92 98 10.1016/j.lungcan.2021.08.010 34482103
    [Google Scholar]
  19. Khan H.Y. Nagasaka M. Li Y. Aboukameel A. Uddin M.H. Sexton R. Bannoura S. Mzannar Y. Al-Hallak M.N. Kim S. Beydoun R. Landesman Y. Mamdani H. Uprety D. Philip P.A. Mohammad R.M. Shields A.F. Azmi A.S. Inhibitor of the nuclear transport protein XPO1 enhances the anticancer efficacy of KRAS G12C inhibitors in preclinical models of KRAS G12C–mutant cancers. Cancers. Cancer Res Commun. 2022 2 5 342 352 10.1158/2767‑9764.CRC‑21‑0176 35573474
    [Google Scholar]
  20. Rosen J.C. Weiss J. Pham N.A. Li Q. Martins-Filho S.N. Wang Y. Tsao M.S. Moghal N. Antitumor efficacy of XPO1 inhibitor Selinexor in KRAS-mutant lung adenocarcinoma patient-derived xenografts. Transl. Oncol. 2021 14 10 101179 10.1016/j.tranon.2021.101179 34284202
    [Google Scholar]
  21. Herdeis L. Gerlach D. McConnell D.B. Kessler D. Stopping the beating heart of cancer: KRAS reviewed. Curr. Opin. Struct. Biol. 2021 71 136 147 10.1016/j.sbi.2021.06.013 34303932
    [Google Scholar]
  22. Molina-Arcas M. Samani A. Downward J. Drugging the undruggable: Advances on RAS targeting in cancer. Genes (Basel) 2021 12 6 899 10.3390/genes12060899 34200676
    [Google Scholar]
  23. Matikas A. Mistriotis D. Georgoulias V. Kotsakis A. Targeting KRAS mutated non-small cell lung cancer: A history of failures and a future of hope for a diverse entity. Crit. Rev. Oncol. Hematol. 2017 110 1 12 10.1016/j.critrevonc.2016.12.005 28109399
    [Google Scholar]
  24. Kim J. McMillan E. Kim H.S. Venkateswaran N. Makkar G. Rodriguez-Canales J. Villalobos P. Neggers J.E. Mendiratta S. Wei S. Landesman Y. Senapedis W. Baloglu E. Chow C.W.B. Frink R.E. Gao B. Roth M. Minna J.D. Daelemans D. Wistuba I.I. Posner B.A. Scaglioni P.P. White M.A. XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer. Nature 2016 538 7623 114 117 10.1038/nature19771 27680702
    [Google Scholar]
  25. Polina V. Clinical CDK2 Inhibitors: Trends to Selectivity and Efficacy. Recent Pat Anticancer Drug Discov. 2022 18 2 102 107 10.3390/genes12060899
    [Google Scholar]
  26. Zhu Z.C. Liu J.W. Yang C. Zhao M. Xiong Z.Q. XPO1 inhibitor KPT-330 synergizes with Bcl-xL inhibitor to induce cancer cell apoptosis by perturbing rRNA processing and Mcl-1 protein synthesis. Cell Death Dis. 2019 10 6 395 10.1038/s41419‑019‑1627‑9 31113936
    [Google Scholar]
  27. Barretina J. Caponigro G. Stransky N. Venkatesan K. Margolin A.A. Kim S. Wilson C.J. Lehár J. Kryukov G.V. Sonkin D. Reddy A. Liu M. Murray L. Berger M.F. Monahan J.E. Morais P. Meltzer J. Korejwa A. Jané-Valbuena J. Mapa F.A. Thibault J. Bric-Furlong E. Raman P. Shipway A. Engels I.H. Cheng J. Yu G.K. Yu J. Aspesi P. Jr de Silva M. Jagtap K. Jones M.D. Wang L. Hatton C. Palescandolo E. Gupta S. Mahan S. Sougnez C. Onofrio R.C. Liefeld T. MacConaill L. Winckler W. Reich M. Li N. Mesirov J.P. Gabriel S.B. Getz G. Ardlie K. Chan V. Myer V.E. Weber B.L. Porter J. Warmuth M. Finan P. Harris J.L. Meyerson M. Golub T.R. Morrissey M.P. Sellers W.R. Schlegel R. Garraway L.A. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012 483 7391 603 607 10.1038/nature11003 22460905
    [Google Scholar]
  28. Azizian N.G. Li Y. XPO1-dependent nuclear export as a target for cancer therapy. J. Hematol. Oncol. 2020 13 1 61 10.1186/s13045‑020‑00903‑4 32487143
    [Google Scholar]
  29. Cerami E. Gao J. Dogrusoz U. Gross B.E. Sumer S.O. Aksoy B.A. Jacobsen A. Byrne C.J. Heuer M.L. Larsson E. Antipin Y. Reva B. Goldberg A.P. Sander C. Schultz N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 2 5 401 404 10.1158/2159‑8290.CD‑12‑0095 22588877
    [Google Scholar]
  30. Ireland A.S. Micinski A.M. Kastner D.W. Guo B. Wait S.J. Spainhower K.B. Conley C.C. Chen O.S. Guthrie M.R. Soltero D. Qiao Y. Huang X. Tarapcsák S. Devarakonda S. Chalishazar M.D. Gertz J. Moser J.C. Marth G. Puri S. Witt B.L. Spike B.T. Oliver T.G. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell 2020 38 1 60 78 10.1016/j.ccell.2020.05.001 32473656
    [Google Scholar]
  31. Augert A. Mathsyaraja H. Ibrahim A.H. Freie B. Geuenich M.J. Cheng P.F. Alibeckoff S.P. Wu N. Hiatt J.B. Basom R. Gazdar A. Sullivan L.B. Eisenman R.N. MacPherson D. MAX functions as a tumor suppressor and rewires metabolism in small cell lung cancer. Cancer Cell 2020 38 1 97 114 10.1016/j.ccell.2020.04.016 32470392
    [Google Scholar]
  32. El-Deiry W.S. Tokino T. Velculescu V.E. Levy D.B. Parsons R. Trent J.M. Lin D. Mercer W.E. Kinzler K.W. Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993 75 4 817 825 10.1016/0092‑8674(93)90500‑P 8242752
    [Google Scholar]
  33. Farmer H. McCabe N. Lord C.J. Tutt A.N.J. Johnson D.A. Richardson T.B. Santarosa M. Dillon K.J. Hickson I. Knights C. Martin N.M.B. Jackson S.P. Smith G.C.M. Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005 434 7035 917 921 10.1038/nature03445 15829967
    [Google Scholar]
  34. McCabe N. Turner N.C. Lord C.J. Kluzek K. Białkowska A. Swift S. Giavara S. O’Connor M.J. Tutt A.N. Zdzienicka M.Z. Smith G.C.M. Ashworth A. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 2006 66 16 8109 8115 10.1158/0008‑5472.CAN‑06‑0140 16912188
    [Google Scholar]
  35. Byers L.A. Wang J. Nilsson M.B. Fujimoto J. Saintigny P. Yordy J. Giri U. Peyton M. Fan Y.H. Diao L. Masrorpour F. Shen L. Liu W. Duchemann B. Tumula P. Bhardwaj V. Welsh J. Weber S. Glisson B.S. Kalhor N. Wistuba I.I. Girard L. Lippman S.M. Mills G.B. Coombes K.R. Weinstein J.N. Minna J.D. Heymach J.V. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov. 2012 2 9 798 811 10.1158/2159‑8290.CD‑12‑0112 22961666
    [Google Scholar]
  36. Weaver A.N. Yang E.S. Beyond DNA repair: Additional functions of PARP-1 in cancer. Front. Oncol. 2013 3 290 10.3389/fonc.2013.00290 24350055
    [Google Scholar]
  37. Hussain M. Mateo J. Fizazi K. Saad F. Shore N. Sandhu S. Chi K.N. Sartor O. Agarwal N. Olmos D. Thiery-Vuillemin A. Twardowski P. Roubaud G. Özgüroğlu M. Kang J. Burgents J. Gresty C. Corcoran C. Adelman C.A. de Bono J. PROfound Trial Investigators Survival with olaparib in metastatic castration-resistant prostate cancer. N. Engl. J. Med. 2020 383 24 2345 2357 10.1056/NEJMoa2022485 32955174
    [Google Scholar]
  38. de Bono J. Ramanathan R.K. Mina L. Chugh R. Glaspy J. Rafii S. Kaye S. Sachdev J. Heymach J. Smith D.C. Henshaw J.W. Herriott A. Patterson M. Curtin N.J. Byers L.A. Wainberg Z.A. Phase I, Dose-Escalation, Two-Part Trial of the PARP Inhibitor Talazoparib in Patients with Advanced Germline BRCA1/2 Mutations and Selected Sporadic Cancers. Cancer Discov. 2017 7 6 620 629 10.1158/2159‑8290.CD‑16‑1250 28242752
    [Google Scholar]
  39. Atrafi F. Groen H.J.M. Byers L.A. Garralda E. Lolkema M.P. Sangha R.S. Viteri S. Chae Y.K. Camidge D.R. Gabrail N.Y. Hu B. Tian T. Nuthalapati S. Hoening E. He L. Komarnitsky P. Calles A. A phase i dose-escalation study of veliparib combined with carboplatin and etoposide in patients with extensive-stage small cell lung cancer and other solid tumors. Clin. Cancer Res. 2019 25 2 496 505 10.1158/1078‑0432.CCR‑18‑2014 30327308
    [Google Scholar]
  40. Buontempo F. Chiarini F. Bressanin D. Tabellini G. Melchionda F. Pession A. Fini M. Neri L.M. McCubrey J.A. Martelli A.M. Activity of the selective IκB kinase inhibitor BMS-345541 against T-cell acute lymphoblastic leukemia. Cell Cycle 2012 11 13 2467 2475 10.4161/cc.20859 22713244
    [Google Scholar]
  41. Allen J.E. Krigsfeld G. Mayes P.A. Patel L. Dicker D.T. Patel A.S. Dolloff N.G. Messaris E. Scata K.A. Wang W. Zhou J.Y. Wu G.S. El-Deiry W.S. Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci. Transl. Med. 2013 5 171 171ra17 10.1126/scitranslmed.3004828 23390247
    [Google Scholar]
  42. Lallo A. Frese K.K. Morrow C.J. Sloane R. Gulati S. Schenk M.W. Trapani F. Simms N. Galvin M. Brown S. Hodgkinson C.L. Priest L. Hughes A. Lai Z. Cadogan E. Khandelwal G. Simpson K.L. Miller C. Blackhall F. O’Connor M.J. Dive C. The combination of the parp inhibitor olaparib and the WEE1 inhibitor AZD1775 as a new therapeutic option for small cell lung cancer. Clin. Cancer Res. 2018 24 20 5153 5164 10.1158/1078‑0432.CCR‑17‑2805 29941481
    [Google Scholar]
  43. Balaji K. Vijayaraghavan S. Diao L. Tong P. Fan Y. Carey J.P.W. Bui T.N. Warner S. Heymach J.V. Hunt K.K. Wang J. Byers L.A. Keyomarsi K. AXL inhibition suppresses the dna damage response and sensitizes cells to PARP inhibition in multiple cancers. Mol. Cancer Res. 2017 15 1 45 58 10.1158/1541‑7786.MCR‑16‑0157 27671334
    [Google Scholar]
  44. Cardnell R.J. Feng Y. Diao L. Fan Y.H. Masrorpour F. Wang J. Shen Y. Mills G.B. Minna J.D. Heymach J.V. Byers L.A. Proteomic markers of DNA repair and PI3K pathway activation predict response to the PARP inhibitor BMN 673 in small cell lung cancer. Clin. Cancer Res. 2013 19 22 6322 6328 10.1158/1078‑0432.CCR‑13‑1975 24077350
    [Google Scholar]
  45. Cardnell R.J. Feng Y. Mukherjee S. Diao L. Tong P. Stewart C.A. Masrorpour F. Fan Y. Nilsson M. Shen Y. Heymach J.V. Wang J. Byers L.A. Activation of the PI3K/mTOR Pathway following PARP inhibition in small cell lung cancer. PLoS One 2016 11 4 e0152584 10.1371/journal.pone.0152584 27055253
    [Google Scholar]
  46. Chowdhury P. Dey P. Ghosh S. Sarma A. Ghosh U. Reduction of metastatic potential by inhibiting EGFR/Akt/p38/ERK signaling pathway and epithelial-mesenchymal transition after carbon ion exposure is potentiated by PARP-1 inhibition in non-small-cell lung cancer. BMC Cancer 2019 19 1 829 10.1186/s12885‑019‑6015‑4 31438892
    [Google Scholar]
  47. Tsai W.B. Chung Y.M. Takahashi Y. Xu Z. Hu M.C.T. Functional interaction between FOXO3a and ATM regulates DNA damage response. Nat. Cell Biol. 2008 10 4 460 467 10.1038/ncb1709 18344987
    [Google Scholar]
  48. Wang J. Sun T. Meng Z. Wang L. Li M. Chen J. Qin T. Yu J. Zhang M. Bie Z. Dong Z. Jiang X. Lin L. Zhang C. Liu Z. Jiang R. Yang G. Li L. Zhang Y. Huang D. XPO1 inhibition synergizes with PARP1 inhibition in small cell lung cancer by targeting nuclear transport of FOXO3a. Cancer Lett. 2021 503 197 212 10.1016/j.canlet.2021.01.008 33493586
    [Google Scholar]
  49. Sun L. Gao L. Zhao Y. Wang Y. Xu Q. Zheng Y. Chen J. Wang H. Wang L. Understanding and targeting the epigenetic regulation to overcome EGFR-TKIs resistance in human cancer. Recent Patents Anticancer Drug Discov. 2023 18 4 506 516 10.2174/1574892818666221201145810 36464873
    [Google Scholar]
  50. Marcoux N. Gettinger S.N. O’Kane G. Arbour K.C. Neal J.W. Husain H. Evans T.L. Brahmer J.R. Muzikansky A. Bonomi P.D. del Prete S. Wurtz A. Farago A.F. Dias-Santagata D. Mino-Kenudson M. Reckamp K.L. Yu H.A. Wakelee H.A. Shepherd F.A. Piotrowska Z. Sequist L.V. EGFR -mutant adenocarcinomas that transform to small-cell lung cancer and other neuroendocrine carcinomas: clinical outcomes. J. Clin. Oncol. 2019 37 4 278 285 10.1200/JCO.18.01585 30550363
    [Google Scholar]
  51. Aggarwal R. Huang J. Alumkal J.J. Zhang L. Feng F.Y. Thomas G.V. Weinstein A.S. Friedl V. Zhang C. Witte O.N. Lloyd P. Gleave M. Evans C.P. Youngren J. Beer T.M. Rettig M. Wong C.K. True L. Foye A. Playdle D. Ryan C.J. Lara P. Chi K.N. Uzunangelov V. Sokolov A. Newton Y. Beltran H. Demichelis F. Rubin M.A. Stuart J.M. Small E.J. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J. Clin. Oncol. 2018 36 24 2492 2503 10.1200/JCO.2017.77.6880 29985747
    [Google Scholar]
  52. Offin M. Chan J.M. Tenet M. Rizvi H.A. Shen R. Riely G.J. Rekhtman N. Daneshbod Y. Quintanal-Villalonga A. Penson A. Hellmann M.D. Arcila M.E. Ladanyi M. Pe’er D. Kris M.G. Rudin C.M. Yu H.A. Concurrent RB1 and TP53 alterations define a subset of EGFR-mutant lung cancers at risk for histologic transformation and inferior clinical outcomes. J. Thorac. Oncol. 2019 14 10 1784 1793 10.1016/j.jtho.2019.06.002 31228622
    [Google Scholar]
  53. Rudin C.M. Brambilla E. Faivre-Finn C. Sage J. Small-cell lung cancer. Nat. Rev. Dis. Primers 2021 7 1 3 10.1038/s41572‑020‑00235‑0 33446664
    [Google Scholar]
  54. George J. Lim J.S. Jang S.J. Cun Y. Ozretić L. Kong G. Leenders F. Lu X. Fernández-Cuesta L. Bosco G. Müller C. Dahmen I. Jahchan N.S. Park K.S. Yang D. Karnezis A.N. Vaka D. Torres A. Wang M.S. Korbel J.O. Menon R. Chun S.M. Kim D. Wilkerson M. Hayes N. Engelmann D. Pützer B. Bos M. Michels S. Vlasic I. Seidel D. Pinther B. Schaub P. Becker C. Altmüller J. Yokota J. Kohno T. Iwakawa R. Tsuta K. Noguchi M. Muley T. Hoffmann H. Schnabel P.A. Petersen I. Chen Y. Soltermann A. Tischler V. Choi C. Kim Y.H. Massion P.P. Zou Y. Jovanovic D. Kontic M. Wright G.M. Russell P.A. Solomon B. Koch I. Lindner M. Muscarella L.A. la Torre A. Field J.K. Jakopovic M. Knezevic J. Castaños-Vélez E. Roz L. Pastorino U. Brustugun O.T. Lund-Iversen M. Thunnissen E. Köhler J. Schuler M. Botling J. Sandelin M. Sanchez-Cespedes M. Salvesen H.B. Achter V. Lang U. Bogus M. Schneider P.M. Zander T. Ansén S. Hallek M. Wolf J. Vingron M. Yatabe Y. Travis W.D. Nürnberg P. Reinhardt C. Perner S. Heukamp L. Büttner R. Haas S.A. Brambilla E. Peifer M. Sage J. Thomas R.K. Comprehensive genomic profiles of small cell lung cancer. Nature 2015 524 7563 47 53 10.1038/nature14664 26168399
    [Google Scholar]
  55. Niederst M.J. Sequist L.V. Poirier J.T. Mermel C.H. Lockerman E.L. Garcia A.R. Katayama R. Costa C. Ross K.N. Moran T. Howe E. Fulton L.E. Mulvey H.E. Bernardo L.A. Mohamoud F. Miyoshi N. VanderLaan P.A. Costa D.B. Jänne P.A. Borger D.R. Ramaswamy S. Shioda T. Iafrate A.J. Getz G. Rudin C.M. Mino-Kenudson M. Engelman J.A. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat. Commun. 2015 6 1 6377 10.1038/ncomms7377 25758528
    [Google Scholar]
  56. Quintanal-Villalonga A. Durani V. Sabet A. Redin E. Kawasaki K. Shafer M. Karthaus W.R. Zaidi S. Zhan Y.A. Manoj P. Sridhar H. Shah N.S. Chow A. Bhanot U.K. Linkov I. Asher M. Yu H.A. Qiu J. de Stanchina E. Patel R.A. Morrissey C. Haffner M.C. Koche R.P. Sawyers C.L. Rudin C.M. Exportin 1 inhibition prevents neuroendocrine transformation through SOX2 down-regulation in lung and prostate cancers. Sci. Transl. Med. 2023 15 707 eadf7006 10.1126/scitranslmed.adf7006 37531417
    [Google Scholar]
  57. Altan M. Tu J. Milton D.R. Yilmaz B. Tian Y. Fossella F.V. Mott F.E. Blumenschein G.R. Stephen B. Karp D.D. Meric-Bernstam F. Heymach J.V. Naing A. Safety, tolerability, and clinical activity of selinexor in combination with pembrolizumab in treatment of metastatic non–small cell lung cancer. Cancer 2023 129 17 2685 2693 10.1002/cncr.34820 37129197
    [Google Scholar]
  58. Mui C.W. Chan W.N. Chen B. Cheung A.H.K. Yu J. Lo K.W. Ke H. Kang W. To K.F. Targeting YAP1 / TAZ in nonsmall‐cell lung carcinoma: From molecular mechanisms to precision medicine. Int. J. Cancer 2023 152 4 558 571 10.1002/ijc.34249 35983734
    [Google Scholar]
  59. Martin A.P.J. Aushev V.N. Zalcman G. Camonis J.H. The STK38–XPO1 axis, a new actor in physiology and cancer. Cell. Mol. Life Sci. 2021 78 5 1943 1955 10.1007/s00018‑020‑03690‑w 33145612
    [Google Scholar]
  60. Sharma U. Tuli H.S. Uttam V. Choudhary R. Sharma B. Sharma U. Prakash H. Jain A. Role of Hedgehog and Hippo signaling pathways in cancer: A special focus on non-coding RNAs. Pharmacol. Res. 2022 186 106523 10.1016/j.phrs.2022.106523 36377125
    [Google Scholar]
  61. Cui Y. Li Y. Ji J. Hu N. Min K. Ying W. Fan L. Hong M. Li J. Sun Z. Qu X. Dynamic single-cell RNA-Seq reveals mechanism of selinexor-resistance in chronic myeloid leukemia. Int. Immunopharmacol. 2024 134 112212 10.1016/j.intimp.2024.112212 38728882
    [Google Scholar]
  62. Yun C.W. Kim H.J. Lim J.H. Lee S.H. Heat shock proteins: Agents of cancer development and therapeutic targets in anti-cancer therapy. Cells 2019 9 1 60 10.3390/cells9010060 31878360
    [Google Scholar]
  63. Shridhar V. Bible K.C. Staub J. Avula R. Lee Y.K. Kalli K. Huang H. Hartmann L.C. Kaufmann S.H. Smith D.I. Loss of expression of a new member of the DNAJ protein family confers resistance to chemotherapeutic agents used in the treatment of ovarian cancer. Cancer Res. 2001 61 10 4258 4265 11358853
    [Google Scholar]
  64. Chen X. Dong X.S. Gao H.Y. Jiang Y.F. Jin Y.L. Chang Y.Y. Chen L.Y. Wang J.H. Suppression of HSP27 increases the anti-tumor effects of quercetin in human leukemia U937 cells. Mol. Med. Rep. 2016 13 1 689 696 10.3892/mmr.2015.4600 26648539
    [Google Scholar]
  65. Lei G. Zhuang L. Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer 2022 22 7 381 396 10.1038/s41568‑022‑00459‑0 35338310
    [Google Scholar]
  66. Fu D. Wang C. Yu L. Yu R. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling. Cell. Mol. Biol. Lett. 2021 26 1 26 10.1186/s11658‑021‑00271‑y 34098867
    [Google Scholar]
  67. Chen T.C. Chuang J.Y. Ko C.Y. Kao T.J. Yang P.Y. Yu C.H. Liu M.S. Hu S.L. Tsai Y.T. Chan H. Chang W.C. Hsu T.I. AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biol. 2020 30 101413 10.1016/j.redox.2019.101413 31896509
    [Google Scholar]
  68. Chen P. Li X. Zhang R. Liu S. Xiang Y. Zhang M. Chen X. Pan T. Yan L. Feng J. Duan T. Wang D. Chen B. Jin T. Wang W. Chen L. Huang X. Zhang W. Sun Y. Li G. Kong L. Chen X. Li Y. Yang Z. Zhang Q. Zhuo L. Sui X. Xie T. Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics 2020 10 11 5107 5119 10.7150/thno.44705 32308771
    [Google Scholar]
  69. Tang D. Kroemer G. Ferroptosis. Curr. Biol. 2020 30 21 R1292 R1297 10.1016/j.cub.2020.09.068 33142092
    [Google Scholar]
  70. Blair I. Fan J. Gillespie K. Mesaros C. Ferroptosis and HMGB2 induced calreticulin translocation required for immunogenic cell death are controlled by the nuclear exporter XPO1. Res Sq Res Sq 2024 rs.3 rs 4009459 10.21203/rs.3.rs‑4009459/v1
    [Google Scholar]
  71. Gillespie K.P. Pirnie R. Mesaros C. Blair I.A. Cisplatin Dependent Secretion of Immunomodulatory High Mobility Group Box 1 (HMGB1) Protein from Lung Cancer Cells. Biomolecules 2023 13 9 1335 10.3390/biom13091335 37759736
    [Google Scholar]
  72. Starkova T. Polyanichko A. Tomilin A.N. Chikhirzhina E. Structure and functions of HMGB2 protein. Int. J. Mol. Sci. 2023 24 9 8334 10.3390/ijms24098334 37176041
    [Google Scholar]
  73. Sprooten J. Laureano R.S. Vanmeerbeek I. Govaerts J. Naulaerts S. Borras D.M. Kinget L. Fucíková J. Špíšek R. Jelínková L.P. Kepp O. Kroemer G. Krysko D.V. Coosemans A. Vaes R.D.W. De Ruysscher D. De Vleeschouwer S. Wauters E. Smits E. Tejpar S. Beuselinck B. Hatse S. Wildiers H. Clement P.M. Vandenabeele P. Zitvogel L. Garg A.D. Trial watch: Chemotherapy-induced immunogenic cell death in oncology. OncoImmunology 2023 12 1 2219591 10.1080/2162402X.2023.2219591 37284695
    [Google Scholar]
  74. Xie X. Lee J. Liu H. Pearson T. Lu A.Y. Tripathy D. Devi G.R. Bartholomeusz C. Ueno N.T. Birinapant enhances gemcitabine’s antitumor efficacy in triple-negative breast cancer by inducing intrinsic pathway–dependent apoptosis. Mol. Cancer Ther. 2021 20 2 296 306 10.1158/1535‑7163.MCT‑19‑1160 33323457
    [Google Scholar]
  75. Arango N.P. Yuca E. Zhao M. Evans K.W. Scott S. Kim C. Gonzalez-Angulo A.M. Janku F. Ueno N.T. Tripathy D. Akcakanat A. Naing A. Meric-Bernstam F. Selinexor (KPT-330) demonstrates anti-tumor efficacy in preclinical models of triple-negative breast cancer. Breast Cancer Res. 2017 19 1 93 , 19, 93 10.1186/s13058‑017‑0878‑6 28810913
    [Google Scholar]
  76. Handley K.F. Rodriguez-Aguayo C. Ma S. Stur E. Joseph R. Bayraktar E. Dasari S.K. Nguyen N. Powell R.T. Sobieski M. Ivan C. Kim M. Umamaheswaran S. Glassman D. Wen Y. Amero P. Stephan C. Coleman R.L. Landesman Y. Westin S.N. Ram P.T. Sood A.K. Rational combination of CRM1 inhibitor selinexor and olaparib shows synergy in ovarian cancer cell lines and mouse models. Mol. Cancer Ther. 2021 20 12 2352 2361 10.1158/1535‑7163.MCT‑21‑0370 34583979
    [Google Scholar]
  77. van der Watt P.J. Maske C.P. Hendricks D.T. Parker M.I. Denny L. Govender D. Birrer M.J. Leaner V.D. The Karyopherin proteins, Crm1 and Karyopherin β1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation. Int. J. Cancer 2009 124 8 1829 1840 10.1002/ijc.24146 19117056
    [Google Scholar]
  78. Xia L. Wang M. Li H. Tang X. Chen F. Cui J. The effect of aberrant expression and genetic polymorphisms of Rad21 on cervical cancer biology. Cancer Med. 2018 7 7 3393 3405 10.1002/cam4.1592 29797792
    [Google Scholar]
  79. Song G. Ren J. Li Y. Cui J. Interference with XPO1 suppresses the stemness and radioresistance of CD44 positive cervical cancer cells via binding with Rad21. Ann. Clin. Lab. Sci. 2023 53 2 278 292 37094850
    [Google Scholar]
  80. Delman M. Avcı S.T. Akçok İ. Kanbur T. Erdal E. Çağır A. Antiproliferative activity of (R)-4′-methylklavuzon on hepatocellular carcinoma cells and EpCAM+/CD133+ cancer stem cells via SIRT1 and Exportin-1 (CRM1) inhibition. Eur. J. Med. Chem. 2019 180 180 224 237 10.1016/j.ejmech.2019.07.024 31306909
    [Google Scholar]
  81. Uddin M.H. Al-Hallak M.N. Khan H.Y. Aboukameel A. Li Y. Bannoura S.F. Dyson G. Kim S. Mzannar Y. Azar I. Odisho T. Mohamed A. Landesman Y. Kim S. Beydoun R. Mohammad R.M. Philip P.A. Shields A.F. Azmi A.S. Molecular analysis of XPO1 inhibitor and gemcitabine–nab‐paclitaxel combination in KPC pancreatic cancer mouse model. Clin. Transl. Med. 2023 13 12 e1513 10.1002/ctm2.1513 38131168
    [Google Scholar]
  82. Azmi A.S. Khan H.Y. Muqbil I. Aboukameel A. Neggers J.E. Daelemans D. Mahipal A. Dyson G. Kamgar M. Al-Hallak M.N. Tesfaye A. Kim S. Shidham V. M Mohammad R. Philip P.A. Preclinical assessment with clinical validation of selinexor with gemcitabine and nab-paclitaxel for the treatment of pancreatic ductal adenocarcinoma. Clin. Cancer Res. 2020 26 6 1338 1348 10.1158/1078‑0432.CCR‑19‑1728 31831564
    [Google Scholar]
  83. Wang Z. Pan B. Yao Y. Qiu J. Zhang X. Wu X. Tang N. XPO1 intensifies sorafenib resistance by stabilizing acetylation of NPM1 and enhancing epithelial-mesenchymal transition in hepatocellular carcinoma. Biomed. Pharmacother. 2023 160 114402 10.1016/j.biopha.2023.114402 36791564
    [Google Scholar]
  84. Zhou J.N. Zeng Q. Wang H.Y. Zhang B. Li S.T. Nan X. Cao N. Fu C.J. Yan X.L. Jia Y.L. Wang J.X. Zhao A.H. Li Z.W. Li Y.H. Xie X.Y. Zhang X.M. Dong Y. Xu Y.C. He L.J. Yue W. Pei X.T. MicroRNA‐125b attenuates epithelial‐mesenchymal transitions and targets stem‐like liver cancer cells through small mothers against decapentaplegic 2 and 4. Hepatology 2015 62 3 801 815 10.1002/hep.27887 25953743
    [Google Scholar]
  85. Wahba A. Rath B.H. O’Neill J.W. Camphausen K. Tofilon P.J. The XPO1 inhibitor selinexor inhibits translation and enhances the radiosensitivity of glioblastoma cells grown In Vitro and In Vivo. Mol. Cancer Ther. 2018 17 8 1717 1726 10.1158/1535‑7163.MCT‑17‑1303 29866745
    [Google Scholar]
  86. Zhao K. Braun M. Meyer L. Otte K. Raifer H. Helmprobst F. Möschl V. Pagenstecher A. Urban H. Ronellenfitsch M.W. Steinbach J.P. Pesek J. Watzer B. Nockher W.A. Taudte R.V. Neubauer A. Nimsky C. Bartsch J.W. Rusch T. A novel approach for glioblastoma treatment by combining apoptosis inducers (TMZ, MTX, and Cytarabine) with E.V.A. (Eltanexor, Venetoclax, and A1210477) inhibiting XPO1, Bcl-2, and Mcl-1. Cells 2024 13 7 632 , 13, 632 10.3390/cells13070632 38607071
    [Google Scholar]
  87. Castelló A. Izquierdo J.M. Welnowska E. Carrasco L. RNA nuclear export is blocked by poliovirus 2A protease and is concomitant with nucleoporin cleavage. J. Cell Sci. 2009 122 20 3799 3809 10.1242/jcs.055988 19789179
    [Google Scholar]
  88. Tabe Y. Kojima K. Yamamoto S. Sekihara K. Matsushita H. Davis RE. Ribosomal biogenesis and translational flux inhibition by the selective inhibitor of nuclear export (SINE) XPO1 antagonist KPT-185 PLoS One. 2015 10 9 e0137210 10.1371/journal.pone.0137210
    [Google Scholar]
  89. Yang X.Z. Cheng T.T. He Q.J. Lei Z.Y. Chi J. Tang Z. Liao Q.X. Zhang H. Zeng L.S. Cui S.Z. LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/β-catenin pathway. Mol. Cancer 2018 17 1 126 10.1186/s12943‑018‑0874‑1 30134915
    [Google Scholar]
  90. Lv C. Li F. Li X. MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists. Nat Commun. 2017 8 1 1036 10.1038/s41467‑017‑01059‑5
    [Google Scholar]
  91. Clevers H. Loh K.M. Nusse R. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 2014 346 6205 1248012 10.1126/science.1248012 25278615
    [Google Scholar]
  92. Reyes M. Flores T. Betancur D. Peña-Oyarzún D. Torres V.A. Wnt/β-catenin signaling in oral carcinogenesis. Int. J. Mol. Sci. 2020 21 13 4682 10.3390/ijms21134682 32630122
    [Google Scholar]
  93. Liu J. Xiao Q. Xiao J. Niu C. Li Y. Zhang X. Zhou Z. Shu G. Yin G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022 7 1 3 10.1038/s41392‑021‑00762‑6 34980884
    [Google Scholar]
  94. Pai S.G. Carneiro B.A. Mota J.M. Costa R. Leite C.A. Barroso-Sousa R. Kaplan J.B. Chae Y.K. Giles F.J. Wnt/beta-catenin pathway: Modulating anticancer immune response. J. Hematol. Oncol. 2017 10 1 101 10.1186/s13045‑017‑0471‑6 28476164
    [Google Scholar]
  95. Wall J.A. Meza-Perez S. Scalise C.B. Katre A. Londoño A.I. Turbitt W.J. Randall T. Norian L.A. Arend R.C. Manipulating the Wnt/β-catenin signaling pathway to promote anti-tumor immune infiltration into the TME to sensitize ovarian cancer to ICB therapy. Gynecol. Oncol. 2021 160 1 285 294 10.1016/j.ygyno.2020.10.031 33168307
    [Google Scholar]
  96. Cui C. Zhou X. Zhang W. Qu Y. Ke X. Is β-Catenin a Druggable Target for Cancer Therapy? Trends Biochem. Sci. 2018 43 8 623 634 10.1016/j.tibs.2018.06.003 30056837
    [Google Scholar]
  97. Kim W.K. Buckley A.J. Lee D.H. Hiroto A. Nenninger C.H. Olson A.W. Wang J. Li Z. Vikram R. Adzavon Y.M. Yau T. Bao Y. Kahn M. Geradts J. Xiao G.Q. Sun Z. Androgen deprivation induces double-null prostate cancer via aberrant nuclear export and ribosomal biogenesis through HGF and Wnt activation. Nat. Commun. 2024 15 1 1231 10.1038/s41467‑024‑45489‑4 38336745
    [Google Scholar]
  98. Mahipal A. Malafa M. Importins and exportins as therapeutic targets in cancer. Pharmacol. Ther. 2016 164 135 143 10.1016/j.pharmthera.2016.03.020 27113410
    [Google Scholar]
  99. Sakuma S. Raices M. Borlido J. Guglielmi V. Zhu E.Y.S. D’Angelo M.A. Inhibition of nuclear pore complex formation selectively induces cancer cell death. Cancer Discov. 2021 11 1 176 193 10.1158/2159‑8290.CD‑20‑0581 32988961
    [Google Scholar]
/content/journals/pra/10.2174/0115748928322627241016120142
Loading
/content/journals/pra/10.2174/0115748928322627241016120142
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: SCLC ; NSCLC ; lung cancer ; Selinexor ; XPO1 ; SINE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test