- Home
- A-Z Publications
- Recent Patents on Nanotechnology
- Previous Issues
- Volume 19, Issue 1, 2025
Recent Patents on Nanotechnology - Volume 19, Issue 1, 2025
Volume 19, Issue 1, 2025
-
-
Diabetology and Nanotechnology: A Compelling Combination
Authors: Ritu Karwasra, Shivkant Sharma, Isha Sharma, Nida Shahid and Tarana UmarThe convergence of diabetology and nanotechnology has emerged as a promising synergy with the potential to revolutionize the management and treatment of diabetes mellitus. Diabetes, a complex metabolic disorder affecting millions worldwide, necessitates innovative approaches to enhance monitoring, diagnosis, and therapeutic interventions. Nanotechnology, a burgeoning field that manipulates materials at the nanoscale, offers unprecedented opportunities to address the challenges posed by diabetes. This abstract explores the multifaceted interface between diabetology and nanotechnology, highlighting key areas of integration. Nanotechnology has paved the way for the development of advanced glucose monitoring systems with enhanced accuracy, sensitivity, and patient convenience. Miniaturized biosensors and implantable devices equipped with nanoscale materials enable continuous and real-time glucose monitoring, empowering individuals with diabetes to make timely and informed decisions about their dietary and insulin management. Furthermore, nanotechnology has facilitated breakthroughs in targeted drug delivery, addressing the limitations of conventional therapies in diabetes treatment. Nano-sized drug carriers can improve bioavailability, enable controlled release, and enhance the selectivity of therapeutic agents, minimizing side effects and optimizing treatment outcomes. Moreover, nanoengineered materials have opened avenues for tissue engineering and regenerative medicine, offering the potential to restore damaged pancreatic islets and insulin-producing cells. The amalgamation of diabetology and nanotechnology also holds promise for early disease detection and prevention. Nanoscale diagnostic tools, such as biomarker-based nanoprobes and lab-on-chip devices, offer rapid and accurate detection of diabetes-related biomolecules, enabling timely interventions and reducing the risk of complications. However, this compelling combination also presents challenges that warrant careful consideration. Safety, biocompatibility, regulatory approval, and ethical implications are crucial factors that demand meticulous evaluation during the translation of nanotechnology-based solutions into clinical practice. In conclusion, the integration of diabetology and nanotechnology represents a transformative paradigm that has the potential to reshape the landscape of diabetes management. By harnessing the unique properties of nanoscale materials, researchers and clinicians are poised to usher in an era of personalized and precise diagnostics, therapeutics, and preventive strategies for diabetes mellitus. As advancements in nanotechnology continue to unfold, the journey towards realizing the full potential of this compelling combination remains an exciting frontier in medical science. This review has thoroughly and critically studied the usage of nanomedicine in the diagnosis, monitoring, and management of diabetes and its effects, providing a clear picture of their potential clinical application in the future. This evaluation covers additional numerous clinical trials research and patents that are currently in way in this subject. Thus in the light of this we intended to provide a broad picture of the state of technological development in the area of diabetes management through nanotechnology.
-
-
-
Nanotheranostics: The Fabrication of Theranostics with Nanoparticles and their Application to Treat the Neurological Disorders
Authors: Astha Singh, Aakriti Patel, Hema Chaudhary, Kiran Yadav and Neha MinochaBackgroundTheranostics is a method that focuses on providing patient-centred care and is evolving as a targeted, safe, and effective pharmacotherapy. Nanotheranostics combines diagnosis and therapeutic modalities that bridge traditional treatment and personalised medicine. Theranostics provides novel ideas for nanotechnology. This review describes the current state of nanotechnology-based therapies used to treat neurological illnesses. Some patents on theranostics are also discussed in this review.
ObjectiveThis study aims to provide a more comprehensive review of the diagnosis and therapeutic properties of nanotheranostics, the present state of nanotechnology-based treatment of neurological disorders, and the future potential of theranostics.
MethodsThe phrase “theranostics” refers to a treatment strategy that integrates therapeutics and diagnostics to monitor treatment response and enhance drug efficacy and safety. Theranostics is a crucial component of personalised medicine and calls for significant advancements in predictive medicine. The term “theranostics” refers to a diagnosis that screens patients for potential adverse drug reactions and targets drug delivery depending on the test results. Theranostics treats neurological disorders (like brain tumours (glioma), Parkinson's disease, Alzheimer's disease, and neurovascular diseases). Many review articles on Google Scholar, PubMed, Google Patents, and Scopus were used to gather information for this review. Data acquired from many sources was compiled in this review to provide more information on theranostics.
ResultsThe role of various nanocarrier systems as theranostic agents for neurological illnesses and the fabrication of nanomaterials for theranostics are discussed in this article after evaluating a substantial number of review articles.
ConclusionThe distinctive intrinsic features of nanoparticles make them useful for functionalization and imaging. Theranostics in nuclear medicine include diagnostic imaging and therapy using the same molecule that is radiolabeled differently or the same medication at various doses. It is possible to determine if a patient will benefit from a given treatment by visualising potential targets. Targeted nuclear therapy has been shown to be beneficial in patients if chosen carefully and has a good safety profile.
-
-
-
The Emergence of Nanotechnology in the Prognosis and Treatment of Myocardial Infarctions
Authors: Isha Sharma, Shivani Bhardwaj, Ritu Karwasra, Dhirender Kaushik and Shivkant SharmaMyocardial infarction (MI), commonly known as a heart attack, is a critical cardiovascular condition associated with high morbidity and mortality rates worldwide. Despite significant advancements in traditional treatment modalities, there remains a need for innovative approaches to improve the prognosis and treatment outcomes of MI. The emergence of nanotechnology has provided a promising avenue for revolutionizing the management of this life-threatening condition. This manuscript aims to explore the role of nanotechnology in the prognosis and treatment of myocardial infarctions. Nanotechnology offers unique advantages in the field of cardiovascular medicine, including targeted drug delivery, precise imaging and diagnosis, regenerative medicine approaches, biosensors and monitoring, and the integration of therapy and diagnostics (theragnostic). One of the key advantages of nanotechnology is the ability to deliver therapeutic agents directly to the affected site. Nanoparticles can be engineered to carry drugs specifically to damaged heart tissue, enhancing their efficacy while minimizing off-target effects. Additionally, nanoparticles can serve as contrast agents, facilitating high-resolution imaging and accurate diagnosis of infarcted heart tissue. Furthermore, nanotechnology-based regenerative approaches show promise in promoting tissue healing and regeneration after MI. Nanomaterials can provide scaffolding structures or release growth factors to stimulate the growth of new blood vessels and support tissue repair. This regenerative potential holds significant implications for restoring cardiac function and minimizing long-term complications. Nanotechnology also enables real-time monitoring of critical parameters within the heart, such as oxygen levels, pH, and electrical activity, through the utilization of nanoscale devices and sensors. This capability allows for the early detection of complications and facilitates timely interventions. Moreover, the integration of therapy and diagnostics through nanotechnology-based platforms, known as theragnostic, holds tremendous potential. Nanoparticles can simultaneously deliver therapeutic agents while providing imaging capabilities, enabling personalized treatment strategies tailored to individual patients. This manuscript will review the recent advancements, clinical trials, and patents in nanotechnology for the prognosis and treatment of myocardial infarctions. By leveraging nanotechnology's unique properties and applications, researchers and clinicians can develop innovative therapeutic approaches that enhance patient outcomes, improve prognosis, and ultimately revolutionize the management of myocardial infarctions.
-
-
-
Nano-based Therapeutics for Rheumatoid Arthritis: Recent Patents and Development
Authors: Manish Makhija, Deeksha Manchanda and Manu SharmaRheumatoid arthritis (RA) is a chronic, systemic autoimmune disease marked by inflammation of synovium and generation of autoantibodies. Bone and cartilage are frequently damaged along with weakening of tendons and ligaments resulting in disability. An effective RA treatment needs a multi-disciplinary approach which relies upon pathophysiology that is still partially understood. In RA patients, inflammation was induced by pro-inflammatory cytokines including IL-1, IL-6 & IL-10. The conventional dosage regimens for treating RA have drawbacks such as ineffectiveness, greater doses, frequent dosing, relatively expensive and serious adverse effects. To formulate an effective treatment plan for RA, research teams have recently focused on producing several nanoformulations containing anti-inflammatory APIs with an aim to target the inflamed area. Nanomedicines have recently gained popularity in the treatment of RA. Interestingly, unbelievable improvements have been observed in current years in diagnosis and management of RA utilizing nanotechnology. Various patents and clinical trial data have been reported in relevance to RA treatment.
-
-
-
Untangling Breast Cancer: Trailing Towards Nanoformulations-based Drug Development
All over the world, cancer death and prevalence are increasing. Breast cancer (BC) is the major cause of cancer mortality (15%) which makes it the most common cancer in women. BC is defined as the furious progression and quick division of breast cells. Novel nanotechnology-based approaches helped in improving survival rate, metastatic BC is still facing obstacles to treat with an expected overall 23% survival rate. This paper represents epidemiology, classification (non-invasive, invasive and metastatic), risk factors (genetic and non-genetic) and treatment challenges of breast cancer in brief. This review paper focus on the importance of nanotechnology-based nanoformulations for treatment of BC. This review aims to deliver elementary insight and understanding of the novel nanoformulations in BC treatment and to explain to the readers for enduring designing novel nanomedicine. Later, we elaborate on several types of nanoformulations used in tumor therapeutics such as liposomes, dendrimers, polymeric nanomaterials and many others. Potential research opportunities for clinical application and current challenges related to nanoformulations utility for the treatment of BC are also highlighted in this review. The role of artificial intelligence is elaborated in detail. We also confer the existing challenges and perspectives of nanoformulations in effective tumor management, with emphasis on the various patented nanoformulations approved or progression of clinical trials retrieved from various search engines.
-
-
-
Applications of Nanomedicine in Brain Tumor Therapy: Nanocarrierbased Drug Delivery Platforms, Challenges, and Perspectives
BackgroundThe most difficult kind of cancer to treat is brain cancer, which causes around 3% of all cancer-related deaths. The targeted delivery is improved with the use of technologies based on nanotechnology that are both safe and efficient. Because of this, there is now a lot of research being done on brain cancer treatments based on nanoformulations.
ObjectiveIn this review, the author's primary aim is to elucidate the various nanomedicine for brain cancer therapy. The authors focus primarily on the advancement of nanotechnology in treating brain cancer (BC). This review article gives readers an up-to-date look at publications on sophisticated nanosystems in treating BC, including quantum dots (QDs), nanoparticles (NPs), polymeric micelles (PMs), dendrimers, and solid lipid nanoparticles (SLNs), among others. This article offers insight into the use of various nanotechnology-based systems for therapy as well as their potential in the future. This article also emphasizes the drawbacks of nanotechnology-based methods. Future perspectives for treating brain cancer using proteomics and biomimetic nanosystems are briefly discussed.
ConclusionIn this review, we review several aspects of brain cancer therapy, including various nanomedicines, their challenges and future perspectives. Overall, this article gives a thorough overview of both the present state of brain cancer treatment options and the disease itself. Various patents granted for brain cancer are also discussed.
-
-
-
A Systematic Review and Meta-Analysis of the Metal Nano-Particles Loaded with Herbal Drugs Moieties Against Breast Cancer
Authors: Suchitra Nishal, Virender Kumar, Parmita Phaugat, Davinder Kumar, Naveen Khatri and Gajendra SinghBackgroundBreast cancer is the most prevalent cancer among women. About 685K deaths were globally listed in 2020 by the World Health Organization. Nowadays, scientists prefer to use herbal medicines due to their low toxicity. Herbal medicines are used to overcome the toxicity effects of surgical removal, radio-chemo therapy and medication, which have a lot of risk of damaging the healthy tissues. To overcome this, enhance bioavailability and target specify, nano-formulation chemotherapy was introduced using herbal moiety for anticancer activity. The use of metallic nanoparticles (MNPs), particularly those made of silver, cobalt, zinc, and gold as contrast, antibacterial, anticancer, and drug delivery agents has revolutionised the medicinal field. Although MNPs can be made via exacting physical and chemical processes, a biological method utilising natural materials has been established recently.
ObjectivesThis patent review article will offer a succinct explanation of the use of MNPs and its potential impact on herbal medicines in the future.
MethodsUsing PRISMA principles, this review systematically examines studies that concentrate on metal nanoparticles loaded with herbal compounds for the treatment of breast cancer. Various Databases were studied: PubMed, Elsevier, ScienceDirect, SpringerLink, Taylor & Francis Online, ACS Publications, Publishing Royal Society of Chemistry, and Future Medicines. Studies were selected if they were peer-reviewed primary studies published in the past 10 years.
ResultsWe found that many herbal nano-formulations are more effective in breast cancer treatment than other types of formulations. Efficacy, safety and drug stability are also enhanced using nano-formulations.
ConclusionNano-formulation is found to be more effective in the treatment of breast cancer.
-
-
-
An Efficient Suppression of EGFR and B-Raf mRNA Overexpression in the Lung of Benzo[a]pyrene-induced mice by Cationic Lipo-ATRA Nanoformulation
BackgroundThe molecular drug all-trans retinoic acid (ATRA) acts on cancer cells via different molecular pathways, but its poor bioavailability in cancer cells limits its potency. Recently few patents have been published for the development of liposome-based drug for enhanced action. This study was, therefore, carried out to analyse the oncogene expressions in the lung tissue of benzo[a]pyrene (B[a]P)-induced mice and compare between free ATRA and cationic liposome nanoformulation (lipo-ATRA) treatments.
ObjectiveThis study was designed to analyse the changes in the expression levels of epidermal growth factor receptor (EGFR) and B-Raf in the lung tissues of B[a]P-induced mice during the cancer development stage itself and to find the suppressive effect of free ATRA and lipo-ATRA.
MethodsLung cancer was induced in mice by oral ingestion of 50mg/kg body weight B[a]P weekly twice for four consecutive weeks. Then, the mice were treated with free and lipo-ATRA (0.60 mg/kg) for 30 days via i.v injection. The EGFR and B-Raf gene expressions were analyzed in lung cells by reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative polymerase chain reaction (qPCR).
ResultsThe RT-PCR gene band density and the relative quantity (RQ) values from qPCR revealed both EGFR and B-Raf genes to be significantly overexpressed in B[a]P control mice while having very low or no expression in normal mice. This indicates that they function as oncogenes in B[a]P-induced lung carcinogenesis. The lipo-ATRA treatment has shown a highly significant increase in RQ values for both EGFR and BRaf when compared to the free ATRA treatment.
ConclusionThe study results have revealed the cationic lipo-ATRA treatment to have enhanced the bioavailability of ATRA in lung tissue due to its significant suppression action on EGFR-mediated oncogenes’ expressions. Furthermore, the EGFR and BRaf could be the molecular targets of ATRA action in lung carcinogenesis.
-
-
-
Magnetic Field Modulation Effect of Photoelectric Properties in Dye-sensitized Solar Cells with La0.67(Ca,Ba)0.33MnO3 as Counter Electrodes
Authors: Guanzhong Huo, Wenqing Lin, Ke Wang, Zhe Pei, Xuan Du, Shuiyuan Chen, Chao Su, Qingying Ye and Guilin ChenBackgroundIn recent years, many semiconductor materials with unique band structures have been used and also pursued patent protection as Pt counter electrode (CE) substitutes for dye-sensitized solar cells (DSSCs), which makes the photoelectric properties of DSSCs possible to be modulated by electric field, magnetic field, and light field. In this work, La0.67(Ca,Ba)0.33MnO3 (LCBMO) thin film is employed to act as CE in DSSCs.
MethodsThe experimental results indicate that short-circuit current density and photoelectric conversion efficiency present better stability when applying an external magnetic field to the DSSCs. Furthermore, both the exchange current density (J0) and limit diffusion current density (Jlim) are largely enhanced by an external magnetic field. J0 increases from -0.51 mA·cm-2 to -0.65 mA·cm-2, and Jlim increases from 0.2 mA·cm-2 to 0.3 mA·cm-2 when applying a magnetic field of 0.25 T.
ResultsThe fitting results of the impedance test verify that the magnetic field reduces the value of Rct.
ConclusionBoth magnetic-field enhancing catalytic activity and CMR effect jointly promote the increase of photocurrent and finally improve the photovoltaic effect in DSSCs.
-
-
-
Optimization of Double-Gate Carbon Nanotube FET Characteristics for Short Channel Devices
Authors: Vijai M. Moorthy, Rethinasamy Venkatesan and Viranjay M. SrivastavaIntroductionTransistors are the fundamental electronic component integrated into electronic devices' chips Carbon Nano Tube (CNT) based field.
MethodsEffect Transistor (FET) is a promising component for next-generation transistor technologies; as it has high carrier mobility, device stability, and mechanical flexibility. Nevertheless, some shortcomings in the CNT FET's design prevent it from providing the best performance while preserving thermal stability.
ResultsThe structure and functionality of transistors with Double-Gate (DG) devices, which use carbon nanotubes as active channel regions, have been examined by the authors of this study. The DG CNT FET has been extensively simulated using an electronic device simulator with various device geometrics, including channel length, oxide thickness for its output, and transfer characteristics. In comparison to reported patents and published works, this demonstrates a significant improvement.
ConclusionA new perspective on the DG CNT FET's device performance characteristics is provided by this research work, which can be scaled down to minimum channel length without Short Channel Effects (SCEs).
-
Volumes & issues
-
Volume 19 (2025)
-
Volume 18 (2024)
-
Volume 17 (2023)
-
Volume 16 (2022)
-
Volume 15 (2021)
-
Volume 14 (2020)
-
Volume 13 (2019)
-
Volume 12 (2018)
-
Volume 11 (2017)
-
Volume 10 (2016)
-
Volume 9 (2015)
-
Volume 8 (2014)
-
Volume 7 (2013)
-
Volume 6 (2012)
-
Volume 5 (2011)
-
Volume 4 (2010)
-
Volume 3 (2009)
-
Volume 2 (2008)
-
Volume 1 (2007)