Skip to content
2000
Volume 19, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

In recent years, many semiconductor materials with unique band structures have been used and also pursued patent protection as Pt counter electrode (CE) substitutes for dye-sensitized solar cells (DSSCs), which makes the photoelectric properties of DSSCs possible to be modulated by electric field, magnetic field, and light field. In this work, La(Ca,Ba)MnO (LCBMO) thin film is employed to act as CE in DSSCs.

Methods

The experimental results indicate that short-circuit current density and photoelectric conversion efficiency present better stability when applying an external magnetic field to the DSSCs. Furthermore, both the exchange current density (J) and limit diffusion current density (J) are largely enhanced by an external magnetic field. J increases from -0.51 mA·cm-2 to -0.65 mA·cm-2, and J increases from 0.2 mA·cm-2 to 0.3 mA·cm-2 when applying a magnetic field of 0.25 T.

Results

The fitting results of the impedance test verify that the magnetic field reduces the value of .

Conclusion

Both magnetic-field enhancing catalytic activity and CMR effect jointly promote the increase of photocurrent and finally improve the photovoltaic effect in DSSCs.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/1872210518666230915142211
2023-10-10
2024-12-26
Loading full text...

Full text loading...

References

  1. O’ReganB. GrätzelM. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.Nature1991353634673774010.1038/353737a0
    [Google Scholar]
  2. DarM.A. AhmedS.R. RatherM.A. The features of the solvothermal synthesis of SnSe nanosheets and nanoflowers for supercapacitor applications.Inorg. Chem. Commun.202315311083810.1016/j.inoche.2023.110838
    [Google Scholar]
  3. DarM.A. DinagaranS. GovindarajanD. Snx-0MnxS nanomaterial based electrodes for future-generation supercapacitor and data storage devices.J. Alloys Compd.202395817052310.1016/j.jallcom.2023.170523
    [Google Scholar]
  4. TangY.T. PanX. DaiS.Y. ZhangC.N. TianH.J. Research progress of the counter electrode in dye-sensitized solar cells.Key Eng. Mater.2010451637810.4028/www.scientific.net/KEM.451.63
    [Google Scholar]
  5. VeltenJ.A. Carretero-GonzálezJ. Castillo-MartínezE. Photoinduced optical transparency in dye-sensitized solar cells containing graphene nanoribbons.J. Phys. Chem. C201111550251252513110.1021/jp2069946
    [Google Scholar]
  6. BavarianM. NejatiS. LauK.K.S. LeeD. SoroushM. Theoretical and experimental study of a dye-sensitized solar cell.Ind. Eng. Chem. Res.201453135234524710.1021/ie4016914
    [Google Scholar]
  7. CuiX. XiaoJ. WuY. A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells.Angew. Chem. Int. Ed.201655236708671210.1002/anie.20160209727089044
    [Google Scholar]
  8. DarM.A. GovindarajanD. DarG.N. Facile synthesis of SnS nanostructures with different morphologies for supercapacitor and dye-sensitized solar cell applications.J. Mater. Sci. Mater. Electron.20213215203942040910.1007/s10854‑021‑06550‑w
    [Google Scholar]
  9. HagfeldtA. BoschlooG. SunL. KlooL. PetterssonH. Dye-sensitized solar cells.Chem. Rev.2010110116595666310.1021/cr900356p20831177
    [Google Scholar]
  10. WuJ. LanZ. LinJ. Counter electrodes in dye-sensitized solar cells.Chem. Soc. Rev.201746195975602310.1039/C6CS00752J28840218
    [Google Scholar]
  11. LiG.R. GaoX.P. Low‐cost counter‐electrode materials for dye‐sensitized and perovskite solar cells.Adv. Mater.2020323180647810.1002/adma.20180647831116898
    [Google Scholar]
  12. a TangQ. DuanJ. DuanY. HeB. YuL. Recent advances in alloy counter electrodes for dye-sensitized solar cells. A critical review.Electrochim. Acta201517888689910.1016/j.electacta.2015.08.072
    [Google Scholar]
  13. (b TerukiT. Dye-sensitized solar cell module.US Patent 2019287735A12019
  14. ChoudhuryB.D. LinC. ShawonS.M.A.Z. Carbon fibers coated with ternary Ni–Co–Se alloy particles as a low-cost counter electrode for flexible dye sensitized solar cells.ACS Appl. Energy Mater.20214187087810.1021/acsaem.0c02764
    [Google Scholar]
  15. YoonS.W. DaoV.D. LarinaL.L. LeeJ.K. ChoiH.S. Optimum strategy for designing PtCo alloy/reduced graphene oxide nanohybrid counter electrode for dye-sensitized solar cells.Carbon20169622923610.1016/j.carbon.2015.09.067
    [Google Scholar]
  16. ShirazH.G. AstaraieF.R. Carbonaceous materials as substitutes for conventional dye-sensitized solar cell counter electrodes.J. Mater. Chem. A Mater. Energy Sustain.2015342208492086210.1039/C5TA02840J
    [Google Scholar]
  17. JiJ.M. KimC.K. KimH.K. Well-dispersed Te-doped mesoporous carbons as Pt-free counter electrodes for high-performance dye-sensitized solar cells.Dalton Trans.202150279399940910.1039/D0DT04372A34223586
    [Google Scholar]
  18. LiW. ZhangS. ChenQ. ZhongQ. Tailorable boron-doped carbon nanotubes as high-efficiency counter electrodes for quantum dot sensitized solar cells.Catal. Sci. Technol.20211182745275210.1039/D0CY02266G
    [Google Scholar]
  19. MehmoodU. Ur RehmanA. IrshadH.M. Ul HaqK.A. Al-AhmedA. Carbon/carbon nanocomposites as counter electrodes for platinum free dye-sensitized solar cells.Org. Electron.20163512813510.1016/j.orgel.2016.05.014
    [Google Scholar]
  20. ZhangX. ChenX. ZhangK. Transition-metal nitride nanoparticles embedded in N-doped reduced graphene oxide: Superior synergistic electrocatalytic materials for the counter electrodes of dye-sensitized solar cells.J. Mater. Chem. A Mater. Energy Sustain.2013110334010.1039/c2ta00608a
    [Google Scholar]
  21. ZhangY. YunS. WangZ. Highly efficient bio-based porous carbon hybridized with tungsten carbide as counter electrode for dye-sensitized solar cell.Ceram. Int.20204610158121582110.1016/j.ceramint.2020.03.128
    [Google Scholar]
  22. NemalaS.S. KartikayP. AgrawalR.K. BhargavaP. MallickS. BohmS. Few layers graphene based conductive composite inks for Pt free stainless steel counter electrodes for DSSC.Sol. Energy2018169677410.1016/j.solener.2018.02.061
    [Google Scholar]
  23. LiC-T. LinY-F. HoK-C. ChiuI.T. TCO-free conducting polymers/carbon clothes as the flexible electro-catalytic counter electrodes for dye-sensitized solar cells.J. Mater. Chem. A Mater. Energy Sustain.20153482447924486
    [Google Scholar]
  24. SaranyaK. RameezM. SubramaniaA. Developments in conducting polymer based counter electrodes for dye-sensitized solar cells – An overview.Eur. Polym. J.20156620722710.1016/j.eurpolymj.2015.01.049
    [Google Scholar]
  25. RahmanM.S. HammedW.A. YahyaR.B. MahmudH.N.M.E. Prospects of conducting polymer and graphene as counter electrodes in dye-sensitized solar cells.J. Polym. Res.201623919210.1007/s10965‑016‑1090‑6
    [Google Scholar]
  26. ZhongY. ChenP. YangB. Low-cost platinum-free counter electrode of La0.67Sr0.33MnO3 perovskite for efficient dye-sensitized solar cells.Appl. Phys. Lett.20151062626390310.1063/1.4926339
    [Google Scholar]
  27. XiongK. LiG. JinC. JinS. La0.65Sr0.35MnO3@RGO nanocomposites as an effective counter electrode for dye-sensitized solar cells.Mater. Lett.201616460961210.1016/j.matlet.2015.10.143
    [Google Scholar]
  28. XiongK. LiuZ. YuanJ. La0.5Sr0.5CoO2.91@RGO nanocomposites as an effective counter electrode for dye-sensitized solar cells.J. Mater. Sci. Mater. Electron.20172821679168310.1007/s10854‑016‑5712‑x
    [Google Scholar]
  29. YangQ. ZuoX. YaoJ. La0.7Ca0.3MnO3 nanoparticles anchored on N-doped graphene: Highly efficient bifunctional catalyst as counter electrode for dye-sensitized solar cells.J. Electroanal. Chem.2019844344210.1016/j.jelechem.2019.05.014
    [Google Scholar]
  30. ChenY. YangX. WangW. RanR. ZhouW. ShaoZ. Tuning the A-site cation deficiency of La0.8Sr0.2FeO3−δ perovskite oxides for high-efficiency triiodide reduction reaction in dye-sensitized solar cells.Energy Fuels2020349113221132910.1021/acs.energyfuels.0c02354
    [Google Scholar]
  31. ChenS. LaiH. LinY. Transport and magnetic properties of nanosized La2/3(Ca0.6Ba0.4)1/3MnO3/xNiO composites.J. Magn. Magn. Mater.20063032e308e31110.1016/j.jmmm.2006.01.234
    [Google Scholar]
  32. NingX. WangZ. ZhangZ. Large, temperature-tunable low-field magnetoresistance in La0.7Sr0.3MnO3: NiO nanocomposite films modulated by microstructures.Adv Funct Mater201424345393540110.1002/adfm.201400735
    [Google Scholar]
  33. DarM.A. GovindarajanD. BatooK.M. SivaC. Supercapacitor and magnetic properties of Fe doped SnS nanoparticles synthesized through solvothermal method.J. Energy Storage20225210503410.1016/j.est.2022.105034
    [Google Scholar]
  34. HouW.W. ZhangN. YeQ.Y. Magnetocaloric effect in La2/3(Ca0.6Ba0.4)1/3MnO3.Appl Phys201707374210.12677/APP.2017.72006
    [Google Scholar]
/content/journals/nanotec/10.2174/1872210518666230915142211
Loading
/content/journals/nanotec/10.2174/1872210518666230915142211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test