Skip to content
2000
Volume 19, Issue 3
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

Bipolymeric nanofibers have gained significant attention in various fields due to their enhanced functionality, improved mechanical properties, and controlled release capabilities. However, the fabrication of these composite fibers with a well-defined polymer-polymer interface remains a challenging task.

Methods

The double bubble electrospinning setup was developed and simulated using Maxwell 3D to analyze the electric field. PVP and PVA polymers were electrospun simultaneously to create bipolymer nanofibers with an interface. The resulting nanofibers were compared with nanofibers made from pure PVA, PVP, and a PVA/PVP blend. The characterization of the nanofibers was performed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA).

Results

The SEM images showed the formation of PVA/PVP interfacial nanofibers aligned side by side, with a diameter of a few thousand nanometers on each side. By increasing the voltage from 20 kV to 40 kV during electrospinning, the diameter of the nanofibers on the PVA and PVP sides was successfully reduced by 60.8% and 66.3%, respectively. FTIR analysis confirmed the presence of both PVA and PVP in the bipolymeric interfacial nanofibers. TGA analysis demonstrated a weight retention of 14.28% compared to PVA, PVP, and the PVA/PVP blend even after degradation at 500°C. The Maxwell simulation of double bubble electrospinning revealed a stronger and more uniform electric field pattern at 40 kV compared to 20 kV.

Conclusion

The study has demonstrated the potential of double bubble electrospinning for the fabrication of bipolymer nanofibers with an interface, opening new avenues and patents for the development of functional nanofibers.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105259729231004040238
2023-10-24
2025-04-15
Loading full text...

Full text loading...

References

  1. YardimciI.A. Comparative Study of the Structural, Mechanical and Electrochemical Properties of Polyacrylonitrile (PAN)-Based Polypyrrole (PPy) and Polyvinylidene Fluoride (PVDF).Electrospun Nanofibers. J Macromol Sci Part B2022113
    [Google Scholar]
  2. AnaeleO.F. ChineduO.H. ChukwudiE.B. UzochukwuE.W. Progress in polymer-based composites as efficient materials for electromagnetic interference shielding applications: A review.Curr Mater Sci Former Recent Patents Mater Sci202316235261
    [Google Scholar]
  3. HabibZ. LeeC.G. LiQ. Bi-Polymer electrospun nanofibers embedding Ag3PO4/P25 composite for efficient photocatalytic degradation and anti-microbial activity.Catalysts202010778410.3390/catal10070784
    [Google Scholar]
  4. PatelG. PatelP. YadavB.K. State-of-the-Art and projected developments of nanofiber filter material for face mask against COVID-19.Recent Pat. Nanotechnol.202216426227010.2174/1872210515666210604110946 34086552
    [Google Scholar]
  5. XuT. YangD. LiuY. Cover Feature: Hierarchical transition metal oxide arrays grown on graphene‐based fibers with enhanced interface by thin layer of carbon toward solid‐state asymmetric supercapacitors (ChemElectroChem 8/2020).ChemElectroChem202078180210.1002/celc.202000349
    [Google Scholar]
  6. SongJ. WinkeljannB. LielegO. Biopolymer‐based coatings: Promising strategies to improve the biocompatibility and functionality of materials used in biomedical engineering.Adv. Mater. Interfaces2020717200085010.1002/admi.202000850
    [Google Scholar]
  7. MostafaM. KandileN.G. MahmoudM.K. IbrahimH.M. Synthesis and characterization of polystyrene with embedded silver nanoparticle nanofibers to utilize as antibacterial and wound healing biomaterial.Heliyon202281e0877210.1016/j.heliyon.2022.e08772 35118204
    [Google Scholar]
  8. AbbasiA. NasefM.M. TakeshiM. Faridi-MajidiR. Electrospinning of nylon-6,6 solutions into nanofibers: Rheology and morphology relationships.Chin. J. Polym. Sci.201432679380410.1007/s10118‑014‑1451‑8
    [Google Scholar]
  9. XuX. ZhangH. AoJ. 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater.Energy Environ. Sci.20191261979198810.1039/C9EE00626E
    [Google Scholar]
  10. SabetzadehN. GharehaghajiA.A. JavanbakhtM. Porous PAN micro/nanofiber separators for enhanced lithium-ion battery performance.Solid State Ion.201832525125710.1016/j.ssi.2018.08.013
    [Google Scholar]
  11. LiS. ZhaoY. WangC. LiD. GaoK. Fabrication and characterization unique ribbon-like porous Ag/LaFeO3 nanobelts photocatalyst via electrospinning.Mater. Lett.201617012212510.1016/j.matlet.2016.02.014
    [Google Scholar]
  12. ZaarourB. ZhuL. HuangC. JinX. A mini review on the generation of crimped ultrathin fibers via electrospinning: Materials, strategies, and applications.Polym. Adv. Technol.20203171449146210.1002/pat.4876
    [Google Scholar]
  13. Y Abdel Tawwab MAbdel-Hady BM, El-Moneim Rizk RA, Shafaa MW. Effect of electrospinning parameters on the versatile production of polycaprolacton/gelatin nanofibre mats.Adv Nat Sci: Nanosci Nanotechnol201910202500910.1088/2043‑6254/ab1fe8
    [Google Scholar]
  14. LiuZ. LuQ. WeiM. GuoE. FeVO4 nanobelts: Controllable synthesis by electrospinning and visible-light photocatalytic properties.J. Sol-Gel Sci. Technol.2017821677410.1007/s10971‑016‑4271‑1
    [Google Scholar]
  15. FangY. ZhuX. WangN. Biodegradable core-shell electrospun nanofibers based on PLA and γ-PGA for wound healing.Eur. Polym. J.2019116303710.1016/j.eurpolymj.2019.03.050
    [Google Scholar]
  16. WangM.L. YuD.G. BlighS.W.A. Progress in preparing electrospun Janus fibers and their applications.Appl. Mater. Today20233110176610.1016/j.apmt.2023.101766
    [Google Scholar]
  17. QianM.Y. HeJ.H. Collection of polymer bubble as a nanoscale membrane.Surf. Interfaces20222810166510.1016/j.surfin.2021.101665
    [Google Scholar]
  18. KakadeM.V. GivensS. GardnerK. LeeK.H. ChaseD.B. RaboltJ.F. Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers.J. Am. Chem. Soc.2007129102777278210.1021/ja065043f 17302411
    [Google Scholar]
  19. TianD. ZhouC.J. HeJ.H. Strength of bubble walls and the Hall–Petch effect in bubble-spinning.Text. Res. J.20198971340134410.1177/0040517518770679
    [Google Scholar]
  20. VohraV. AnzaiT. Molecular orientation of conjugated polymer chains in nanostructures and thin films: Review of processes and application to optoelectronics.J. Nanomater.2017201711810.1155/2017/3624750
    [Google Scholar]
  21. BölgenN. DemirD. AşıkM. SakımB. VaseashtaA. Introduction and fundamentals of electrospinning.Electrospun Nanofibers.Springer Nature2022334
    [Google Scholar]
  22. LiY. HeJ.H. Fabrication and characterization of ZrO2 nanofibers by critical bubble electrospinning for high-temperature-resistant adsorption and separation.Adsorpt. Sci. Technol.2019375-642543710.1177/0263617419828268
    [Google Scholar]
  23. JordanA.M. ViswanathV. KimS.E. PokorskiJ.K. KorleyL.T.J. Processing and surface modification of polymer nanofibers for biological scaffolds: A review.J. Mater. Chem. B Mater. Biol. Med.20164365958597410.1039/C6TB01303A 32263485
    [Google Scholar]
  24. LeeC.H. EricksonL.E. GlasgowL.A. Bubble breakup and coalescence in turbulent gas-liquid dispersions.Chem. Eng. Commun.1987591-6658410.1080/00986448708911986
    [Google Scholar]
  25. ChenR.X. LiY. HeJ.H. Mini-review on bubbfil spinning process for mass-production of nanofibers.Materia201419432534310.1590/S1517‑70762014000400002
    [Google Scholar]
  26. WanL.Y. Bubble electrospinning and bubble-spun nanofibers.Recent Pat. Nanotechnol.2020141101310.2174/1872210513666191007114022 31589131
    [Google Scholar]
  27. HeJ.H. Advances in bubble electrospinning.Recent Pat. Nanotechnol.202013316216310.2174/187221051303191224144806 32026764
    [Google Scholar]
  28. LiuG.L. ZhangY.M. TianD. ZhouB.Z. LuZ.Q. WangC.X. Last patents on bubble electrospinning.Recent Pat. Nanotechnol.20201415910.2174/1872210513666191107123446 31702523
    [Google Scholar]
  29. AliM. AinQ.T. Branched nanofibers for biodegradable facemasks by double bubble electrospinning.Acta Chem Malaysia2020424042
    [Google Scholar]
  30. ZhaoL. LiuP. HeJ.H. Sudden solvent evaporation in bubble electrospinning for fabrication of unsmooth nanofibers.Therm. Sci.20172141827183210.2298/TSCI160725075Z
    [Google Scholar]
  31. PengN. HeJ. Insight into the wetting property of a nanofiber membrane by the geometrical potential.Recent Pat. Nanotechnol.2020141647010.2174/1872210513666191120104149 31750809
    [Google Scholar]
  32. AliM. AnjumN. AinQ.T. HeJ.H. Homotopy perturbation method for the attachment oscillator arising in nanotechnology.Fibers Polym.20212261601160610.1007/s12221‑021‑0844‑x
    [Google Scholar]
  33. BirdJ.C. de RuiterR. CourbinL. StoneH.A. Daughter bubble cascades produced by folding of ruptured thin films.Nature2010465729975976210.1038/nature09069 20535206
    [Google Scholar]
  34. Di SpiritoN.A. MirzaaghaS. Di MaioE. GrizzutiN. PasquinoR. Bubble rupture and bursting velocity of complex fluids.Langmuir20223844134291343610.1021/acs.langmuir.2c01875 36285658
    [Google Scholar]
  35. PanZ TruscottT. Bursting the Taylor cone bubble.APS Div Fluid Dyn Meet Abstr2014E4005
    [Google Scholar]
  36. JiaL. QinX. The effect of different surfactants on the electrospinning poly(vinyl alcohol) (PVA) nanofibers.J. Therm. Anal. Calorim.2013112259560510.1007/s10973‑012‑2607‑9
    [Google Scholar]
  37. Kesi̇ci̇ GülerH. Cengi̇z ÇallioğluF. Effect of polymer and surfactant concentrations on PVP nanofibers morphology.Int Adv Res Eng J2020429910510.35860/iarej.692080
    [Google Scholar]
  38. YuerouW. JunfengW. HailongL. Numerical simulation on bubble rinsing behaviors under electric field.Chinese J Theor Appl Mech2020523139
    [Google Scholar]
  39. DongW. LiR.Y. YuH.L. YanY.Y. An investigation of behaviours of a single bubble in a uniform electric field.Exp. Therm. Fluid Sci.200630657958610.1016/j.expthermflusci.2005.12.003
    [Google Scholar]
  40. HeC.H. LiX.W. LiuP. LiY. Bubbfil spinning for fabrication of PVA nanofibers.Therm. Sci.201519274374610.2298/TSCI150413061H
    [Google Scholar]
  41. YinJ. AhmedA. XuL. High-throughput free surface electrospinning using solution reservoirs with different depths and its preparation mechanism study.Advanced Fiber Materials20213425126410.1007/s42765‑021‑00078‑8
    [Google Scholar]
  42. (a FangY. XuL. Four self-made free surface electrospinning devices for high-throughput preparation of high-quality nanofibers.Beilstein J. Nanotechnol.2019102261227410.3762/bjnano.10.218 31807411
    [Google Scholar]
  43. (b LiuM ChenQ LiuY Nanofiber electrospining equipment and using method thereof.CN106222762A2016
    [Google Scholar]
  44. AhmedA. YinJ. XuL. KhanF. High-throughput free surface electrospinning using solution reservoirs with different radii and its preparation mechanism study.J. Mater. Res. Technol.2020949059907210.1016/j.jmrt.2020.06.025
    [Google Scholar]
  45. Azeez BettiN. Thermogravimetric analysis on PVA/PVP blend under air atmosphere.Eng Technol J201634132433244210.30684/etj.34.13A.6
    [Google Scholar]
  46. AlipourR. KhorshidiA. ShojaeiA.F. MashayekhiF. MoghaddamM.J.M. Skin wound healing acceleration by Ag nanoparticles embedded in PVA/PVP/Pectin/Mafenide acetate composite nanofibers.Polym. Test.20197910602210.1016/j.polymertesting.2019.106022
    [Google Scholar]
  47. GökmeşeF. Usluİ. AytimurA. Preparation and characterization of PVA/PVP nanofibers as promising materials for wound dressing.Polym. Plast. Technol. Eng.201352121259126510.1080/03602559.2013.814144
    [Google Scholar]
  48. AbdelrazekE.M. ElashmawiI.S. El-khodaryA. YassinA. Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide.Curr. Appl. Phys.201010260761310.1016/j.cap.2009.08.005
    [Google Scholar]
  49. LiX. GohS.H. LaiY.H. WeeA.T.S. Miscibility of carboxyl-containing polysiloxane/poly(vinylpyridine) blends.Polymer200041176563657110.1016/S0032‑3861(99)00896‑4
    [Google Scholar]
  50. AbdelazizM. AbdelrazekE.M. Effect of dopant mixture on structural, optical and electron spin resonance properties of polyvinyl alcohol.Physica B20073901-21910.1016/j.physb.2006.07.067
    [Google Scholar]
  51. LaotC.M. MarandE. OyamaH.T. Spectroscopic characterization of molecular interdiffusion at a poly(vinyl pyrrolidone)/vinyl ester interface.Polymer19994051095110810.1016/S0032‑3861(98)80003‑7
    [Google Scholar]
  52. GeikeT. Bubble dynamics-based modeling of the cavitation dynamics in lubricated contacts.Facta Univ Ser Mech Eng20211911512410.22190/FUME210112027G
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105259729231004040238
Loading
/content/journals/nanotec/10.2174/0118722105259729231004040238
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test