Skip to content
2000
Volume 19, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease marked by inflammation of synovium and generation of autoantibodies. Bone and cartilage are frequently damaged along with weakening of tendons and ligaments resulting in disability. An effective RA treatment needs a multi-disciplinary approach which relies upon pathophysiology that is still partially understood. In RA patients, inflammation was induced by pro-inflammatory cytokines including IL-1, IL-6 & IL-10. The conventional dosage regimens for treating RA have drawbacks such as ineffectiveness, greater doses, frequent dosing, relatively expensive and serious adverse effects. To formulate an effective treatment plan for RA, research teams have recently focused on producing several nanoformulations containing anti-inflammatory APIs with an aim to target the inflamed area. Nanomedicines have recently gained popularity in the treatment of RA. Interestingly, unbelievable improvements have been observed in current years in diagnosis and management of RA utilizing nanotechnology. Various patents and clinical trial data have been reported in relevance to RA treatment.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/1872210518666230905155459
2023-09-26
2024-12-26
Loading full text...

Full text loading...

References

  1. ChaudhariK. RizviS. SyedB.A. Rheumatoid arthritis: Current and future trends.Nat. Rev. Drug Discov.201615530530610.1038/nrd.2016.2127080040
    [Google Scholar]
  2. ZhengM. JiaH. WangH. Application of nanomaterials in the treatment of Rheumatoid arthritis.RSC Advances202111137129713710.1039/D1RA00328C35423287
    [Google Scholar]
  3. GuoQ. WangY. XuD. NossentJ. PavlosN.J. XuJ. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies.Bone Res.2018611510.1038/s41413‑018‑0016‑929736302
    [Google Scholar]
  4. JosephA. BrasingtonR. KahlL. RanganathanP. ChengT.P. AtkinsonJ. Immunologic rheumatic disorders.J. Allergy Clin. Immunol.20101252Suppl. 2S204S21510.1016/j.jaci.2009.10.06720176259
    [Google Scholar]
  5. BrzustewiczE. HencI. DacaA. Autoantibodies, C-reactive protein, erythrocyte sedimentation rate and serum cytokine profiling in monitoring of early treatment.Cent. Eur. J. Immunol.20173325926810.5114/ceji.2017.7096829204090
    [Google Scholar]
  6. LinY.J. AnzagheM. SchülkeS. Update on the pathomechanism, diagnosis, and treatment options for Rheumatoid arthritis.Cells20209488010.3390/cells904088032260219
    [Google Scholar]
  7. AlmutairiK. NossentJ. PreenD. KeenH. InderjeethC. The global prevalence of Rheumatoid arthritis: A meta-analysis based on a systematic review.Rheumatol. Int.202141586387710.1007/s00296‑020‑04731‑033175207
    [Google Scholar]
  8. MyasoedovaE. CrowsonC.S. KremersH.M. TherneauT.M. GabrielS.E. Is the incidence of Rheumatoid arthritis rising?: Results from Olmsted County, Minnesota, 1955-2007.Arthritis Rheum.20106261576158210.1002/art.2742520191579
    [Google Scholar]
  9. NgoS.T. SteynF.J. McCombeP.A. Gender differences in autoimmune disease.Front. Neuroendocrinol.201435334736910.1016/j.yfrne.2014.04.00424793874
    [Google Scholar]
  10. CrowsonC.S. MattesonE.L. MyasoedovaE. The lifetime risk of adult-onset Rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases.Arthritis Rheum.201163363363910.1002/art.3015521360492
    [Google Scholar]
  11. AlmutairiK.B. NossentJ.C. PreenD.B. KeenH.I. InderjeethC.A. The prevalence of Rheumatoid arthritis: A systematic review of population-based studies.J. Rheumatol.202148566967610.3899/jrheum.20036733060323
    [Google Scholar]
  12. McInnesI.B. O’DellJ.R. State-of-the-art: Rheumatoid arthritis.Ann. Rheum. Dis.2010691118981906
    [Google Scholar]
  13. CoutantF. MiossecP. Altered dendritic cell functions in autoimmune diseases: Distinct and overlapping profiles.Nat. Rev. Rheumatol.2016121270371510.1038/nrrheum.2016.14727652503
    [Google Scholar]
  14. YuM.B. LangridgeW.H.R. The function of myeloid dendritic cells in Rheumatoid arthritis.Rheumatol. Int.20173771043105110.1007/s00296‑017‑3671‑z28236220
    [Google Scholar]
  15. YangM. FengX. DingJ. ChangF. ChenX. Nanotherapeutics relieve Rheumatoid arthritis.J. Control. Release201725210812410.1016/j.jconrel.2017.02.03228257989
    [Google Scholar]
  16. DolatiS. SadreddiniS. RostamzadehD. AhmadiM. Jadidi-NiaraghF. YousefiM. Utilization of nanoparticle technology in Rheumatoid arthritis treatment.Biomed. Pharmacother.201680304110.1016/j.biopha.2016.03.00427133037
    [Google Scholar]
  17. ShrivastavaA.K. PandeyA. Inflammation and Rheumatoid arthritis.J. Physiol. Biochem.201369233534710.1007/s13105‑012‑0216‑523385669
    [Google Scholar]
  18. HwangJ. RodgersK. OliverJ.C. SchluepT. α-methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for Rheumatoid arthritis therapy.Int. J. Nanomedicine20083335937118990945
    [Google Scholar]
  19. AletahaD. SmolenJ.S. Diagnosis and management of Rheumatoid arthritis: A review.JAMA2018320131360137210.1001/jama.2018.1310330285183
    [Google Scholar]
  20. MateenS. ZafarA. MoinS. KhanA.Q. ZubairS. Understanding the role of cytokines in the pathogenesis of Rheumatoid arthritis.Clin. Chim. Acta201645516117110.1016/j.cca.2016.02.01026883280
    [Google Scholar]
  21. PaulissenS.M.J. van HamburgJ.P. DankersW. LubbertsE. The role and modulation of CCR6+ Th17 cell populations in Rheumatoid arthritis.Cytokine2015741435310.1016/j.cyto.2015.02.00225828206
    [Google Scholar]
  22. RoyK. KanwarR.K. KanwarJ.R. Molecular targets in arthritis and recent trends in nanotherapy.Int. J. Nanomedicine2015105407542026345140
    [Google Scholar]
  23. PhamC.T.N. Nanotherapeutic approaches for the treatment of Rheumatoid arthritis.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20113660761910.1002/wnan.15721837725
    [Google Scholar]
  24. DanksL. TakayanagiH. Immunology and bone.J. Biochem.20131541293910.1093/jb/mvt04923750028
    [Google Scholar]
  25. MarahlehA. KitauraH. OhoriF. TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation.Front. Immunol.201910292510.3389/fimmu.2019.0292531921183
    [Google Scholar]
  26. LamJ. TakeshitaS. BarkerJ.E. KanagawaO. RossF.P. TeitelbaumS.L. TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand.J. Clin. Invest.2000106121481148810.1172/JCI1117611120755
    [Google Scholar]
  27. KobayashiK. TakahashiN. JimiE. Tumor necrosis factor α stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction.J. Exp. Med.2000191227528610.1084/jem.191.2.27510637272
    [Google Scholar]
  28. AzumaY. KajiK. KatogiR. TakeshitaS. KudoA. Tumor necrosis factor-α induces differentiation of and bone resorption by osteoclasts.J. Biol. Chem.200027574858486410.1074/jbc.275.7.485810671521
    [Google Scholar]
  29. AletahaD. NeogiT. SilmanA.J. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative.Arthritis Rheum.20106292569258110.1002/art.2758420872595
    [Google Scholar]
  30. ScherJ.U. B-cell therapies for Rheumatoid arthritis.Bull. NYU Hosp. Jt. Dis.201270320020323259629
    [Google Scholar]
  31. NishimuraK. SugiyamaD. KogataY. Meta-analysis: Diagnostic accuracy of anti-cyclic citrullinated peptide antibody and Rheumatoid factor for Rheumatoid arthritis.Ann. Intern. Med.20071461179780810.7326/0003‑4819‑146‑11‑200706050‑0000817548411
    [Google Scholar]
  32. IngegnoliF. CastelliR. GualtierottiR. Rheumatoid factors: Clinical applications.Dis. Markers201335672773410.1155/2013/72659824324289
    [Google Scholar]
  33. SteinerG. Auto-antibodies and autoreactive T-cells in Rheumatoid arthritis.Clin. Rev. Allergy Immunol.2007321233610.1007/BF0268607917426358
    [Google Scholar]
  34. WegnerN. LundbergK. KinlochA. Autoimmunity to specific citrullinated proteins gives the first clues to the etiology of Rheumatoid arthritis.Immunol. Rev.20102331345410.1111/j.0105‑2896.2009.00850.x20192991
    [Google Scholar]
  35. AggarwalR. LiaoK. NairR. RingoldS. CostenbanderK.H. Anti-citrullinated peptide antibody assays and their role in the diagnosis of Rheumatoid arthritis.Arthritis Rheum.200961111472148310.1002/art.2482719877103
    [Google Scholar]
  36. GerlagD.M. SafyM. MaijerK.I. Effects of B-cell directed therapy on the preclinical stage of Rheumatoid arthritis: The PRAIRI study.Ann. Rheum. Dis.201978217918510.1136/annrheumdis‑2017‑21276330504445
    [Google Scholar]
  37. ForslindK. AhlménM. EberhardtK. HafströmI. SvenssonB. Prediction of radiological outcome in early Rheumatoid arthritis in clinical practice: Role of antibodies to citrullinated peptides (anti-CCP).Ann. Rheum. Dis.20046391090109510.1136/ard.2003.01423315308518
    [Google Scholar]
  38. RönnelidJ. WickM.C. LampaJ. Longitudinal analysis of citrullinated protein/peptide antibodies (anti-CP) during 5 year follow up in early Rheumatoid arthritis: Anti-CP status predicts worse disease activity and greater radiological progression.Ann. Rheum. Dis.200564121744174910.1136/ard.2004.03357115843452
    [Google Scholar]
  39. De RyckeL. PeeneI. HoffmanI.E.A. Rheumatoid factor and anticitrullinated protein antibodies in Rheumatoid arthritis: Diagnostic value, associations with radiological progression rate, and extra-articular manifestations.Ann. Rheum. Dis.200463121587159310.1136/ard.2003.01757415547083
    [Google Scholar]
  40. CoutantF. Pathogenic effects of anti-citrullinated protein antibodies in Rheumatoid arthritis – role for glycosylation.Joint Bone Spine201986556256710.1016/j.jbspin.2019.01.00530685537
    [Google Scholar]
  41. KrishnamurthyA. JoshuaV. Haj HensvoldA. Identification of a novel chemokine-dependent molecular mechanism underlying Rheumatoid arthritis-associated autoantibody-mediated bone loss.Ann. Rheum. Dis.201675472172910.1136/annrheumdis‑2015‑20809326612338
    [Google Scholar]
  42. DeaneK.D. DemoruelleM.K. KelmensonL.B. KuhnK.A. NorrisJ.M. HolersV.M. Genetic and environmental risk factors for Rheumatoid arthritis.Best Pract. Res. Clin. Rheumatol.201731131810.1016/j.berh.2017.08.00329221595
    [Google Scholar]
  43. PetrovskáN. PrajzlerováK. VencovskýJ. ŠenoltL. FilkováM. The pre-clinical phase of Rheumatoid arthritis: From risk factors to prevention of arthritis.Autoimmun. Rev.202120510279710.1016/j.autrev.2021.10279733746022
    [Google Scholar]
  44. MacGregorA.J. SniederH. RigbyA.S. Characterizing the quantitative genetic contribution to Rheumatoid arthritis using data from twins.Arthritis Rheum.2000431303710.1002/1529‑0131(200001)43:1<30::AID‑ANR5>3.0.CO;2‑B10643697
    [Google Scholar]
  45. van der Helm-van MilA.H.M. VerpoortK.N. BreedveldF.C. HuizingaT.W.J. ToesR.E.M. de VriesR.R.P. The HLA–DRB1 shared epitope alleles are primarily a risk factor for anti–cyclic citrullinated peptide antibodies and are not an independent risk factor for development of Rheumatoid arthritis.Arthritis Rheum.20065441117112110.1002/art.2173916572446
    [Google Scholar]
  46. DingB. PadyukovL. LundströmE. Different patterns of associations with anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative Rheumatoid arthritis in the extended major histocompatibility complex region.Arthritis Rheum.2009601303810.1002/art.2413519116921
    [Google Scholar]
  47. KokkonenH. JohanssonM. InnalaL. JidellE. Rantapää-DahlqvistS. The PTPN22 1858C/T polymorphism is associated with anti-cyclic citrullinated peptide antibody-positive early Rheumatoid arthritis in northern Sweden.Arthritis Res. Ther.200793R5610.1186/ar221417553139
    [Google Scholar]
  48. KällbergH. PadyukovL. PlengeR.M. Gene-gene and gene-environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of Rheumatoid arthritis.Am. J. Hum. Genet.200780586787510.1086/51673617436241
    [Google Scholar]
  49. ZhangX. LiW. ZhangX. Association between polymorphism in TRAF1/C5 gene and risk of Rheumatoid arthritis: A meta-analysis.Mol. Biol. Rep.201441131732410.1007/s11033‑013‑2864‑024234752
    [Google Scholar]
  50. SigurdssonS. PadyukovL. KurreemanF.A.S. Association of a haplotype in the promoter region of the interferon regulatory factor 5 gene with Rheumatoid arthritis.Arthritis Rheum.20075672202221010.1002/art.2270417599733
    [Google Scholar]
  51. SmolenJ.S. AletahaD. McInnesI.B. Rheumatoid arthritis.Lancet2016388100552023203810.1016/S0140‑6736(16)30173‑827156434
    [Google Scholar]
  52. van DrongelenV. HoloshitzJ. Human leukocyte antigen–disease associations in Rheumatoid arthritis.Rheum. Dis. Clin. North Am.201743336337610.1016/j.rdc.2017.04.00328711139
    [Google Scholar]
  53. ViatteS. PlantD. HanB. Association of HLA-DRB1 haplotypes with Rheumatoid arthritis severity, mortality, and treatment re-sponse.JAMA2015313161645165610.1001/jama.2015.343525919528
    [Google Scholar]
  54. BegovichA.B. CarltonV.E.H. HonigbergL.A. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with Rheumatoid arthritis.Am. J. Hum. Genet.200475233033710.1086/42282715208781
    [Google Scholar]
  55. LeeA.T. LiW. LiewA. The PTPN22 R620W polymorphism associates with RF positive Rheumatoid arthritis in a dose-dependent manner but not with HLA-SE status.Genes Immun.20056212913310.1038/sj.gene.636415915674368
    [Google Scholar]
  56. CutoloM. VillaggioB. CraviottoC. PizzorniC. SerioloB. SulliA. Sex hormones and Rheumatoid arthritis.Autoimmun. Rev.20021528428910.1016/S1568‑9972(02)00064‑212848982
    [Google Scholar]
  57. SalliotC. BombardierC. SarauxA. CombeB. DougadosM. Hormonal replacement therapy may reduce the risk for RA in women with early arthritis who carry HLA-DRB1 *01 and/or *04 alleles by protecting against the production of anti-CCP: Results from the ESPOIR cohort.Ann. Rheum. Dis.20106991683168610.1136/ard.2009.11117919740903
    [Google Scholar]
  58. TobónG.J. YouinouP. SarauxA. The environment, geo-epidemiology, and autoimmune disease: Rheumatoid arthritis.Autoimmun. Rev.201095A288A29210.1016/j.autrev.2009.11.01919944780
    [Google Scholar]
  59. LittlejohnE.A. MonradS.U. Early diagnosis and treatment of Rheumatoid arthritis.Prim. Care201845223725510.1016/j.pop.2018.02.01029759122
    [Google Scholar]
  60. McGrawW.T. PotempaJ. FarleyD. TravisJ. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase.Infect. Immun.19996773248325610.1128/IAI.67.7.3248‑3256.199910377098
    [Google Scholar]
  61. TanE.M. SmolenJ.S. Historical observations contributing insights on etiopathogenesis of Rheumatoid arthritis and role of Rheumatoid factor.J. Exp. Med.2016213101937195010.1084/jem.2016079227621417
    [Google Scholar]
  62. HarleyJ.B. ChenX. PujatoM. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity.Nat. Genet.201850569970710.1038/s41588‑018‑0102‑329662164
    [Google Scholar]
  63. WilsonC. TiwanaH. EbringerA. Molecular mimicry between HLA-DR alleles associated with Rheumatoid arthritis and Proteus mirabilis as the aetiological basis for autoimmunity.Microbes Infect.20002121489149610.1016/S1286‑4579(00)01303‑411099935
    [Google Scholar]
  64. TiwanaH. WilsonC. AlvarezA. AbukneshaR. BansalS. EbringerA. Cross-reactivity between the Rheumatoid arthritis-associated motif EQKRAA and structurally related sequences found in Proteus mirabilis.Infect. Immun.19996762769277510.1128/IAI.67.6.2769‑2775.199910338479
    [Google Scholar]
  65. LiS. YuY. YueY. ZhangZ. SuK. Microbial infection and Rheumatoid arthritis.J. Clin. Cell. Immunol.20134617425133066
    [Google Scholar]
  66. VesseyM.P. Villard-MackintoshL. YeatesD. Oral contraceptives, cigarette smoking and other factors in relation to arthritis.Contraception198735545746410.1016/0010‑7824(87)90082‑53621942
    [Google Scholar]
  67. LeeY.H. BaeS.C. SongG.G. Coffee or tea consumption and the risk of Rheumatoid arthritis: A meta-analysis.Clin. Rheumatol.201433111575158310.1007/s10067‑014‑2631‑124763752
    [Google Scholar]
  68. RosellM. WesleyA.M. RydinK. KlareskogL. AlfredssonL. Dietary fish and fish oil and the risk of Rheumatoid arthritis.Epidemiology200920689690110.1097/EDE.0b013e3181b5f0ce19730266
    [Google Scholar]
  69. PattisonD.J. HarrisonR.A. SymmonsD.P. The role of diet in susceptibility to Rheumatoid arthritis: A systematic review.J. Rheumatol.20043171310131915229949
    [Google Scholar]
  70. Benito-GarciaE. FeskanichD. HuF.B. MandlL.A. KarlsonE.W. Protein, iron, and meat consumption and risk for Rheumatoid arthritis: A prospective cohort study.Arthritis Res. Ther.200791R1610.1186/ar212317288585
    [Google Scholar]
  71. MehriF. JenabiE. BashirianS. ShahnaF.G. KhazaeiS. The association between occupational exposure to silica and risk of developing Rheumatoid arthritis: A meta-analysis.Saf. Health Work202011213614210.1016/j.shaw.2020.02.00132596007
    [Google Scholar]
  72. AlayaZ. BrahamM. AissaS. KalboussiH. BouajinaE. A case of Caplan syndrome in a recently diagnosed patient with silicosis: A case report.Radiol. Case Rep.201813366366610.1016/j.radcr.2018.03.00430023036
    [Google Scholar]
  73. SamantaJ. KendallJ. SamantaA. 10-minute consultation: Polyarthralgia.BMJ2003326739485910.1136/bmj.326.7394.85912702621
    [Google Scholar]
  74. 2018 Chinese guideline for the diagnosis and treatment of Rheumatoid arthritis.Zhonghua Nei Ke Za Zhi201857424225129614581
    [Google Scholar]
  75. KgoebaneK. AllyM.M.T.M. Duim-BeytellM.C. SulemanF.E. The role of imaging in Rheumatoid arthritis.SA J. Radiol.2018221131610.4102/sajr.v22i1.131631754498
    [Google Scholar]
  76. BhatnagarS. KheraE. LiaoJ. Oral and subcutaneous administration of a near-infrared fluorescent molecular imaging agent detects inflammation in a mouse model of Rheumatoid arthritis.Sci. Rep.201991466110.1038/s41598‑019‑38548‑030858419
    [Google Scholar]
  77. CheungK.K. Hall-CraggsM.A. Update on imaging in rheumatology – recent advances.Medicine (Abingdon)201846317017410.1016/j.mpmed.2017.12.004
    [Google Scholar]
  78. TrenkmannM. BrockM. OspeltC. GayS. Epigenetics in Rheumatoid arthritis.Clin. Rev. Allergy Immunol.2010391101910.1007/s12016‑009‑8166‑619707891
    [Google Scholar]
  79. StanczykJ. PedrioliD.M.L. BrentanoF. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in Rheumatoid arthritis.Arthritis Rheum.20085841001100910.1002/art.2338618383392
    [Google Scholar]
  80. NakasaT. MiyakiS. OkuboA. Expression of microRNA-146 in Rheumatoid arthritis synovial tissue.Arthritis Rheum.20085851284129210.1002/art.2342918438844
    [Google Scholar]
  81. OuboussadL. HuntL. HensorE.M.A. Profiling microRNAs in individuals at risk of progression to Rheumatoid arthritis.Arthritis Res. Ther.201719128810.1186/s13075‑017‑1492‑929273071
    [Google Scholar]
  82. WuL.F. ZhangQ. MoX.B. Identification of novel Rheumatoid arthritis-associated MiRNA-204-5p from plasma exosomes.Exp. Mol. Med.202254333434510.1038/s12276‑022‑00751‑x35354913
    [Google Scholar]
  83. CushJ.J. Rheumatoid arthritis.Med. Clin. North Am.2021105235536510.1016/j.mcna.2020.10.00633589108
    [Google Scholar]
  84. EgererK. FeistE. BurmesterG.R. The serological diagnosis of Rheumatoid arthritis: Antibodies to citrullinated antigens.Dtsch. Arztebl. Int.20091061015916319578391
    [Google Scholar]
  85. RönnelidJ. TuressonC. KastbomA. Autoantibodies in Rheumatoid arthritis – Laboratory and clinical perspectives.Front. Immunol.20211268531210.3389/fimmu.2021.68531234054878
    [Google Scholar]
  86. SmolenJ.S. BreedveldF.C. BurmesterG.R. Treating Rheumatoid arthritis to target: 2014 update of the recommendations of an international task force.Ann. Rheum. Dis.201675131510.1136/annrheumdis‑2015‑20752425969430
    [Google Scholar]
  87. KöhlerB.M. GüntherJ. KaudewitzD. LorenzH.M. Current therapeutic options in the treatment of Rheumatoid arthritis.J. Clin. Med.20198793810.3390/jcm807093831261785
    [Google Scholar]
  88. StaheliL.T. HallJ.G. JaffeK.M. PaholkeD.O. Arthrogryposis: A text atlas.Cambridge university press1998
    [Google Scholar]
  89. FraenkelL. BathonJ.M. EnglandB.R. 2021 American College of Rheumatology guideline for the treatment of Rheumatoid arthritis.Arthritis Rheumatol.20217371108112310.1002/art.4175234101376
    [Google Scholar]
  90. SmolenJ.S. LandewéR.B.M. BijlsmaJ.W.J. EULAR recommendations for the management of Rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update.Ann. Rheum. Dis.202079668569910.1136/annrheumdis‑2019‑21665531969328
    [Google Scholar]
  91. OngC.K.S. LirkP. TanC.H. SeymourR.A. An evidence-based update on nonsteroidal anti-inflammatory drugs.Clin. Med. Res.200751193410.3121/cmr.2007.69817456832
    [Google Scholar]
  92. CroffordL.J. Use of NSAIDs in treating patients with arthritis.Arthritis Res. Ther.201315S3Suppl. 3S210.1186/ar417424267197
    [Google Scholar]
  93. van EverdingenA.A. JacobsJ.W.G. Siewertsz van ReesemaD.R. BijlsmaJ.W.J. Low-dose prednisone therapy for patients with early active Rheumatoid arthritis: Clinical efficacy, disease-modifying properties, and side effects: A randomized, double-blind, placebo-controlled clinical trial.Ann. Intern. Med.2002136111210.7326/0003‑4819‑136‑1‑200201010‑0000611777359
    [Google Scholar]
  94. BullockJ. RizviS.A.A. SalehA.M. Rheumatoid arthritis: A brief overview of the treatment.Med. Princ. Pract.201827650150710.1159/00049339030173215
    [Google Scholar]
  95. NahinR.L. Estimates of pain prevalence and severity in adults: United States, 2012.J. Pain201516876978010.1016/j.jpain.2015.05.00226028573
    [Google Scholar]
  96. WhittleS.L. RichardsB.L. van der HEIJDE DM, Buchbinder R. The efficacy and safety of opioids in inflammatory arthritis: A Cochrane systematic review.J. Rheumatol. Suppl.201290404610.3899/jrheum.12034122942328
    [Google Scholar]
  97. Zamora-LegoffJ.A. AchenbachS.J. CrowsonC.S. KrauseM.L. DavisJ.M.III MattesonE.L. Opioid use in patients with Rheumatoid arthritis 2005–2014: A population-based comparative study.Clin. Rheumatol.20163551137114410.1007/s10067‑016‑3239‑427022929
    [Google Scholar]
  98. MontiS. KlersyC. GorlaR. Factors influencing the choice of first- and second-line biologic therapy for the treatment of Rheumatoid arthritis: Real-life data from the Italian LORHEN Registry.Clin. Rheumatol.201736475376110.1007/s10067‑016‑3528‑y28058538
    [Google Scholar]
  99. BywallK.S. KihlbomU. HanssonM. Patient preferences on Rheumatoid arthritis second-line treatment: A discrete choice experiment of Swedish patients.Arthritis Res. Ther.202022128810.1186/s13075‑020‑02391‑w33341117
    [Google Scholar]
  100. PandeyK. Nimisha. An overview on promising nanotechnological approaches for the treatment of psoriasis.Recent Pat. Nanotechnol.202014210211810.2174/187221051466620020412413032013854
    [Google Scholar]
  101. NamJ.L. Takase-MinegishiK. RamiroS. Efficacy of biological disease-modifying antirheumatic drugs: A systematic literature review informing the 2016 update of the EULAR recommendations for the management of Rheumatoid arthritis.Ann. Rheum. Dis.20177661113113610.1136/annrheumdis‑2016‑21071328283512
    [Google Scholar]
  102. Van EdeA.E. LaanR.F.J.M. RoodM.J. Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in Rheumatoid arthritis: A forty-eight-week, multicenter, randomized, double-blind, placebo-controlled study.Arthritis Rheum.20014471515152410.1002/1529‑0131(200107)44:7<1515::AID‑ART273>3.0.CO;2‑711465701
    [Google Scholar]
  103. O’ConnorA. ThorneC. KangH. TinD. PopeJ.E. The rapid kinetics of optimal treatment with subcutaneous methotrexate in early inflammatory arthritis: An observational study.BMC Musculoskelet. Disord.201617136410.1186/s12891‑016‑1213‑627558249
    [Google Scholar]
  104. BehrensF. KoehmM. BurkhardtH. Update 2011: Leflunomide in Rheumatoid arthritis – strengths and weaknesses.Curr. Opin. Rheumatol.201123328228710.1097/BOR.0b013e328344fddb21427581
    [Google Scholar]
  105. RozmanB. Clinical pharmacokinetics of leflunomide.Clin. Pharmacokinet.200241642143010.2165/00003088‑200241060‑0000312074690
    [Google Scholar]
  106. GaffoA. SaagK.G. CurtisJ.R. Treatment of Rheumatoid arthritis.Am. J. Health Syst. Pharm.200663242451246510.2146/ajhp05051417158693
    [Google Scholar]
  107. Alfaro-LaraR. Espinosa-OrtegaH.F. Arce-SalinasC.A. Systematic review and meta-analysis of the efficacy and safety of leflunomide and methotrexate in the treatment of Rheumatoid arthritis.Reumatología Clínica (English Edition)201915313313910.1016/j.reumae.2017.07.01128867467
    [Google Scholar]
  108. KaldenJ.R. SchattenkirchnerM. SörensenH. The efficacy and safety of leflunomide in patients with active Rheumatoid arthritis: A five-year followup study.Arthritis Rheum.20034861513152010.1002/art.1101512794818
    [Google Scholar]
  109. da SilvaJ.C. MarizH.A. da Rocha JúniorL.F. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and Rheumatoid arthritis patients.Clinics (São Paulo)201368676677110.6061/clinics/2013(06)0723778483
    [Google Scholar]
  110. NiknahadH. HeidariR. MohammadzadehR. Sulfasalazine induces mitochondrial dysfunction and renal injury.Ren. Fail.201739174575310.1080/0886022X.2017.139990829214868
    [Google Scholar]
  111. VolinM.V. CampbellP.L. ConnorsM.A. WoodruffD.C. KochA.E. The effect of sulfasalazine on Rheumatoid arthritic synovial tissue chemokine production.Exp. Mol. Pathol.2002732849210.1006/exmp.2002.246012231210
    [Google Scholar]
  112. AugustoJ.F. SayeghJ. SimonA. A case of sulphasalazine-induced DRESS syndrome with delayed acute interstitial nephritis.Nephrol. Dial. Transplant.20092492940294210.1093/ndt/gfp27719509026
    [Google Scholar]
  113. DeMicheleJ. RezaizadehH. GoldsteinJ.I. Sulfasalazine crystalluria-induced anuric renal failure.Clin. Gastroenterol. Hepatol.2012102A3210.1016/j.cgh.2011.09.02721982969
    [Google Scholar]
  114. PeperS.M. LewR. MikulsT. Rheumatoid arthritis treatment after methotrexate: The durability of triple therapy versus etanercept.Arthritis Care Res. 201769101467147210.1002/acr.2325528388820
    [Google Scholar]
  115. BoutetM.A. CourtiesG. NervianiA. Novel insights into macrophage diversity in Rheumatoid arthritis synovium.Autoimmun. Rev.202120310275810.1016/j.autrev.2021.10275833476818
    [Google Scholar]
  116. MillerD.R. Treatment options for Rheumatoid arthritis.Drug Top.19991435362
    [Google Scholar]
  117. ArkinM.R. WellsJ.A. Small-molecule inhibitors of protein–protein interactions: Progressing towards the dream.Nat. Rev. Drug Discov.20043430131710.1038/nrd134315060526
    [Google Scholar]
  118. DhillonS. Tofacitinib: A review in Rheumatoid arthritis.Drugs201777181987200110.1007/s40265‑017‑0835‑929139090
    [Google Scholar]
  119. YamaokaK. Benefit and risk of tofacitinib in the treatment of Rheumatoid arthritis: A focus on herpes zoster.Drug Saf.201639982384010.1007/s40264‑016‑0430‑027193610
    [Google Scholar]
  120. MayenceA. VandenE.J. BaricitinibA. 2018 novel FDA-approved small molecule inhibiting janus kinases.Pharmaceuticals20191213710.3390/ph1201003730871014
    [Google Scholar]
  121. KunwarS. CollinsC.E. ConstantinescuF. Baricitinib, a Janus kinase inhibitor, in the treatment of Rheumatoid arthritis: A systematic litera-ture review and meta-analysis of randomized controlled trials.Clin. Rheumatol.201837102611262010.1007/s10067‑018‑4199‑730006916
    [Google Scholar]
  122. SalaffiF. CarottiM. Di CarloM. TardellaM. GiovagnoniA. High-resolution computed tomography of the lung in patients with Rheumatoid arthritis.Medicine (Baltimore)20199838e1708810.1097/MD.000000000001708831567944
    [Google Scholar]
  123. McInnesI.B. ByersN.L. HiggsR.E. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte subpopulations.Arthritis Res. Ther.201921118310.1186/s13075‑019‑1964‑131375130
    [Google Scholar]
  124. BechmanK. YatesM. GallowayJ.B. The new entries in the therapeutic armamentarium: The small molecule JAK inhibitors.Pharmacol. Res.201914710439210.1016/j.phrs.2019.10439231401212
    [Google Scholar]
  125. MogulA. CorsiK. McAuliffeL. Baricitinib: The second FDA-approved JAK inhibitor for the treatment of Rheumatoid arthritis.Ann. Pharmacother.201953994795310.1177/106002801983965030907116
    [Google Scholar]
  126. QiuC. ZhaoX. SheL. Baricitinib induces LDL-C and HDL-C increases in Rheumatoid arthritis: A meta-analysis of randomized controlled trials.Lipids Health Dis.20191815410.1186/s12944‑019‑0994‑730777075
    [Google Scholar]
  127. YouH. XuD. ZhaoJ. JAK inhibitors: Prospects in connective tissue diseases.Clin. Rev. Allergy Immunol.202059333435110.1007/s12016‑020‑08786‑632222877
    [Google Scholar]
  128. HuC.J. ZhangL. ZhouS. Effectiveness of iguratimod as monotherapy or combined therapy in patients with Rheumatoid arthritis: A systematic review and meta-analysis of RCTs.J. Orthop. Surg. Res.202116145710.1186/s13018‑021‑02603‑234271950
    [Google Scholar]
  129. XieZ. YangX. DuanY. HanJ. LiaoC. Small-molecule kinase inhibitors for the treatment of nononcologic diseases.J. Med. Chem.20216431283134510.1021/acs.jmedchem.0c0151133481605
    [Google Scholar]
  130. ReinP. MuellerR.B. Treatment with biologicals in Rheumatoid arthritis: An overview.Rheumatol. Ther.20174224726110.1007/s40744‑017‑0073‑328831712
    [Google Scholar]
  131. deLucaL.S. GommermanJ.L. Fine-tuning of dendritic cell biology by the TNF superfamily.Nat. Rev. Immunol.201212533935110.1038/nri319322487654
    [Google Scholar]
  132. MahmoodZ. SchmalzingM. DörnerT. TonyH.P. MuhammadK. Therapeutic cytokine inhibition modulates activation and homing receptors of peripheral memory b cell subsets in Rheumatoid arthritis patients.Front. Immunol.20201157247510.3389/fimmu.2020.57247533042152
    [Google Scholar]
  133. PalaO. DiazA. BlombergB.B. FrascaD. B lymphocytes in Rheumatoid arthritis and the effects of anti–TNF-α agents on B lymphocytes: A review of the literature.Clin. Ther.20184061034104510.1016/j.clinthera.2018.04.01629801753
    [Google Scholar]
  134. CharlesP. ElliottM.J. DavisD. Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-α therapy in Rheumatoid arthritis.J. Immunol.199916331521152810.4049/jimmunol.163.3.152110415055
    [Google Scholar]
  135. Gómez-GómezG.J. MasedoÁ. YelaC. Martínez-MontielM.P. CasísB. Current stage in inflammatory bowel disease: What is next?World J. Gastroenterol.20152140112821130310.3748/wjg.v21.i40.1128226525013
    [Google Scholar]
  136. OgataA. KatoY. HigaS. YoshizakiK. IL-6 inhibitor for the treatment of Rheumatoid arthritis: A comprehensive review.Mod. Rheumatol.201929225826710.1080/14397595.2018.154635730427250
    [Google Scholar]
  137. RaimondoM.G. BiggioggeroM. CrottiC. BeccioliniA. FavalliE.G. Profile of sarilumab and its potential in the treatment of Rheumatoid arthritis.Drug Des. Devel. Ther.2017111593160310.2147/DDDT.S10030228579757
    [Google Scholar]
  138. BozecA. LuoY. EngdahlC. FigueiredoC. BangH. SchettG. Abatacept blocks anti-citrullinated protein antibody and Rheumatoid factor mediated cytokine production in human macrophages in IDO-dependent manner.Arthritis Res. Ther.20182012410.1186/s13075‑018‑1527‑x29415763
    [Google Scholar]
  139. MaxwellL.J. SinghJ.A. Abatacept for Rheumatoid arthritis: A Cochrane systematic review.J. Rheumatol.201037223424510.3899/jrheum.09106620080922
    [Google Scholar]
  140. PeichlP. AltenR. GaleazziM. Abatacept retention and clinical outcomes in Austrian patients with Rheumatoid arthritis: Real-world data from the 2-year ACTION study.Wien. Med. Wochenschr.20201705-613214010.1007/s10354‑019‑00710‑831654156
    [Google Scholar]
  141. BlairH.A. DeeksE.D. Abatacept: A review in Rheumatoid arthritis.Drugs201777111221123310.1007/s40265‑017‑0775‑428608166
    [Google Scholar]
  142. MyslerE. PinedaC. HoriuchiT. Clinical and regulatory perspectives on biosimilar therapies and intended copies of biologics in rheumatology.Rheumatol. Int.201636561362510.1007/s00296‑016‑3444‑026920148
    [Google Scholar]
  143. YooD.H. HrycajP. MirandaP. A randomised, double-blind, parallel-group study to demonstrate equivalence in efficacy and safety of CT-P13 compared with innovator infliximab when coadministered with methotrexate in patients with active Rheumatoid arthritis: The PLANETRA study.Ann. Rheum. Dis.201372101613162010.1136/annrheumdis‑2012‑20309023687260
    [Google Scholar]
  144. YooD.H. RacewiczA. BrzezickiJ. A phase III randomized study to evaluate the efficacy and safety of CT-P13 compared with reference infliximab in patients with active Rheumatoid arthritis: 54-week results from the PLANETRA study.Arthritis Res. Ther.20161818210.1186/s13075‑016‑0981‑627038608
    [Google Scholar]
  145. YuanF. QuanL. CuiL. GoldringS.R. WangD. Development of macromolecular prodrug for Rheumatoid arthritis.Adv. Drug Deliv. Rev.201264121205121910.1016/j.addr.2012.03.00622433784
    [Google Scholar]
  146. MovahediM. BeauchampM.E. AbrahamowiczM. Risk of incident diabetes mellitus associated with the dosage and duration of oral glucocorticoid therapy in patients with Rheumatoid arthritis.Arthritis Rheumatol.20166851089109826663814
    [Google Scholar]
  147. MekaR.R. VenkateshaS.H. AcharyaB. MoudgilK.D. Peptide-targeted liposomal delivery of dexamethasone for arthritis therapy.Nanomedicine (Lond.)201914111455146910.2217/nnm‑2018‑050130938236
    [Google Scholar]
  148. MitragotriS. YooJ.W. Designing micro- and nano-particles for treating Rheumatoid arthritis.Arch. Pharm. Res.201134111887189710.1007/s12272‑011‑1109‑922139688
    [Google Scholar]
  149. BahadarH. MaqboolF. NiazK. AbdollahiM. Toxicity of nanoparticles and an overview of current experimental models.Iran. Biomed. J.201620111126286636
    [Google Scholar]
  150. PurohitD. ManchandaD. MakhijaM. An overview of the recent developments and patents in the field of pharmaceutical nanotechnology.Recent Pat. Nanotechnol.2021151153410.2174/187221051466620090915440932912128
    [Google Scholar]
  151. OliveiraI.M. GonçalvesC. ReisR.L. OliveiraJ.M. Engineering nanoparticles for targeting Rheumatoid arthritis: Past, present, and future trends.Nano Res.20181194489450610.1007/s12274‑018‑2071‑3
    [Google Scholar]
  152. WangQ. HeL. FanD. LiangW. FangJ. Improving the anti-inflammatory efficacy of dexamethasone in the treatment of Rheumatoid arthritis with polymerized stealth liposomes as a delivery vehicle.J. Mater. Chem. B Mater. Biol. Med.2020891841185110.1039/C9TB02538C32016224
    [Google Scholar]
  153. KushwahaP. SaxenaS. ShuklaB. A recent overview on dermatological applications of liposomes.Recent Pat. Nanotechnol.202115431032110.2174/187221051466620102114523333087038
    [Google Scholar]
  154. JiaM. DengC. LuoJ. A novel dexamethasone-loaded liposome alleviates Rheumatoid arthritis in rats.Int. J. Pharm.20185401-2576410.1016/j.ijpharm.2018.02.00129408684
    [Google Scholar]
  155. KatariaS. SandhuP. BilandiA.J.A.Y. AkankshaM. KapoorB. Stealth liposomes: A review.Int. J. Res. Ayurveda Pharm.201125
    [Google Scholar]
  156. SaraswatA.L. MaherT.J. Development and optimization of stealth liposomal system for enhanced in vitro cytotoxic effect of quercetin.J. Drug Deliv. Sci. Technol.20205510147710.1016/j.jddst.2019.101477
    [Google Scholar]
  157. CevcG. BlumeG. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force.Biochim. Biophys. Acta Biomembr.19921104122623210.1016/0005‑2736(92)90154‑E1550849
    [Google Scholar]
  158. NayakD. TippavajhalaV.K. A comprehensive review on preparation, evaluation and applications of deformable liposomes.Iran. J. Pharm. Res.202120118620534400952
    [Google Scholar]
  159. ZhaoY.P. HanJ.F. ZhangF.Y. Flexible nano-liposomes-based transdermal hydrogel for targeted delivery of dexamethasone for Rheumatoid arthritis therapy.Drug Deliv.20222912269228210.1080/10717544.2022.209671835815790
    [Google Scholar]
  160. TorchilinV.P. Micellar nanocarriers: Pharmaceutical perspectives.Pharm. Res.200624111610.1007/s11095‑006‑9132‑017109211
    [Google Scholar]
  161. GrobmyerS.R. IwakumaN. SharmaP. MoudgilB.M. What is cancer nanotechnology?Methods Mol. Biol.20106241910.1007/978‑1‑60761‑609‑2_120217585
    [Google Scholar]
  162. WangE.C. WangA.Z. Nanoparticles and their applications in cell and molecular biology.Integr. Biol.20146192610.1039/c3ib40165k24104563
    [Google Scholar]
  163. ZielińskaA. CarreiróF. OliveiraA.M. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules2516373132824172
    [Google Scholar]
  164. Droppa-AlmeidaD. de OliveiraC.R. PadilhaF.F. de SouzaR.R. de Albuquerque-JúniorR.L.C. Polymeric nanoparticles for the treatment of prostate cancer-technological prospecting and critical analysis.Recent Pat. Nanotechnol.202317181410.2174/187221051666622013109264235100962
    [Google Scholar]
  165. WangQ. JiangJ. ChenW. JiangH. ZhangZ. SunX. Targeted delivery of low-dose dexamethasone using PCL–PEG micelles for effective treatment of Rheumatoid arthritis.J. Control. Release2016230647210.1016/j.jconrel.2016.03.03527057749
    [Google Scholar]
  166. SailajaA.K. LolaV.S. Formulation of mefenamic acid loaded polymeric nanoparticles for the treatment of Rheumatoid arthritis.J Bionanosci201812217718310.1166/jbns.2018.1525
    [Google Scholar]
  167. QushawyM. AlenziA.M. AlbalawiS.A. AlghamdiS.G. AlbalawiR.F. AlbalawiH.S. Review on different vesicular drug delivery Systems (VDDSs) and their applications.Recent Pat. Nanotechnol.2023171183210.2174/187221051666622022815062435227188
    [Google Scholar]
  168. MomekovaD.B. GuglevaV.E. PetrovP.D. Nanoarchitectonics of multifunctional niosomes for advanced drug delivery.ACS Omega2021649332653327310.1021/acsomega.1c0508334926878
    [Google Scholar]
  169. BhardwajP. TripathiP. GuptaR. PandeyS. Niosomes: A review on niosomal research in the last decade.J. Drug Deliv. Sci. Technol.20205610158110.1016/j.jddst.2020.101581
    [Google Scholar]
  170. Ag SeleciD. SeleciM. WalterJ.G. StahlF. ScheperT. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications.J. Nanomater.2016201611310.1155/2016/7372306
    [Google Scholar]
  171. AkbariJ. SaeediM. Morteza-SemnaniK. Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac).J. Drug Target.202230110811710.1080/1061186X.2021.194106034116599
    [Google Scholar]
  172. ParadkarM. VaghelaS. Thiocolchicosideniosomal gel formulation for the pain management of Rheumatoid arthritis through topical drug delivery.Drug Deliv. Lett.20188215916810.2174/2210303108666180216151234
    [Google Scholar]
  173. ConacherM. AlexanderJ. BrewerJ.M. Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes).Vaccine20011920-222965297410.1016/S0264‑410X(00)00537‑511282208
    [Google Scholar]
  174. AhmedS. KassemM.A. SayedS. Bilosomes as promising nanovesicular carriers for improved transdermal delivery: Construction, in vitro optimization, ex vivo permeation and in vivo evaluation.Int. J. Nanomedicine2020159783979810.2147/IJN.S27868833324052
    [Google Scholar]
  175. MahmoudT.M. NafadyM.M. FaroukH.O. Novel bile salt stabilized vesicles-mediated effective topical delivery of diclofenac sodium: A new therapeutic approach for pain and inflammation.Pharmaceuticals (Basel)2022159110610.3390/ph1509110636145327
    [Google Scholar]
  176. PaliwalR. RaiS. VaidyaB. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery.Nanomedicine20095218419110.1016/j.nano.2008.08.00319095502
    [Google Scholar]
  177. CortesiR. EsposjtoE. LucaG. NastruzziC. Production of lipospheres as carriers for bioactive compounds.Biomaterials200223112283229410.1016/S0142‑9612(01)00362‑312013175
    [Google Scholar]
  178. JainS.K. ChaurasiyaA. GuptaY. Development and characterization of 5-FU bearing ferritin appended solid lipid nanoparticles for tumour targeting.J. Microencapsul.200825528929710.1080/0265204070179959818608808
    [Google Scholar]
  179. EssaghraouiA. BelfkiraA. HamdaouiB. NunesC. LimaS.A.C. ReisS. Improved dermal delivery of cyclosporine a loaded in solid lipid nanoparticles.Nanomaterials (Basel)201999120410.3390/nano909120431461853
    [Google Scholar]
  180. ShilpiS. VimalV.D. SoniV. Assessment of lactoferrin-conjugated solid lipid nanoparticles for efficient targeting to the lung.Prog. Biomater.201541556310.1007/s40204‑015‑0037‑z29470795
    [Google Scholar]
  181. ValdesS.A. AlzhraniR.F. RodriguezA. Lansakara-P DSP, Thakkar SG, Cui Z. A solid lipid nanoparticle formulation of 4-(N)-docosahexaenoyl 2′, 2′-difluorodeoxycytidine with increased solubility, stability, and antitumor activity.Int. J. Pharm.201957011860910.1016/j.ijpharm.2019.11860931415878
    [Google Scholar]
  182. EspositoE. SguizzatoM. DrechslerM. Lipid nanostructures for antioxidant delivery: A comparative preformulation study.Beilstein J. Nanotechnol.20191011789180110.3762/bjnano.10.17431501750
    [Google Scholar]
  183. ZhouM. HouJ. ZhongZ. HaoN. LinY. LiC. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for Rheumatoid arthritis therapy.Drug Deliv.201825171672210.1080/10717544.2018.144705029516758
    [Google Scholar]
  184. PhamC.V. VanM.C. ThiH.P. Development of ibuprofen-loaded solid lipid nanoparticle-based hydrogels for enhanced in vitro dermal permeation and in vivo topical anti-inflammatory activity.J. Drug Deliv. Sci. Technol.20205710175810.1016/j.jddst.2020.101758
    [Google Scholar]
  185. HaiderM. AbdinS.M. KamalL. OriveG. Nanostructured lipid carriers for delivery of chemotherapeutics: A review.Pharmaceutics202012328810.3390/pharmaceutics1203028832210127
    [Google Scholar]
  186. MüllerR.H. RadtkeM. WissingS.A. Nanostructured lipid matrices for improved microencapsulation of drugs.Int. J. Pharm.20022421-212112810.1016/S0378‑5173(02)00180‑112176234
    [Google Scholar]
  187. BeloquiA. SolinísM.Á. Rodríguez-GascónA. AlmeidaA.J. PréatV. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine201612114316110.1016/j.nano.2015.09.00426410277
    [Google Scholar]
  188. SharmaM. ChaudharyD. Exploration of bromelain laden nanostructured lipid carriers: An oral platform for bromelain delivery in Rheumatoid arthritis management.Int. J. Pharm.202159412017610.1016/j.ijpharm.2020.12017633326825
    [Google Scholar]
  189. ChenM. DaddyJ.C.K.A. XiaoY. PingQ. ZongL. Advanced nanomedicine for Rheumatoid arthritis treatment: Focus on active targeting.Expert Opin. Drug Deliv.201714101141114410.1080/17425247.2017.137274628847165
    [Google Scholar]
  190. ZewailM. NafeeN. HelmyM.W. BoraieN. Coated nanostructured lipid carriers targeting the joints – An effective and safe approach for the oral management of Rheumatoid arthritis.Int. J. Pharm.201956711844710.1016/j.ijpharm.2019.11844731226475
    [Google Scholar]
  191. ZhangS. WuL. CaoJ. Effect of magnetic nanoparticles size on Rheumatoid arthritis targeting and photothermal therapy.Colloids Surf. B Biointerfaces201817022423210.1016/j.colsurfb.2018.06.01629929166
    [Google Scholar]
  192. LiuY. CaoF. SunB. BellantiJ.A. ZhengS.G. Magnetic nanoparticles: A new diagnostic and treatment platform for Rheumatoid arthritis.J. Leukoc. Biol.2021109241542410.1002/JLB.5MR0420‑008RR32967052
    [Google Scholar]
  193. SubbiahL. PalanisamyS. ThamizhmurasuS. Development of Meloxicam-chitosan magnetic nanoconjugates for targeting Rheumatoid arthritis joints: Pharmaceutical characterization and preclinical assessment on murine models.J. Magn. Magn. Mater.202152316757110.1016/j.jmmm.2020.167571
    [Google Scholar]
  194. SantamariaP. Nanoparticle compositions for sustained therapy.Patent US20190060484A12019
  195. BernardMA TachadoSD Compositions and methods for treating inflammatory diseases.Patent WO2019195179A12019
  196. SpallittaFA Treating autoimmune disorders with chloroquine and/or hydroxychloroquine. Patent WO2019136221A12019
  197. ChenQ ChenY YuH EhrlichMG Nanocarriers and their processing for diagnostics and therapeutics.Patent US10555948B22020
  198. EliasofS. Cyclodextrin-based polymers for therapeutic delivery.Patent US20200046845A12020
  199. DoddA MeiserF NorretM RussellA BoschH W Novel formulation of meloxicam.Patent US20210002267A12021
  200. StephanM. Nanoparticles for gene expression and uses thereof.Patent US20210128485A12021
  201. DrennanT. Nano-penetrative cannabinoid oil blends and compositions and methods of formulation thereof.Patent US20210330638A12021
  202. DangTT NguyenTD Inflammation-responsive anti-inflammatory hydrogels.Patent WO2021112772A12021
  203. PlakogiannisFM LatherT Transdermal and/or topical pharmaceutical formulations comprising cannabidiol and/or tetrahydrocannabinol for the treatment of chronic pain.Patent WO2021214545A12021
  204. AudellRA BerensonRJ LeungCYP Microstructure systems and methods for pain treatment.Patent US20210252264A12021
  205. FraserC. Tolerogenic synthetic nanocarriers.Patent AU2022211839A12022
  206. CaoG LiYL MeiS PanY QianD ZhuoJ Bipyrazole derivatives as jak inhibitors.Patent AU2022263454A12022
  207. AndersonDG DorkinJR FentonOS KauffmanKJ McclellanRL Alkenyl substituted 2,5-piperazinediones and their use in compositions for delivering an agent to a subject or cell.Patent AU2022259755A2022
  208. ReimannK WangR YuB. Humanized anti-cd40 antibodies and uses thereof.Patent AU2022241635A12022
  209. INCMNSZ - Rheumatoid Arthritis Cohort (IRAC).Patent NCT033897112022
  210. Study to assess the safety and efficacy of enbrel administered by sofusa doseconnect for Rheumatoid arthritis.Patent NCT045594122023
  211. A phase 2 study of Hemay007 in patients with Rheumatoid arthritis.Patent NCT052472162022
  212. Regional registry-based biobank development and pharmacogenetic analysis in Rheumatoid arthritis (RABiobank).Patent NCT035552402019
  213. To assess the efficacy and safety of pf-06650833, pf-06651600, and tofacitinib alone and in combination in participants with active Rheumatoid arthritis with an inadequate response to methotrexate.Patent NCT044136172023
  214. Rheumatoid arthritis MEDIcation adherence (REMEDIA).Patent NCT054137592022
  215. Rheumatoid arthritis patients and porphyromonas gingivalis.Patent NCT029051752019
  216. Safety, tolerability, pharmacokinetics and pharmacodynamics study of VAY736 in Rheumatoid arthritis patients.Patent NCT026758032020
  217. A study of TJ003234 in Rheumatoid arthritis patients.Patent NCT044578562022
  218. Efficacy study of dextromethorphan to treat Rheumatoid arthritis.Patent NCT023680932015
  219. A study to assess the safety, tolerability and pharmacokinetics of multiple subcutaneous injections of abbv-257 in subjects with Rheumatoid arthritis.Patent NCT025311782016
  220. Effect of electroacupuncture on refractory pain in juvenile Rheumatoid arthritis: Randomized controlled trial.Patent NCT055043822022
  221. Early phase study to assess efficacy and safety of AZD9567 versus prednisolone in patients with Rheumatoid arthritis.Patent NCT033682352020
  222. The effects of hyperbaric oxygen on Rheumatoid arthritis.Patent NCT029849432020
  223. Study in Rheumatoid arthritis for subjects who completed preceding study M13-390 with adalimumab.Patent NCT017528552014
/content/journals/nanotec/10.2174/1872210518666230905155459
Loading
/content/journals/nanotec/10.2174/1872210518666230905155459
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test