Skip to content
2000
Volume 19, Issue 1
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

Breast cancer is the most prevalent cancer among women. About 685K deaths were globally listed in 2020 by the World Health Organization. Nowadays, scientists prefer to use herbal medicines due to their low toxicity. Herbal medicines are used to overcome the toxicity effects of surgical removal, radio-chemo therapy and medication, which have a lot of risk of damaging the healthy tissues. To overcome this, enhance bioavailability and target specify, nano-formulation chemotherapy was introduced using herbal moiety for anticancer activity. The use of metallic nanoparticles (MNPs), particularly those made of silver, cobalt, zinc, and gold as contrast, antibacterial, anticancer, and drug delivery agents has revolutionised the medicinal field. Although MNPs can be made exacting physical and chemical processes, a biological method utilising natural materials has been established recently.

Objectives

This patent review article will offer a succinct explanation of the use of MNPs and its potential impact on herbal medicines in the future.

Methods

Using PRISMA principles, this review systematically examines studies that concentrate on metal nanoparticles loaded with herbal compounds for the treatment of breast cancer. Various Databases were studied: PubMed, Elsevier, ScienceDirect, SpringerLink, Taylor & Francis Online, ACS Publications, Publishing Royal Society of Chemistry, and Future Medicines. Studies were selected if they were peer-reviewed primary studies published in the past 10 years.

Results

We found that many herbal nano-formulations are more effective in breast cancer treatment than other types of formulations. Efficacy, safety and drug stability are also enhanced using nano-formulations.

Conclusion

Nano-formulation is found to be more effective in the treatment of breast cancer.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/1872210518666230907115056
2024-02-01
2024-12-25
Loading full text...

Full text loading...

References

  1. BaraniM. MirzaeiM. Torkzadeh-MahaniM. NematollahiM.H. Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast Cancer cell line: A Nano-herbal treatment for Cancer.Daru2018261111710.1007/s40199‑018‑0207‑330159762
    [Google Scholar]
  2. FröhlichH. PatjoshiS. YeghiazaryanK. KehrerC. KuhnW. GolubnitschajaO. Premenopausal breast cancer: Potential clinical utility of a multi-omics based machine learning approach for patient stratification.EPMA J.20189217518610.1007/s13167‑018‑0131‑029896316
    [Google Scholar]
  3. GaberM. HanyM. MokhtarS. HelmyM.W. ElkodairyK.A. ElzoghbyA.O. Boronic-targeted albumin-shell oily-core nanocapsules for synergistic aromatase inhibitor/herbal breast cancer therapy.Mater. Sci. Eng. C201910511009910.1016/j.msec.2019.11009931546395
    [Google Scholar]
  4. HaggagY.A. IbrahimR.R. HafizA.A. Design, formulation and in vivo evaluation of novel honokiol-loaded PEGylated PLGA nanocapsules for treatment of breast cancer.Int. J. Nanomedicine2020151625164210.2147/IJN.S241428
    [Google Scholar]
  5. ChangR. Bioactive polysaccharides from traditional Chinese medicine herbs as anticancer adjuvants.J. Altern. Complement. Med.200285559565
    [Google Scholar]
  6. HalithA.S.M. PillaiK.K. C.b Anbalagan, Herbal nanoparticle for anticancer potential- a review.World J. Pharm. Pharm. Sci.20143821232132
    [Google Scholar]
  7. NguyenK.T. Targeted nanoparticles for cancer therapy: Promises and challenge.J. Nanomed. Nanotechnol.2011251000103e10.4172/2157‑7439.1000103e
    [Google Scholar]
  8. ChoK. WangX. NieS. ChenZ.G. ShinD.M. Therapeutic nanoparticles for drug delivery in cancer.Clin. Cancer Res.20081451310131610.1158/1078‑0432.CCR‑07‑144118316549
    [Google Scholar]
  9. AndleebA. AndleebA. AsgharS. A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy.Cancers20211311281810.3390/cancers1311281834198769
    [Google Scholar]
  10. SharmaH. MishraP.K. TalegaonkarS. VaidyaB. Metal nanoparticles: A theranostic nanotool against cancer.Drug Discov. Today20152091143115110.1016/j.drudis.2015.05.00926007605
    [Google Scholar]
  11. RaoP.V. NallappanD. MadhaviK. RahmanS. JunW.L. GanS.H. Phytochemicals and biogenic metallic nanoparticles as anticancer agents.Oxid. Med. Cell. Longev.2016201611510.1155/2016/368567127057273
    [Google Scholar]
  12. PRISMA.Available from: https://www.prisma-statement.org//PRISMAStatement/FlowDiagram(Accessed on 25 November 2022)
  13. BakhshiF. NayeriN.D. KhosraviA. NajafiZ. The effect of complementary and alternative medicineson quality of life in patients with breast cancer: A systematic review.Indian J. Palliat. Care20202619510410.4103/IJPC.IJPC_183_1932132792
    [Google Scholar]
  14. LinW.F. ZhongM.F. ZhouQ.H. Efficacy of complementary and integrative medicine on health-related quality of life in cancer patients: A systematic review and meta-analysis.Cancer Manag. Res.2019116663668010.2147/CMAR.S19593531413628
    [Google Scholar]
  15. DaiX. LiT. BaiZ. Breast cancer intrinsic subtype classification, clinical use and future trends.Am. J. Cancer Res.20155102929294326693050
    [Google Scholar]
  16. De CiccoP. CataniM.V. GasperiV. SibilanoM. QuagliettaM. SaviniI. Nutrition and breast cancer: A literature review on prevention, treatment and recurrence.Nutrients2019117151410.3390/nu1107151431277273
    [Google Scholar]
  17. LarsenM.J. KruseT.A. TanQ. Classifications within molecular subtypes enables identification of BRCA1/BRCA2 mutation carriers by RNA tumor profiling.PLoS One201385e6426810.1371/journal.pone.006426823704984
    [Google Scholar]
  18. HashmiA.A. HashmiK.A. IrfanM. Ki67 index in intrinsic breast cancer subtypes and its association with prognostic parameters.BMC Res. Notes201912160510.1186/s13104‑019‑4653‑x31547858
    [Google Scholar]
  19. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  20. AjazuddinSaraf S. Applications of novel drug delivery system for herbal formulations.Fitoterapia201081768068910.1016/j.fitote.2010.05.00120471457
    [Google Scholar]
  21. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  22. HuG. GuoM. XuJ. Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation.Front. Immunol.201910199810.3389/fimmu.2019.0199831497026
    [Google Scholar]
  23. KopacT. Protein corona, understanding the nanoparticle–protein interactions and future perspectives: A critical review.Int. J. Biol. Macromol.202116929030110.1016/j.ijbiomac.2020.12.10833340622
    [Google Scholar]
  24. AlmeidaJ.P.M. ChenA.L. FosterA. DrezekR. in vivo biodistribution of nanoparticles.Nanomedicine20116581583510.2217/nnm.11.7921793674
    [Google Scholar]
  25. De MatteisV. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation.Toxics2017542910.3390/toxics504002929051461
    [Google Scholar]
  26. BlancoE. ShenH. FerrariM. Principles of nanoparticle design for overcoming biological barriers to drug delivery.Nat. Biotechnol.201533994195110.1038/nbt.333026348965
    [Google Scholar]
  27. MajidzadehH. Araj-KhodaeiM. GhaffariM. TorbatiM. Ezzati NazhadD.J. HamblinM.R. Nano-based delivery systems for berberine: A modern anti-cancer herbal medicine.Colloids Surf. B Biointerfaces202019411118810.1016/j.colsurfb.2020.11118832540763
    [Google Scholar]
  28. OswaldJ.T. PatelH. KhanD. Drug delivery systems using surface markers for targeting cancer stem cells.Curr. Pharm. Des.202026172057207110.2174/138161282666620040608490032250211
    [Google Scholar]
  29. RefaatA. AbdelhamedS. YagitaH. Berberine enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast cancer.Oncol. Lett.20136384084410.3892/ol.2013.143424137422
    [Google Scholar]
  30. ZhaoY. JingZ. LvJ. Berberine activates caspase-9/cytochrome c-mediated apoptosis to suppress triple-negative breast cancer cells in vitro and in vivo.Biomed. Pharmacother.201795182410.1016/j.biopha.2017.08.04528826092
    [Google Scholar]
  31. PandeyS. MewadaA. ThakurM. ShahR. OzaG. SharonM. Biogenic gold nanoparticles as fotillas to fire berberine hydrochloride using folic acid as molecular road map.Mater. Sci. Eng. C20133373716372210.1016/j.msec.2013.05.00723910269
    [Google Scholar]
  32. OmbredaneA.S. SilvaV.R.P. AndradeL.R. In vivo efficacy and toxicity of curcumin nanoparticles in breast cancer treatment: A systematic review.Front. Oncol.20211161290310.3389/fonc.2021.61290333767985
    [Google Scholar]
  33. BanikU. ParasuramanS. AdhikaryA.K. OthmanN.H. Curcumin: The spicy modulator of breast carcinogenesis.J. Exp. Clin. Cancer Res.20173619810.1186/s13046‑017‑0566‑528724427
    [Google Scholar]
  34. GhaffariS.B. SarrafzadehM.H. FakhroueianZ. KhorramizadehM.R. Flower-like curcumin-loaded folic acid-conjugated ZnO-MPA- βcyclodextrin nanostructures enhanced anticancer activity and cellular uptake of curcumin in breast cancer cells.Mater. Sci. Eng. C201910310982710.1016/j.msec.2019.10982731349522
    [Google Scholar]
  35. AliI. AhmedS.B.M. ElhajB.M. AliH.S. AlsubaieA. AlmalkiA.S.A. Enhanced anticancer activities of curcumin-loaded green gum acacia-based silver nanoparticles against melanoma and breast cancer cells.Appl. Nanosci.202111112679268710.1007/s13204‑021‑02176‑w
    [Google Scholar]
  36. MohebianZ. BabazadehM. ZarghamiN. In vitro efficacy of curcumin-loaded amine-functionalized mesoporous silica nanoparticles against MCF-7 breast cancer cells.Adv. Pharm. Bull.202213231732737342377
    [Google Scholar]
  37. SinghR. SinghS.K. LillardJ.W.Jr SinghR. shy Role of natural compounds in preventing and treating breast cancer.Front. Biosci.202012113716010.2741/s54432114452
    [Google Scholar]
  38. GongY. JiY. LiuF. LiJ. CaoY. Cytotoxicity, oxidative stress and inflammation induced by ZnO nanoparticles in endothelial cells: Interaction with palmitate or lipopolysaccharide.J. Appl. Toxicol.201737889590110.1002/jat.341527862064
    [Google Scholar]
  39. SadhukhanP. KunduM. ChatterjeeS. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy.Mater. Sci. Eng. C201910012914010.1016/j.msec.2019.02.09630948047
    [Google Scholar]
  40. ElsayedA.M. SherifN.M. HassanN.S. AlthobaitiF. HanafyN.A.N. SahyonH.A. Novel quercetin encapsulated chitosan functionalized copper oxide nanoparticles as anti-breast cancer agent via regulating p53 in rat model.Int. J. Biol. Macromol.202118513415210.1016/j.ijbiomac.2021.06.08534147524
    [Google Scholar]
  41. BalakrishnanS. BhatF.A. Raja SinghP. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer.Cell Prolif.201649667869710.1111/cpr.1229627641938
    [Google Scholar]
  42. AskarM.A. El-NasharH.A.S. Al-AzzawiM.A. RahmanS.S.A. ElshawiO.E. Synergistic effect of quercetin magnetite nanoparticles and targeted radiotherapy in treatment of breast cancer.Breast Cancer2022161178223422108672810.1177/1178223422108672835359610
    [Google Scholar]
  43. GranjaA. FriasI. NevesA.R. PinheiroM. ReisS. Therapeutic potential of epigallocatechin gallate nanodelivery systems.BioMed Res. Int.20172017581379310.1155/2017/5813793
    [Google Scholar]
  44. ZhongY. ChiouY.S. PanM.H. ShahidiF. Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages.Food Chem.2012134274274810.1016/j.foodchem.2012.02.17223107686
    [Google Scholar]
  45. YangQ.Q. WeiX.L. FangY.P. Nanochemoprevention with therapeutic benefits: An updated review focused on epigallocatechin gallate delivery.Crit. Rev. Food Sci. Nutr.20206081243126410.1080/10408398.2019.156549030799648
    [Google Scholar]
  46. MoonH.S. LeeH.G. ChoiY.J. KimT.G. ChoC.S. Proposed mechanisms of (−)-epigallocatechin-3-gallate for anti-obesity.Chem. Biol. Interact.20071672859810.1016/j.cbi.2007.02.00817368440
    [Google Scholar]
  47. FujikiH. YoshizawaS. HoriuchiT. Anticarcinogenic effects of (−)-epigallocatechin gallate.Prev. Med.199221450350910.1016/0091‑7435(92)90057‑O1409491
    [Google Scholar]
  48. AggarwalV. TuliH.S. TaniaM. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement.Semin. Cancer Biol.202080256275
    [Google Scholar]
  49. LiK. TengC. MinQ. Advanced nanovehicles-enabled delivery systems of epigallocatechin gallate for cancer therapy.Front Chem.2020857329710.3389/fchem.2020.57329733195062
    [Google Scholar]
  50. DaraeeH. EatemadiA. AbbasiE. Fekri AvalS. KouhiM. AkbarzadehA. Application of gold nanoparticles in biomedical and drug delivery.Artif. Cells Nanomed. Biotechnol.201644141042210.3109/21691401.2014.95510725229833
    [Google Scholar]
  51. CaiW. GaoT. HongH. SunJ. Applications of gold nanoparticles in cancer nanotechnology.Nanotechnol. Sci. Appl.20081173210.2147/NSA.S378824198458
    [Google Scholar]
  52. ChavvaS. DeshmukhS. KanchanapallyR. Epigallocatechin gallate-gold nanoparticles exhibit superior antitumor activity compared to conventional gold nanoparticles: Potential synergistic interactions.Nanomaterials20199339610.3390/nano903039630857226
    [Google Scholar]
  53. SafwatM.A. KandilB.A. ElblbesyM.A. SolimanG.M. ElerakyN.E. Epigallocatechin-3-gallate-loaded gold nanoparticles: Preparation and evaluation of anticancer efficacy in ehrlich tumor-bearing mice.Pharmaceuticals202013925410.3390/ph1309025432961982
    [Google Scholar]
  54. McClementsD.J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals.Biotechnol. Adv.20203810728710.1016/j.biotechadv.2018.08.00430086329
    [Google Scholar]
  55. YaoM. McClementsD.J. XiaoH. Improving oral bioavailability of nutraceuticals by engineered nanoparticle-based delivery systems.Curr. Opin. Food Sci.20152141910.1016/j.cofs.2014.12.005
    [Google Scholar]
  56. ElsaesserA. HowardC.V. Toxicology of nanoparticles.Adv. Drug Deliv. Rev.201264212913710.1016/j.addr.2011.09.00121925220
    [Google Scholar]
  57. de JongW.H. BormP.J. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S59618686775
    [Google Scholar]
  58. KeckC.M. MüllerR.H. Nanotoxicological classification system (NCS) - A guide for the risk-benefit assessment of nanoparticulate drug delivery systems.Eur. J. Pharm. Biopharm.201384344544810.1016/j.ejpb.2013.01.00123333302
    [Google Scholar]
  59. JainS. SaxenaN. SharmaM.K. ChatterjeeS. Metal nanoparticles and medicinal plants: Present status and future prospects in cancer therapy.Mater. Today Proc.20203166267310.1016/j.matpr.2020.06.602
    [Google Scholar]
  60. GorainB. PandeyM. LengN.H. Advanced drug delivery systems containing herbal components for wound healing.Int. J. Pharm.202261712161710.1016/j.ijpharm.2022.12161735218900
    [Google Scholar]
/content/journals/nanotec/10.2174/1872210518666230907115056
Loading
/content/journals/nanotec/10.2174/1872210518666230907115056
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test